ﬁ

\‘
National
Collegeof

Ireland

Configuration Manual

MSc Research Project
Data Analytics

Jayanta Behera
Student ID: x18188834

School of Computing
National College of Ireland

Supervisor: Dr. Paul Stynes, Dr. Pramod Pathak

National College of Ireland
MSc Project Submission Sheet

School of Computing

‘——
\ National

Collegeof
Ireland

Student Name:

Jayanta Behera

Student ID: x18188834

Programme: Data Analytics Year: 2020
Module: MSc Research Project

Lecturer: Dr. Paul Stynes, Dr. Pramod Pathak

Submission Due
Date:

17" August 2020

Project Title:

Configuration Manual

Word Count: 1612
[Page Count 11

I hereby certify that the information contained in this (my submission) is information

pertaining to research I conducted for this project.

All information other than my own

contribution will be fully referenced and listed in the relevant bibliography section at the

rear of the project.

ALL internet material must be referenced in the bibliography section.

Students are

required to use the Referencing Standard specified in the report template. To use other
author's written or electronic work is illegal (plagiarism) and may result in disciplinary

action.
Signature: Jayanta Behera
Date: 17 August 2020

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple | o

copies)

Attach a Moodle submission receipt of the online project

submission, to each project (including multiple copies).

You must ensure that you retain a HARD COPY of the project, both | o

for your own reference and in case a project is lost or mislaid. It is not

sufficient to keep a copy on computer.

Assignments that are submitted to the Programme Coordinator Office must be placed
into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

Configuration Manual

Jayanta Behera
x18188834
MSc Research Project in Data Analytics
17" August 2020

1 Introduction

This configuration manual specifies the details of computer hardware as well as software that
are required along with the programming phases to implement of the below research project
in detail:

“Flood Severity Classification using Machine Learning”

2 System Configuration

2.1 Hardware

Processor: Intel Core i5-8" Gen
RAM: 16 GB

System Type: Windows OS, 64-bit
Storage: 512 GB SSD

2.2 Software

Jupyter Notebook (Anaconda) : Anaconda is an open source software available in official
website of anaconda platform where machine learning models are run. Data merging, pre-
processing, visualisation etc. are done in Python language (version 3.7.3) using Jupyter
notebook.

RStudio : RStudio is a programming platform used to run machine learning models. In the
current project, data imputation and feature selection are performed using R programming in
the RStudio Desktop version.

Microsoft Excel 2016 : MS Excel is a spreadsheet used to store the dataset downloaded from
various websites in form of comma separated files. This is also used to plot a few
visualisations to show model accuracy.

Tableau : Tableau is a visualisation software used to create histograms and bar plots. In this
project, this is done to show a few evaluation plots.

UiPath : It is a robotic automation platform used to extract the data from various websites
automatically. In this project, UiPath is used to extract the weather data via web scrapping.

1

3 Project Development

The project was implemented using python and R programming. Initial stage of the project
deals with extracting climatic and topographic data and merging with the historical flood
data. This was followed by data clean-up, feature engineering, feature selection and
implementing various machine learning techniques using python programming available
under keras and sklearn library.

3.1 Data Preparation

Initially flood archive data was downloaded as csv file from official website of Colorado! and
imported via python programming. With the geographical coordinates and the flood date,
URLs were created in python Beautifulsoup library to extract the weather data via web

scrapping as shown in Figure 1 and saved in the same excel dataset as new column-
def getdetails(URL,began date):
dt_object = began_date.date()
dt_objectl = dt object-timedelta(days=2) # this is for day-2's values
dt_object = dt object1

req = Request(URL, headers={'User-Agent': 'Mozilla/5.8'})

webpage = urlopen(req).read()

soup = BeautifulSoup(webpage, 'html.parser’)

valuel = str(soup.find all("div", {"class":"station-name ng-star-inserted"}))
result list = re.sub(r"~.+?(?=history)", "", valuel)

split string = result list.split("date", 1)
substring = split string[@]

hist url = 'https://www.wunderground.com/ " +substring+'date/"+str(dt _object)+'/"
return hist url

url= "https://www.wunderground.com/weather/"
for i in range(len(df)):
adding this line as internet got interrupted inbetween
if i > 4163:
new url = url + str(df.loc[i, "lat"]) + ',' + str(df.loc[i, "long"]) +'/'
df.loc[i,"coordinate url"]=new_url
try :
val= getdetails(new url,df.loc[i, "Began"])
df.loc[i,"began date url"]=val

Figure 1: Weather URL Extraction - Web Scrapping

3.1.1. Weather Data via Web Scraping

A sequence was created in UiPath to extract the weather data from the official website of
weatherunderground? via web scrapping as shown in Figure 2.

! http://floodobservatory.colorado.edu/Archives/
2 https://iwww.wunderground.com/

http://floodobservatory.colorado.edu/Archives/
https://www.wunderground.com/

3 tiwrrar ¥ #
Limage =
ot
Available
#f Commani Cut
2| ignos el e #
e 5o
L
wistx *
4
&
& Ty)
-
Try
simct Saructurmed Duis “THOUS
rmct Shructzre Dia “THC
_ Image =
- Not
Available
Catchen
Criches S
L
Tanaity
Firasity

Figure 2: UiPath Sequence Architecture

3.1.2. Weather Data via Application Program Interface

As the web scrapping took prolonged hours to run, API for the same website was used to
extract the climatic details using python programming shown in Figure 3-

URL = df1.loc[i,"began date url™]

start_date = dfi1.loc[i,"Began"]
start_date = ((start_date).date())
start_date=start_date-timedelta(days=1)# 1 days before
start_date=str(start_date)
start_date = start_date.replace('-', '")
print("URL :",URL)
try:
print("i :",i)
req = Request(URL, headers={'User-Agent’': 'Mozilla/5.@'})
webpage = urlopen(req).read()
soup = BeautifulSoup(webpage, "html.parser')
valuel = soup.find('div’, {'class':'station-name ng-star-inserted’})#this is to get the city code like br/cerro-azul

if valuel is None:
j=i
else:
value2=valuel.find('span’',{'class’:"station-id"})
value3 = (value2.contents[@][1:-1])
result_list = re.sub(r"~.+?(?=daily)"”, "", URL) #get the new values to add to the new url
string_in_slashes = result_list.split('/')[1].strip() # to get the country code from URL
string_in_slashes.upper()
new url = 'https://api.weather.com/vi/location/' +value3+':9: '+string in_slashes.upper()+'/observations/historic
try:
Les:requests.get(newﬁurl)
print(“opened new url res:",res)
w_u = res.json()
dfl.loc[1i,"Time"] = w_u[‘observations’][@][expire time gmt']

df1.loc[i,"Temperature"] = w_u[‘observations'][@][temp']
df1.loc[i,"Dew Point"] = w u["observations'][@][dewPt']

Figure 3: API code-— weatherunderground

However, data was not available for each of the dates. Hence 2 other weather APIs were
used®* and the data was extracted using python as showing in Figure 4 and 5-

def retrieve_hist data(api_key, location list, start date):
for location in location_list:

start_d= str(start_date)

end_d = str(start_date)

frequency=1

url_page = ‘http://api.worldweatheronline.com/premium/vi/past-weather.ashx?key=" + api_key + '&g=' + location + '&fo
frequency)

print("url_page :",url_page)

json_page = urllib.request.urlopen(url_page, timeout=10)

json_data = json.loads(json_page.read().decode())

print("data collection for row :",i)

data = json_data['data’]['weather'][@]["date’]

datal = json_data['data’]['weather'][@][avgtempF']

data2 = json_data['data’]['weather'][0]["hourly'][@]["DewPointF"]
data3 = json_data['data’]['weather'][0]["hourly"][@]["humidity™]
datas = json_data['data’]['weather'][e]["hourly'][@]["winddiriePoint"]
datas = json_data['data’]['weather'][@]["hourly"][@]["windspeedMiles"]
data6 = json_data['data’]['weather'][@]["hourly'][@]["WindGustMiles™]
data7 = json_data['data’]['weather®][@]["hourly"][@]["pressureInches"]
data8 = json_data['data’][‘weather'][@]["hourly"][@]["precipInches"]

for i, row in df2.iterrows()
#internet went off, so retrying afte 4546th row
if i »>= 4546:

start_date = df2.loc[i,"Began"]

start_date = ((start_date).date())

start_date=start_date-timedelta(days=1)#1 days before

#api_key = '365f0b99b7f2410fbb8111748201107"

#api_key = 'dfd495982aded5cfb30183830201507 "

api_key = '@64d3cdae3804e168e501356201107"

location_list = [str(df2.loc[i,"lat"])+", +str(df2.loc[i,"long"])]

print("row number :",i)

try :
data, datal, dataz2, data3, datas, datas, datae, data7v, data8, data9 = retrieve hist data(api_key,location lig
df2.loc[1i,"Time"]=data
df2.loc[i,"Temperature™]=datal
df2.loc[i,"Dew Point"]=data2
df2.loc[i, " "Humidity"]=data3
df2.loc[i,"wind"]=datas
df2.1loc[i,"wind sSpeed”]=datas
df2.loc[1i,"Wind Gust"]=dataé
df2.loc[i,"Pressure"]=data7
df2.loc[i,"Precipitation”]=data8
df2.loc[i,"Condition"]=datag

except KeyError:

nting

Figure 4: API code— worldweather

def weather_data(query):
res=requests.get(http://api.openweathermap.org/data/2.5/weather? ' +query+
'&APPID=b35975e18dc93725ach@92f7272cc6b8&units=metric’);
return res.json();

hange the date before running
import time

import datetime

import re

for i, row in all null df.iterrows():

api_key = '365T@b99b7f2416fbb8111748201107"

lat = str(all null df.loc[i,"lat"])

long = str(all_null df.loc[i,"long"])

start = (all_null_df.loc[i,"Began”]).date()

start=start-timedelta(days=1)### 1 days before

newformat = start.strftime(%d-%m-%y")

dt = str(int(time.mktime(datetime.datetime.strptime(newformat , "%d-%m-%v").timetuple())))

try:
query='&lat="+lat+'&lon="+long+'&type=hour&start="+dt
v_data=weather_data(query)
data = w_data['dt']
all_null df.loc[i,"Time"]=data
datal = float(w_data['main’]["temp'])
datal=round((datal * 9/5) + 32,2)
all_null_df.loc[i,"Temperature”]=datal
all null df.loc[i,"Humidity"] = w_data[‘'main’]["humidity’]
all null df.loc[i,"Wind Speed”] = w_data['wind'][speed’]
data? = float(w_data['main']["pressure’])
data? = round(data7 * (©.82953/1.000000573),2) # conversion of milibars into inHg
all null df.loc[i,"Pressure"] = data7
lp11l_null_df.loc[i,"Condition"] = w_data[weather'][@]['main’]

3 https:/Aww.worldweatheronline.com/
4 https://openweathermap.org/history

https://www.worldweatheronline.com/
https://openweathermap.org/history

Figure 5: API code— openweatherdata

3.1.3. Topographic Data via Application Program Interface

The topographic data was extracted from official maps website® using python as shown in
Figure 6.

longitude = df.loc[i,"long"]
longitude = str(longitude)
lattitude = df.loc[i,"lat"]
lattitude = str(lattitude)

api_key = 'LbcFldINXW30YpDkdeIMAC5xOrnnIJZDbfyabPghgHmFIkzKiTLVYIYuug91Ctws'

location_list = lattitude+', '+longitude
try @
url_page = "https://api.jawg.io/elevations?locations=" + location_list + '&access-token=" + api_key
print("url :", url_page)
json_page = urllib.request.urlopen(url_page, timeout=1@)
json_data = json.loads(json_page.read().decode())
df.loc[i,"Elevation”] = round(json data[@][' 'elevation'],2)

Figure 6: API code— Topographic Details

3.1.4. Data Merging

All the API data were merged in python using merge function in pandas dataframes as shown
Figure 7-

#merging datasets
df _innerl = pd.merge(dfil, df2, on="ID', how="inner")

#merging datasets
df _inner2 = pd.merge(df3, df4, on="ID', how="inner")

#merging datasets
df inner = pd.merge(df inneri, df inner2, on="ID', how="inner")

df = pd.merge(df®, df inner, on="ID", how="outer")

Figure 7: Data Merge

3.2 Missing Value Imputation

The missing values in the final pandas dataframe was checked using isnull function of pandas
library in python as shown in Figure 8

df.apply(lambda x: sum{x.isnull()})
Day.3 Dew Point 5]
Day.4 Dew Point 5}
Day® Wind 2349
Day.1 Wind 2456
Day.2 Wind 2407
Day.3 Wind 2423
Day.4 Wind 2404
Day® Humidity 5]

I:'igure 8: Missing Value Detegtion

5 https://www.maps.ie/coordinates.html

https://www.maps.ie/coordinates.html

These missing values were imputed in MICE package available in RStudio as shown in
Figure 9.

Tibrary(mice)
md.pattern(data)
md.pairs (data)

##install.packages ("VIM™)
##Tibrary(VIM)
##mice_plot <- aggr(data, col=c("navyblue', 'yellow'),

numbers=TRUE, sortvars=TRUE,
Tabels=names (data), cex.axis=.7,
B gap=3, ylab=c("Missing data","Pattern"))

Tibrary(ggplot2)

Tibrary(ggpubr)
##marginplot(datal,c('Area_Affected per_day', 'Day.l1 Precipitation')])
####impute with 3 iterations with random forest

imputed_Data <- mice(data, m=3, maxit = 3, method = 'rf', seed = 123)
summary (imputed_Data)

imputed_Datafimp$Day0_Temperature

typeof (imputed_Data$impiDay.1l_Temperature)

Figure 9: Missing Value Imputation

3.3 Feature Engineering

Before implementing machine learning algorithms, feature engineering was done to improve
the model performance. Various steps were performed such as feature selection, one hot
encoding, standardization, dimensionality reduction, class imbalance.

3.3.1. One-Hot Encoding

One hot encoding was done to convert the categorical variables to binary values in python
using get dummies function in pandas library as shown in Figure 10-

|pd.get_dummies(d-F_pca, columns=['"MainCause’, 'Day®_Condition’, 'Day.1_Condition','Day.2_Condition’, 'Day.3_Condition’ |

Figure 10: One-Hot Encoding Code

3.3.2. Standardisation

Standardisation was done to get all the columns under same scale to avoid the impact of
higher valued columns. This was done using StandardScaler function in preprocessing library
of sk learn using python as shown in Figure 11

Standardizing the features

x = Standardscaler().fit_transform(x)

Figure 11: Data Standardization Code

3.3.3. Dimensionality Reduction

As more input dimension requires more processing time and storage space, dimensionality
reduction techniques were applied to reduce the input dimensions to 2 or 3 components
explaining most of the variances in the dataset. This was done using PCA function available

under sklear.decomposition library in python shown in Figure 12-
pca = PCA(n_components=2)
principalComponents = pca.fit_transform(x)
principalDf = pd.DataFrame(data = principalComponents
, columns = ['principal component 1', 'principal component 2'])
finalDf = pd.concat([principalDf, df dm[['Flood Risk']]], axis = 1)

6

Figure 12: Dimensionality Reduction using PCA

As the PCA components didn’t explain the variance of dataset, TSNE function available
under sklearn.manifold library was used in python as shown in Figure 13-

from sklearn.manifold import TSNE
X_embedded = TSNE(n_components=2, perplexity=50.0, n_iter=1000).fit transform(x)
tSNEDT = pd.DataFrame(data = X embedded
, columns = ['tSNE component 1', 'tSNE component 2'])
tDf = pd.concat([tSNEDT, df dm[['Flood Risk']]], axis = 1)
tDf.head(5)

Figure 13: Dimensionality Reduction using TSNE

SVD, ICA and Isomap techniques were also used as shown in the Figures 14-165-

from sklearn.decomposition import TruncatedsvD

svd = TruncatedSVD(n_components=2, random state=42).fit transform(x)
plt.figure(figsize=(12,8))

plt.title('SVvD Components®)

plt.scatter(svd[:,0], svd[:,1])

plt.scatter(svd[:,1], svd[:,0])]

Figure 14: Dimensionality reduction using SVD

from sklearn.decomposition import FastICA

ICA = FastICA(n_components=2, random state=12)
a=ICA.fit transform(x)
plt.figure(figsize=(12,8))

plt.title('ICA Components')
plt.scatter(a[:,0], a[:,1])
plt.scatter(a[:,1], a[:,2])

Figure 15: Dimensionality Reduction using ICA

from sklearn import manifold

trans_data = manifold.Isomap(n_neighbors=5, n_components=2, n_jobs=-1).fit transform(x)
plt.figure(figsize=(12,8))

plt.title('Decomposition using ISOMAP')

plt.scatter(trans data[:,e], trans_data[:,1])

plt.scatter(trans data[:,1], trans_data[:,e])

Figure 16: Dimensionality Reduction using Isomap

3.3.4. Feature Elimination

Various feature elimination techniques were used as shown in Figure 17-20. Recursive
feature elimination technique was run with all the columns of the dataset in the Figure 17-

rfe selector = RFE(estimator=LogisticRegression(), n features to select=len(df.columns), step=1@, verbose=5)
rfe_selector.fit(x, y)

rfe_support = rfe_selector.get_support()
rfe feature = df.loc[:,rfe support].columns.tolist()
print(str(len(rfe_feature)), 'selected features')

Figure 17: Recursive Feature Elimination Technique

Random forest classifier was run for maximum of 121 features as its upper limit for 100
estimators as shown in Figure 18-

embeded rf selector = SelectFromModel (RandomForestClassifier(n_estimators=100), max_ features=121)
embeded rf selector.fit(x, y)

embeded _rf_support = embeded rf selector.get support()
embeded rf feature = df.loc[:,embeded rf support].columns.tolist()
print(str(len(embeded rf feature)), 'selected features')

Figure 18: RandomForestClassifier Technique

LGBM classifier was run for maximum of 121 features as its upper limit for 500 estimators
as shown in Figure 19-

from lightgbm import LGBMClassifier

lgbc=LGBMClassifier(n_estimators=50@, learning_ rate=0.85, num_leaves=32, colsample_bytree=6.2,
reg_alpha=3, reg_lambda=1, min_split_gain=0.01, min_child weight=40)

embeded_lgb_selector = SelectFromModel(lghc, max_features=121)
embeded_lgb_selector.fit(x, y)

embeded_lgb_support = embeded_lgb selector.get_ support()
embeded_lgb_feature = df.loc[:,embeded_lgb support].columns.tolist()
print(str(len(embeded lgb feature)), 'selected features')

Figure 19: LGBM Classifier Technique

Boruta function under mtools library in RStudio was used as shown in Figure 20-

Tibrary(mltools)
traindata <- one_hot(as.data.table(traindata~.-Severity))
summary(traindata)

####implement and check the performance of boruta package

set.seed(123)

#boruta.train <- Boruta(Area_Affected_per_day~.-ID, data = traindata, doTrace = 2)
boruta.train <- Boruta(Severity~.-ID, data = traindata, doTrace = 2)
print(boruta.train)

plot(boruta.train, xlab = "", xaxt = "n")
1z<-Tlapply(1:ncol(boruta.trainSImpHistory),function(i)
boruta.train$ImpHistory[is.finite(boruta.trainfImpHistory[,i1),i1)
names (1z) <- colnames (horuta.train${ImpHistory)
Labels <- sort(sapply(lz,median))
axis(side = 1,las=2,labels = names(Labels),
at = 1:ncol(boruta.train$ImpHistory), cex.axis = 0.7)

Figure 20: Boruta feature elimination Technique

3.3.5. Class Imbalance

As the output variable was categorical with imbalanced class distribution, SMOTE analysis
was done to balance the output class as shown in Figure 21-

from imblearn.over sampling import SMOTE
sm = SMOTE(random_state=2)
X T,y T = sm.fit sample(X, y)

Figure 21: Code for SMOTE

3.4 Modelling

All the machine learning models were run in python using sklearn library as shown in Figure
22-31.

3.3.1. Data Split

Before applying the models, data was split using train_test_split function in the ratio 80:20 as
shown in Figure 22-

X _train, X test, y train, y test = train test split(X, y, test size=0.2, random state=8)

Figure 22: Data Split Code

3.3.2. kNeighborsClassifier

k Nearest Neighbour Classifier was the first model applied with k value as 6. This is obtained
from the results of gridsearch function to get the best parameter. The model is shown in
Figure 23-

#Setup a knn classifier with k neighbors

knn = KNeighborsClassifier(n_neighbors=6)

#Fit the model

knn.fit(X_train,y_train)

#Get accuracy. Note: In case of classification algorithms score method represents accuracy
knn.score(X_test,y_test)

Figure 23: Code for kNN

3.3.3.SVC

Support Vector Machine was used with parameter value of rbf for kernel, 0.1 for gamma and
10 for C as shown in Figure 24 with rest other parameters as default value-

from sklearn.svm import SVC

#svc = SVC(kernel="rbf', ¢ = 1, gamma="scale")
svc = SVC(kernel="rbf', € = 10, gamma=@.1)
svc.fit(X_train,y_train)

pred_y_svc = svc.predict(X_test)
Figure 24: Code for SVC

3.3.4. Decision Tree

Decision Tree Classifier was applied with criterion value as entropy and max_depth as 29

shown in Figure 25 and rest other parameters with default values-

clf = DecisionTreeClassifier(criterion="entropy"”, max_depth=29)
clf = clf.fit(X_train,y_train)

y_pred = clf.predict(X_test)
print("Accuracy:"”,metrics.accuracy score(y test, y pred))

Figure 25: Code for DecisionTreeClassifier

3.3.5. Random Forest

Random Forest Classifier was applied with criterion value 1000 for n_estimators and 100 as
random_state as shown in Figure 26 and rest other parameters with default values-

rf = RandomForestClassifier(n estimators = 1@@@, random state = 100)
rf=rf.fit(X _train,y train)

y_pred = rf.predict(X test)

print("Accuracy:",metrics.accuracy score(y_test, y pred))

Figure 26: Code for RandomForestClassifier

3.3.6. Bagging

Bagging Classifier was applied as shown in Figure 27 with all parameters as default values
except random_state as 1-

from sklearn.ensemble import BaggingClassifier

from sklearn import tree

model = BaggingClassifier(tree.DecisionTreeClassifier(random_state=1))
a=model.fit(X_train,y train)

model.score(X_test,y test)

Figure 27: Code for BaggingClassifier

9

3.3.7. AdaBoost

AdaBoost Classifier was applied as shown in figure 27 with all parameters as default values

except random_state as 1-

from sklearn.ensemble import AdaBoostClassifier
model = AdaBoostClassifier(random state=1)
a=model.fit(X_train,y_train)
model.score(X test,y test)

Figure 27. Code for AdaBoostClassifier

3.3.8. Gradient Boost

Gradient Boosting Classifier was applied as shown in Figure 28 with all parameters as default
values except learning rate as 0.01 and random_state as 1-

from sklearn.ensemble import GradientBoostingClassifier

model= GradientBoostingClassifier(learning rate=0.01,random state=1)
a= model.fit(X_train,y train)

model.score(X test,y test)

Figure 28: Code for GradientBoostingClassifier

3.3.9. XGBoost

VGBoost Classifier was applied as shown in Figure 29 with all parameters as default values
except random_state as 1 and learning_rate as 0.01-
import xgboost as xgb
model=xgb.XGBClassifier(random state=1,learning rate=0.01)
a= model.fit(X_train,y train)
model.score(X test,y test)

Figure 29: Code for XGBoostClassifier

3.3.10. Neural Network

Figure 30 shows the architecture of the artificial neural networks with 29 input parameters
selected after different combinations to increase the model efficiency-

model = Sequential()

#adding Layer

model.add(Dense(units =15,input dim =29,activation='relu')) # hidden Layer
model.add(Dense(units=7,activation="relu"))

#model . add(Dense(units=10,activation="relu"))
model.add(Dense(units=3,activation="sigmoid')) #output Layer

#compiling model

model.compile(loss="categorical crossentropy', optimizer='adam',metrics=['accuracy'])

history = model.Fi‘t(x_tr‘gin,y_tr'aiﬁ,batch_size_=64,epochsl=58{a, validation_data_= (x_testj y_test_), verbose = 1)

Figure 30: Code for Artificial Neural Network

3.3.11. Cross Validation for Neural Network

In order to avoid overfitting, cross validation technique was applied to neural network with
the codes shown in Figure 31-

10

def my model():
model = Sequential()
#adding Layer
model.add(Dense(units =15,input_dim =29,activation='relu')) # hidden layer
model.add(Dense(units=7,activation="relu"))
#model . add (Dense(units=10, activation="relu"))
model.add(Dense(units=3,activation="sigmoid")) #output Layer
#compiling model

model.compile(loss="categorical crossentropy’, optimizer="adam’,metrics=["accuracy’])
return model

from keras.wrappers.scikit learn import KerasClassifier

classifier = KerasClassifier(build_fn=my_model,epochs=200,batch_size=10,verbose=1)

from sklearn.model_selection import cross_val score
cv_results = cross_val_score(estimator=classifier,X=x_train,y=y_train, n_jobs=-1,verbose=1,cv=10)

Figure 31: Cross validation code for Artificial Neural Network

11

