

Configuration Manual

MSc Research Project
MSc. Data Analytics

Davis Munachimso Agughalam
Student ID: 19143354

School of Computing
National College of Ireland

Supervisors: Dr Paul Stynes
 Dr Pramod Pathak

National College of Ireland

MSc Project Submission Sheet

School of Computing

Student
Name:

Davis Munachimso Agughalam

Student ID:

19143354

Programme:

MSc. Data Analytics

Year:
2019/2020

Module:

Research Project

Supervisor:

Dr Paul Stynes

Submission
Due Date:

17th August 2020

Project Title:

Bidirectional LSTM approach to image captioning with scene features

Word Count: 1426 Page Count: 12

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.
ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author's written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature:

Davis Munachimso Agughalam

Date:

17th August 2020

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple
copies)

□

Attach a Moodle submission receipt of the online project
submission, to each project (including multiple copies).

□

You must ensure that you retain a HARD COPY of the project,
both for your own reference and in case a project is lost or mislaid. It is
not sufficient to keep a copy on computer.

□

Assignments that are submitted to the Programme Coordinator Office must be placed
into the assignment box located outside the office.

Office Use Only
Signature:
Date:
Penalty Applied (if applicable):

1 Introduction

In this configuration manual, the steps followed to carry out the implementation of this research
are detailed. These steps include data collection and processing, feature extraction and model
development. Code snippets, screenshots and directions to execute the codes are also present
to ensure seamless reproducibility.

2 Hardware and Software configurations

Table 1: Hardware specifications

Table 2: Software specifications

Programming language Python (Anaconda distribution)

IDE Jupyter notebook
Cloud environment Google Collaboratory
Browser Google chrome

Due to the large data size, the data is first processed on the local machine and results are saved
as pickle files before they are moved to Google Colab for modelling.

3 Data Preparation
3.1 Collecting the Flickr8k dataset

1. Download dataset from the URL https://www.kaggle.com/shadabhussain/flickr8k onto
a work station and store dataset in new separate folder. The dataset contains images and
text descriptions to be parsed in next section.

3.2 Data parsing

1. Open a new Jupyter notebook environment in the same folder as stored data.
2. Import required libraries to process data.

Host machine/Operating System MacBook Pro/MacOS Catalina
RAM 16 GB, core i7 processor.
Hard Disk 256GB
Cloud compute (GPU) Free GPU Tesla K80 offered by

Colab with 2496 CUDA cores and
12GB RAM.

Figure 1: Import required libraries

3. The code for parsing the data to get training, testing and development splits from the
specified file paths in the downloaded datasets is given in the Jupyter notebook
submitted alongside this configuration manual. The function load_image_list takes the
filenames from the file paths and returns the image names for images in train, test and
development splits. The train images are dumped to a pickle file for later use and figure
3 shows a sample image from the training set.

Figure 2: Parse data

Figure 3: Sample training set image

4 Image Feature extraction

After arranging the images into train, test, and development sets, the global image features are
extracted using a pretrained Inceptionv3 CNN and Places365 pretrained CNN is used for image
scene feature extractions. For the Inceptionv3, the pretrained model has already been imported
from Keras.applications while importing libraries. An external implementation1 of the
Places365CNN is used and the codes for these extractions are given in the Jupyter notebook.
The features from the second to last layer of both models are extracted as the image global
features and deep scene features respectively. These features are stored in an ordered dictionary
with image names as keys and these extracted feature arrays as values before being pickled for
easy access as ‘traindict.pickle’ and ‘train_plc.pickle’.

For the global image features;
1. Convert image to array using the get_image function.
2. Load Inceptionv3 weights.
3. Set up inceptionv3 model taking the second to last layer as the output layer
4. Use the image_generator function to progressively extract the image features using the

loaded model.
5. Create an ordered dictionary taking image name as key and feature vector as value.
6. Save dictionary to pickle files for future use.

Figure 4: Finished image feature extraction process

For the image scene features,
1. Import VGG16 places365 model from class file and load weights.
2. Load the images to array using the res_image function.
3. Set up loaded Places365 model to use second to last layer as output layer.
4. Use place_gen function to progressively extract image scene features using loaded

Places 365 model.
5. Create ordered dictionary with image name as keys and scene feature vector as

values.
6. Save files to pickle for future use.

1 https://github.com/GKalliatakis/Keras-Application-Zoo

5 Text processing

During data handling, the text captions are cleaned. As part of the cleaning process, they are
converted to lower case with punctuations and numbers removed. Start and end indicators
‘<start>’ and ‘<end>’ are added to the sentences as part of the cleaning process. The code for
the text cleaning is also present in the submitted Jupyter notebook.

Figure 5: Text processing function

Figure 6: Sample image with processed text descriptions

The processed text descriptions are stored in a pickle file and uploaded to Google Collaboratory
for modelling.

6 Modelling
6.1 Google Colab setup

1. A Google Colab2 free tier account is used to access a new Jupyter notebook IDE. This
IDE is already preloaded with most of the required libraries for seamless python
development.

2 https://colab.research.google.com/notebooks/intro.ipynb#recent=true

Figure 7: New Google Colab environment

2. As part of the Colab environment set up, a GPU environment is selected to ensure faster
model training times by going to Runtime à Change runtime type à GPU.

Figure 8: Selecting GPU for Google Colab

3. Upload pickle files ‘traindict.pickle’, ‘des.pickle’, ‘train.pickle’, ‘train_plc.pickle’
saved during data processing to Google drive.

4. Connect Jupyter notebook on Colab to Drive by mounting the drive on the IDE. Follow
given link and copy authorization code to give access to Google drive.

Figure 9: Mount Google drive

5. Connect mounted drive to Jupyter notebook to ensure the notebook has access to
uploaded pickle files.

Figure 10: Connect mounted drive to Jupyter IDE

6.2 Model building

1. Import required keras3 libraries for modelling.

Figure 11: Import libraries for modelling

2. Read in pickle files.

Figure 12: Read in pickle files

3. Create Word to ID and ID to word dictionaries for sequence vectorization and obtain
maximum length of sequences. The code to achieve this is shown in the Jupyter
notebook submitted alongside.

4. Due to RAM computational limitations, use a data generator to load the data into the
model in batches of 128. The code for this is also in the accompanying code file.

5. Build models.

3 Keras.io

Figure 13: Experiment 1 model architecture

Figure 14: Experiment 2 model architecture

Figure 15: Experiment 3 model architecture

6. Instantiate checkpoint paths and early stopping.
7. Fit models for 15 epochs saving weights and testing at 5, 10 and 15 epochs.
8. Download saved model weights to local machine.

7 Inference and Evaluation
7.1 Inference

1. A Custom function is written using the saved weights of the models to generate
sentence descriptions on the test set of the data. This function takes as input the image
name and obtains the extracted image features from the saved ordered dictionary and
returns a sentence description for that image.

2. Change prediction model inside the image decoder function according to experiment
for which inference is being done. Note that mod2 for inference using experiment 2
model and mod3 for experiment 3 model.

Figure 16: Inference function

Figure 17: sample predicted and ground truth captions

7.2 Metrics Evaluation

1. Another custom function is written using the previous inference function to generate
sentence descriptions across the entire text corpus. The function takes as input a list
containing test image names and returns the actual and predicted captions.

Figure 18: Function to make predictions across the entire test corpus

2. Remove <start> and <end> tokens from predicted and actual sentence descriptions.
3. Evaluate actual and predicted captions using BLEU and ROUGE scores.

Figure 19: Sample BLEU evaluation

Figure 20: ROUGE evaluation function

Figure 21: Sample ROUGE evaluation

7.3 Qualitative Evaluation

A qualitative analysis of the experiments is undertaken to evaluate the effect of scene features
on image captioning and samples are shown in the figure below.

Figure 22: Model qualitative analysis

