"“
\ National
Collegef

[reland

Configuration Manual

MSc Research Project
MSc. Data Analytics

Davis Munachimso Agughalam
Student ID: 19143354

School of Computing
National College of Ireland

Supervisors: Dr Paul Stynes
Dr Pramod Pathak

‘*
National College of Ireland \ National

) o College
MSc Project Submission Sheet Ireland
School of Computing
Student Davis Munachimso Agughalam
Name:
Student ID: 19143354
Year:

Programme: MSc. Data Analytics 2019/2020
Module: Research Project
Supervisor: Dr Paul Stynes

Submission
Due Date: 17% August 2020

Project Title: Bidirectional LSTM approach to image captioning with scene features
Word Count: 1426 Page Count: 12

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author's written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature: Davis Munachimso Agughalam
Date: 17% August 2020

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple | o
copies)

Attach a Moodle submission receipt of the online project O
submission, to each project (including multiple copies).
You must ensure that you retain a HARD COPY of the project, O

both for your own reference and in case a project is lost or mislaid. It is
not sufficient to keep a copy on computer.

Assignments that are submitted to the Programme Coordinator Office must be placed
into the assignment box located outside the office.

Office Use Only

Signhature:

Date:

Penalty Applied (if applicable):

1 Introduction

In this configuration manual, the steps followed to carry out the implementation of this research
are detailed. These steps include data collection and processing, feature extraction and model
development. Code snippets, screenshots and directions to execute the codes are also present
to ensure seamless reproducibility.

2 Hardware and Software configurations

Table 1: Hardware specifications

Host machine/Operating System MacBook Pro/MacOS Catalina

RAM 16 GB, core 17 processor.

Hard Disk 256GB

Cloud compute (GPU) Free GPU Tesla K80 offered by
Colab with 2496 CUDA cores and
12GB RAM.

Table 2: Software specifications

Programming language Python (Anaconda distribution)
IDE Jupyter notebook

Cloud environment Google Collaboratory

Browser Google chrome

Due to the large data size, the data is first processed on the local machine and results are saved
as pickle files before they are moved to Google Colab for modelling.

3 Data Preparation

3.1 Collecting the Flickr8k dataset

1. Download dataset from the URL https://www.kaggle.com/shadabhussain/flickr8k onto
a work station and store dataset in new separate folder. The dataset contains images and
text descriptions to be parsed in next section.

3.2 Data parsing

1. Open a new Jupyter notebook environment in the same folder as stored data.
2. Import required libraries to process data.

Import Libraries

In [): # Load libraries
import os

import pandas as pd

import pickle

import numpy as np

import random

from collections import defaultdict
from collections import OrderedDict

import keras

from keras.applications.resnet50 import ResNet50

from keras.applications.inception_v3 import InceptionV3
from keras.optimizers import Adam

from keras.layers import Dense, Flatten,Input, Convolution2D, Dropout, LSTM, TimeDistributed, Embedding, Bidirection
from keras.models import Sequential, Model

from keras.utils import np_utils

from keras.utils import plot_model

from keras.callbacks import ModelCheckpoint

from keras.callbacks import EarlyStopping

from keras.preprocessing import image, sequence

import matplotlib.pyplot as plt
from IPython.display import Image, display
import PIL

Figure 1: Import required libraries

The code for parsing the data to get training, testing and development splits from the
specified file paths in the downloaded datasets is given in the Jupyter notebook
submitted alongside this configuration manual. The function load image list takes the
filenames from the file paths and returns the image names for images in train, test and
development splits. The train images are dumped to a pickle file for later use and figure
3 shows a sample image from the training set.

Load Data

In []: def load_image_list(filename):
with open(filename,'r') as image_list_f:
return [line.strip() for line in image_list_f]

TXT_PATH = "Flickr_data/Flickr_Data/Flickr_TextData/"
IMG_PATH = "Flickr_Data/Flickr_Data/images"

In []: #Parse data to get training, testing and development
train = load_image_list(os.path.join(TXT_PATH, 'Flickr_8k.trainImages.txt'))
dev = load_image_list(os.path.join(TXT_PATH, 'Flickr_8k.devImages.txt'))
test = load_image_list(os.path.join(TXT_PATH, 'Flickr_8k.testImages.txt'))

In []: #dump dict object to pickle for later use
with open('train.pickle', 'wb') as handle:
pickle.dump(train, handle, protocol=pickle.HIGHEST_PROTOCOL)

Figure 2: Parse data

In [6]: image = PIL.Image.open(os.path.join(IMG_PATH, train[25]))
image

outl6]: NN

Figure 3: Sample training set image

4

Image Feature extraction

After arranging the images into train, test, and development sets, the global image features are
extracted using a pretrained Inceptionv3 CNN and Places365 pretrained CNN is used for image
scene feature extractions. For the Inceptionv3, the pretrained model has already been imported
from Keras.applications while importing libraries. An external implementation' of the
Places365CNN is used and the codes for these extractions are given in the Jupyter notebook.
The features from the second to last layer of both models are extracted as the image global
features and deep scene features respectively. These features are stored in an ordered dictionary
with image names as keys and these extracted feature arrays as values before being pickled for
easy access as ‘traindict.pickle’ and ‘train_plc.pickle’.

For the global image features;

1.

2.
3.
4

N

Convert image to array using the get image function.

Load Inceptionv3 weights.

Set up inceptionv3 model taking the second to last layer as the output layer

Use the image generator function to progressively extract the image features using the
loaded model.

Create an ordered dictionary taking image name as key and feature vector as value.
Save dictionary to pickle files for future use.

In [16]: enc_train = img_encoder.predict_generator(img_generator(train), steps=len(train), verbose=1)

6000/6000 [1 - 529s 88ms/step

In [17]: enc_dev = img_encoder.predict_generator(img_generator(dev), steps=len(dev), verbose=1)

1000/1000 [] - 85s 85ms/step

In [18]: enc_test = img_encoder.predict_generator(img_generator(test), steps=len(test), verbose=1)

1000/1000 [] - 88s 88ms/step

Figure 4: Finished image feature extraction process

For the image scene features,

1.

2.
3.
4

Import VGG16 places365 model from class file and load weights.

Load the images to array using the res_image function.

Set up loaded Places365 model to use second to last layer as output layer.

Use place gen function to progressively extract image scene features using loaded
Places 365 model.

Create ordered dictionary with image name as keys and scene feature vector as
values.

Save files to pickle for future use.

! https://github.com/GKalliatakis/Keras-Application-Zoo

S Text processing

During data handling, the text captions are cleaned. As part of the cleaning process, they are
converted to lower case with punctuations and numbers removed. Start and end indicators
‘<start>’ and ‘<end>’ are added to the sentences as part of the cleaning process. The code for
the text cleaning is also present in the submitted Jupyter notebook.

In [19]: def read_image_descriptions(filename):
image_descriptions = defaultdict(list)
oeas
with open(os.path.join(TXT_PATH, filename),'r') as description_list_f:
for line in description_list_f:
key_val = line.split()
key = key_vallo]
key = key[0:-21]
val = key_vall[1:]
new_val = []
for word in val:
new_val.append(word. lower())
new_val.insert (0, "<START>")
new_val.append (" <END>")
if key not in image_descriptions.keys():
descriptions = []
else:
descriptions = image_descriptions[key]
descriptions.append(new_val)
image_descriptions[key] = descriptions

return image_descriptions

Figure 5: Text processing function

<start> a black dog running across green grass <end>

<start> a black dog running in grass <end>

<start> a black dog runs in the grass its tongue is hanging out <end>
<start> a black dog runs across a grassy field <end>

<start> small black dog running in grass <end>

Figure 6: Sample image with processed text descriptions

The processed text descriptions are stored in a pickle file and uploaded to Google Collaboratory
for modelling.

6 Modelling
6.1 Google Colab setup

1. A Google Colab? free tier account is used to access a new Jupyter notebook IDE. This
IDE is already preloaded with most of the required libraries for seamless python
development.

2 https://colab.research.google.com/notebooks/intro.ipynb#recent=true

& C @ colab.research.google.com/notebooks/intro.ipynb#

 Welcome To Colaboratory
‘v
File Edit View Insert Runtime Tools Help
New notebook Code + Text # Copy to Drive Cc
Open notebook *®/CtH0

Upload notebook

) What is Colaboratory?

Jolaboratory, or “Colab" for short, allows you to write and execute Pyt

Save a copy in Drive

« Zero configuration required

Save a copy as a GitHub Gist « Free access to GPUs
¢ SaveacopyinGitHub + Easy sharing
Save s/cui+s Vhether you're a student, a data scientist or an Al researcher, Colab «
Vatch Introduction to Colab to learn more, or just get started below!

Figure 7: New Google Colab environment

2. Aspart of the Colab environment set up, a GPU environment is selected to ensure faster
model training times by going to Runtime = Change runtime type = GPU.

Notebook settings

Hardware accelerator
v None .

GPU [))
TPU wutput when saving this notebook

CANCEL SAVE

Figure 8: Selecting GPU for Google Colab

3. Upload pickle files ‘traindict.pickle’, ‘des.pickle’, ‘train.pickle’, ‘train plc.pickle’
saved during data processing to Google drive.

4. Connect Jupyter notebook on Colab to Drive by mounting the drive on the IDE. Follow
given link and copy authorization code to give access to Google drive.

° from google.colab import drive
drive.mount('/content/gdrive')

[» Go to this URL in a browser: https://accour
Enter your authorization code:
Mounted at /content/gdrive

Figure 9: Mount Google drive

5. Connect mounted drive to Jupyter notebook to ensure the notebook has access to
uploaded pickle files.

o $cd /content/gdrive/My\ Drive/

[> /content/gdrive/My Drive

Figure 10: Connect mounted drive to Jupyter IDE

6.2 Model building

1. Import required keras?® libraries for modelling.

© I road libraries
import matplotlib.pyplot as plt
import pandas as pd
import pickle
import numpy as np
from collections import defaultdict
from collections import OrderedDict
import os
from keras.applications.resnet50 import ResNet50
from keras.applications.inception v3 import InceptionV3
from keras.optimizers import Adam
from keras.layers import Dense, Flatten,Input, Convolution2D, Dropout, LSTM,
from keras.models import Sequential, Model
from keras.utils import np_utils
from keras.utils import plot_model
from keras.callbacks import ModelCheckpoint
from keras.callbacks import EarlyStopping
import random
from keras.preprocessing import image, sequence
import matplotlib.pyplot as plt
from IPython.display import Image, display
import PIL

Figure 11: Import libraries for modelling

2. Read in pickle files.

© #read pickle dict file

with open('train.pickle', 'rb') as handle:
train = pickle.load(handle)

#read pickle dict file

with open('traindict.pickle', 'rb') as handle:
traindict = pickle.load(handle)

#read pickle dict file

with open('descriptions.pickle', 'rb') as handle:
descriptions = pickle.load(handle)

#read pickle dict file

with open('train_plc.pickle', 'rb') as handle:
train_plc = pickle.load(handle)

Figure 12: Read in pickle files

3. Create Word to ID and ID to word dictionaries for sequence vectorization and obtain
maximum length of sequences. The code to achieve this is shown in the Jupyter
notebook submitted alongside.

4. Due to RAM computational limitations, use a data generator to load the data into the
model in batches of 128. The code for this is also in the accompanying code file.

5. Build models.

3 Keras.io

. input: | [(?, 2048)]
input_1: InputLayer
output: | [(?, 2048)]

input: | (?, 2048)
dense: Dense
output: (?, 300)

l

input: (?, 300)
repeat_vector: RepeatVector

input: 2,37
input_2: InputLayer P it)

output: | [(?, 37)]

I

output: | (?, 37, 300)

.) input: ,37)
embedding: Embedding

output: | (?, 37, 300)

T~

input:
concatenate: Concatenate

[(2, 37, 300), (2, 37, 300)]

output:

(2, 37, 600)

I

input:
Istm: LSTM

(2, 37, 600)

output:

(2, 256)

I

i t: ?, 256
dense_1: Dense pw ()

output: | (?, 8862)

Figure 13: Experiment 1 model architecture

input: | [(2, 2048
input_6: InputLayer P I]

. input: | [(?, 4096)]
input_7: InputLayer
output: | [(?, 2048)]

output: | (2, 4096)]

input: | (2, 2048) input: | (2, 4096)
dense_5: Dense dense_6: Dense
output: | (?,300) output: | (, 300)
input: | (?,300) input: | (2, 300)
repeat_vector_3: RepeatVector repeat_vector_4: RepeatVector
output: | (2,37, 300)

output: | (2, 37, 300)

input: | [(?,37
input_8: InputLayer P (.37)

T~

output: | [(?,37)]

l

input: | (2, 37, 300), (2, 37, 300)]
concatenate_3: Concatenate

input: 2,37
g Enbeding | P |09

output: (2,37, 600)

output: | (2,37, 300)

~.

/

concatenate_4: Concatenate

input: | (2, 37, 600), (2, 37, 300)]

output: (2,37, 900)

Istm_2: LSTM

input: | (2,37, 900)

output: | (2, 256)

l

dense_7: Dense

input: | (2, 256)

output: | (?,8862)

Figure 14: Experiment 2 model architecture

e

. input: | [(?, 2048)] input: | [(?, 4096)]
input_9: InputLayer input_10: InputLayer
output: | [(?, 2048)] output: | [(?, 4096)]
input: | (2, 2048 input: | (?, 4096,
dense_8: Dense 2 () dense_9: Dense oy ()
output: | (?,300) output: | (?, 300)
input: (2, 300) input: (2, 300) . input: | [(?,37)]
repeat_vector_5: RepeatVector repeat_vector_6: RepeatVector input_11: InputLayer
output: | (?, 37, 300) output: | (2, 37, 300) output: | [(?, 37)]
input: | [(?, 37, 300), (2, 37, 300)] input: 2,37)
concatenate_5: Concatenate bedding_3: Embedding
output: (?, 37, 600) output: | (2, 37, 300)

~.

/

Figure 15: Experiment 3 model architecture

Instantiate checkpoint paths and early stopping.
Fit models for 15 epochs saving weights and testing at 5, 10 and 15 epochs.
Download saved model weights to local machine.

Inference and Evaluation

Inference

A Custom function is written using the saved weights of the models to generate
sentence descriptions on the test set of the data. This function takes as input the image
name and obtains the extracted image features from the saved ordered dictionary and

returns a sentence description for that image.

Change prediction model inside the image decoder function according to experiment
for which inference is being done. Note that mod2 for inference using experiment 2

model and mod3 for experiment 3 model.

In [931]:

##prediction

def image_decoder(image,plc=False):

if plc != False:

input: | [(2, 37, 600), (2, 37, 300)]
concatenate_6: Concatenate
output: (2, 37, 900)
o o input: | (?, 37, 900)
bidirectional(lstm_3): Bidirectional(LSTM)
output: (?,512)
input: 2,512
dense_10: Dense P @.512)
output: | (?, 8862)

plc_image = enc_test_plc[image] #encode_image(image,place=True)

enc_image = testdict[image] #encode_image(image,place=False)

sequence = ["<start>"]
for i in range(max_len):

id_sequence = [word_to_id[word] for word in sequence if word in word_to_id]

while len(id_sequence) < max_len:

id_sequence.append(9)
img = np.reshape(enc_image, (

-1, 2048))

id_sequence = np.reshape(id_sequence, (-1, max_len))

if plc == False:

next_word = modl.predict([np.array(img), np.array(id_sequence)])

else:

plc_img = np.reshape(plc_image, (-1,4096))

next_word = mod3.predict([np.array(img), np.array(plc_img), np.array(id_sequence
next_word = np.argmax(next_word)
best_word = id_to_word[next_word+1]

sequence.append(best_word)
if best_word == "<end>":
return sequence
return sequence

Figure 16: Inference function

7.2

PREDICTED CAPTION

a man is standing on a rock above the sand .

GROUND TRUTH CAPTIONS

a hiker ascends a snowy hill .

a man reaches the top of a tall sand dune .

a person is hiking to the top of a hill .

a person walks up a white sandy hill against the blue sky .

the person is wearing shorts and climbing a gray sand hill under a blue sky .

0

50

100 150

200

250

Figure 17: sample predicted and ground truth captions

Metrics Evaluation

1. Another custom function is written using the previous inference function to generate
sentence descriptions across the entire text corpus. The function takes as input a list
containing test image names and returns the actual and predicted captions.

In [559]:

from nltk.translate.bleu_score import corpus_bleu

def evaluate_model(test,place=False):

actual, predicted = list(), list()
step over the whole set
for i in range(len(test)):
if place == False:
pred = image_decoder(test[i],plc=False)
else:
pred = image_decoder(test[i],plc=True)
fnm = test[i]
references [d for d in descriptions[fnm]]
actual.append(references)
predicted.append(pred)

return actual,predicted

Figure 18: Function to make predictions across the entire test corpus

2. Remove <start> and <end> tokens from predicted and actual sentence descriptions.
3. Evaluate actual and predicted captions using BLEU and ROUGE scores.

BLEU-1:
BLEU-2:
BLEU-3:
BLEU-4:

print("’
print("’
print("’
print("’

BLEU-1:
BLEU-2:
BLEU-3:
BLEU-4:

0.545221
0.322049
0.224095
0.116687

o o° of of

corpus_bleu(actt,
corpus_bleu(actt,
corpus_bleu(actt,
corpus_bleu(actt,

weights=(1, @, @, 0)))
weights=(0.5, 0.5, 0, 0)))
weights=(0.3, 0.3, 0.3, 0)))
weights=(0.25, 0.25, 0.25, 0.25)))

Figure 19: Sample BLEU evaluation

from rouge_score import rouge_scorer
scorer = rouge_scorer.RougeScorer(['rougel', 'rougel'], use_stemmer=True)

def calc_rouge(reference,pred):
vals = []
for i in range(len(pred)):
text = ' '.join(pred[i])
refs = reference[il
rouges = []
for ref in refs:
scores = scorer.score(' '.join(ref),text)
rouges.append(scores['rougel'].fmeasure)
vals.append(np.mean(rouges))

return np.mean(vals)

Figure 20: ROUGE evaluation function

rougel_5 = calc_rouge(actt_5,p_5)
rougel_5

0.26763297216953846
Figure 21: Sample ROUGE evaluation

7.3 Qualitative Evaluation

A qualitative analysis of the experiments is undertaken to evaluate the effect of scene features
on image captioning and samples are shown in the figure below.

Reference
4 a crowd of people walk down a busy sidewalk

CNN-LSTM
a group of children stand in a street

CNN-LSTM + Image scene features
a man in a white shirt and a white shirt is standing in a crowd

1 CNN-BIiLSTM + Image scene features
a group of people are standing in front of a crowd

Reference
Ly two brown dogs run through the grass together

CNN-LSTM
a dog is running in a field

CNN-LSTM + Image scene features
a dog runs through the grass

CNN-BIiLSTM + Image scene features
a brown dog is running through a grassy field

Reference
d a boy climbing a rocky area

CNN-LSTM
a man in a red shirt is climbing a rock

CNN-LSTM + Image scene features
a man is jumping up a rock

CNN-BIiLSTM + Image scene features
a man in a red shirt is climbing a rocky wall

Figure 22: Model qualitative analysis

