
 

 
 
 
 
 
 
 
 
 
 

 

Infectious Disease Surveillance with GLEPI: A 

Natural Language Processing and Deep Learning 

System 
 
 
 

 

MSc Research Project 
 

Data Analytics 
 
 

 

Emmanuel Adekola 
 

18198627 
 
 
 

School of Computing 
 

National College of Ireland 
 
 
 
 
 
 
 
 
 
 
 

Supervisor: Dr. Vladmir Milosavljevic



1 

 

 

 
National College of Ireland 

 
MSc Project Submission Sheet 

 

School of Computing 
 
Student Name: 

 
Emmanuel Obaloluwa Adekola 

 
Student ID: 

 
18198627 

 
Program: 

 
MSc. Data Analytics 

 
Year: 

 
2020 

 
Module: 

 
Research Project 

 
Supervisor: 

 
Dr. Vladmir Milosavljevic 

Submission 
Due Date: 

 
August 17, 2020 

 

Project Title: 

 

Infectious Disease Surveillance with GLEPI: A Real-time Natural 

Language Processing and Deep Learning System 

Word Count: 

 
6848 Page Count: 22 

 
I hereby certify that the information contained in this (my submission) is information 

pertaining to research I conducted for this project.  All information other than my own 
contribution will be fully referenced and listed in the relevant bibliography section at the 
rear of the project. 
ALL internet material must be referenced in the bibliography section.  Students are 
required to use the Referencing Standard specified in the report template. To use other 
author's written or electronic work is illegal (plagiarism) and may result in disciplinary 
action. 
 
Signature: 

 

 
 
Date: 

 
August 17, 2020 

 
PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST 

 

Attach a completed copy of this sheet to each project (including multiple 
copies) 

□ 

Attach a Moodle submission receipt of the online project submission, to 
each project (including multiple copies). 

□ 

You must ensure that you retain a HARD COPY of the project, both for 
your own reference and in case a project is lost or mislaid.  It is not 

sufficient to keep a copy on computer.   

□ 

 
Assignments that are submitted to the Programme Coordinator Office must be placed into 
the assignment box located outside the office. 
 

Office Use Only 

Signature:  

Date:  

Penalty Applied (if applicable):  

 



2 

 

 

Table of Contents 

Abstract ................................................................................................................................ 3 

1 Introduction .................................................................................................................. 4 

1.1 Research Question ........................................................................................................... 4 

1.2 Research Objectives ......................................................................................................... 5 

1.3 Data Sources .................................................................................................................... 5 

2 Literature Review.......................................................................................................... 5 

2.1 Distributed Representations ............................................................................................ 6 

2.2 Convolutional Neural Network (CNN) .............................................................................. 6 

2.3 Recurrent Neural Network (RNN) .................................................................................... 7 

2.4 Attention Mechanism ...................................................................................................... 8 

2.5 Recursive Neural Network ............................................................................................... 8 

2.6 Reinforcement Learning ................................................................................................... 8 

2.7 Unsupervised Learning ..................................................................................................... 8 

2.8 Memory-Augmented Network ......................................................................................... 9 

3 Methodology ................................................................................................................ 9 

3.1 Data Pre-processing ......................................................................................................... 9 

3.2 Word Embedding ........................................................................................................... 10 

3.3 Long Short-term Memory NLP Framework..................................................................... 10 

3.4 Convolutional Neural Network NLP Framework ............................................................ 11 

3.5 Ethical Consideration ..................................................................................................... 12 

4 Results ........................................................................................................................ 12 

4.1 Data ............................................................................................................................... 12 

4.2 Parameters..................................................................................................................... 14 

4.3 Model Performance and Comparison ............................................................................ 15 

4.4 Learning Rate ................................................................................................................. 15 

4.5 Dropout Effect ................................................................................................................ 17 

4.6 Pre-trained versus In-Training Embeddings.................................................................... 18 

4.7 Model Deployment ........................................................................................................ 18 

5 Discussion ................................................................................................................... 18 

6 Conclusion and Future Works ..................................................................................... 19 

References .......................................................................................................................... 20 
 

 
 



3 

 

 

Abstract 
Currently, the prevailing discussions on infectious disease outbreak 

surveillance are centred on mining unstructured data sources and reducing false 

notifications. Mining microblogs and other internet-based resources for infectious 

disease surveillance in an accurate and timely manner has become pertinent due to 

recent public health concerns. 

In this paper, we implemented three deep learning-based frameworks to the 

natural language processing of microblog data to establish the best combination of 

techniques for infectious disease surveillance. We implemented LSTM, CNN and 

bi-directional LSTM frameworks. Our bi-directional LSTM model performed best 

with a 12.4% and 10.5% higher accuracy score than that of our LSTM and CNN 

models respectively. 

In our bid to establish the best combination of techniques/parameters, we 

carried out an in-depth investigation on how number of epochs, dropout rate, and 

word embedding methods in our models affect performance. 

Finally, we deploy GLEPI, a deep learning-based NLP framework that uses a 

bi-directional LSTM model to predict the validity of infectious disease related 

corpus. 

 

Keywords: Natural Language Processing, Deep Learning, Neural Network, Sentiment 

Analysis, Infectious Disease 
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1 Introduction 
Over time, there has been several researches focused on mining big data for public health 

surveillance. A good number of these researches have been on infectious or communicable 
diseases, applying various combinations of techniques (Ertem et al., 2018). The current 
COVID19 pandemic has provided scientists and academic researchers with the opportunity to 
delve deeper into the space of analysing big data for infectious disease surveillance. In recent 
times, other infectious diseases like Ebola, Influenza, and Lassa Fever have been closely 
researched using multiple data sources and mixed techniques (Ahmed et al., 2019).  

The humongous challenge of analysing big data, dealing with volume, velocity and variety 
amidst others, is daily being surmounted. There has been numerous research work focused on 
the improvement of natural language processing (NLP) techniques for different use cases (Chae 
et al., 2018). However, while there have been numerous studies on the use of supervised 
machine learning techniques for natural language processing of big data (Edo-Osagie et al., 
2019), the application of deep learning techniques to the field is relatively recent. 

Recent works on deep learning-based NLP systems and applications has achieved 
tremendous results. Various NLP tasks such as sentiment analysis, question answering (QA), 
and machine translation are being researched to achieve trailblazing results. Evidently, deep 
learning-based NLP systems and applications have achieved better accuracy when compared 
to leading machine learning techniques like Support Vector Machine (SVM) and Random 
Forest (RF) that have been widely recommended for NLP (Aiello et al., 2020).  

For this research work, we applied deep learning-based NLP techniques to multiple data 
channels, to monitor the outbreak of infectious disease. We implemented and compared the 
performance of three deep learning models namely long short-term memory (LSTM), bi-
directional LSTM and convolutional neural network (CNN).  

In this paper, we described some of the current best practices for applying deep learning 
in NLP and present a deep learning-based NLP system named GLEPI. It performs the 
extraction, transformation, and analysis of infectious disease data from Twitter, and Google 
ranked web pages. The system offers an affordable solution that aids the job of disease 
detectives, providing health agencies and other institutions with timely surveillance data on 
infectious disease. 

In a bid to scientifically document reproduceable steps for the setting up of a competitive 
deep learning-based NLP system, we came up with one research question and two objectives. 
We believe the following captures the intent for this research work and the development of 
GLEPI. 

1.1 Research Question 

The overall goal of this research project is to apply and evaluate leading deep learning-
based NLP techniques for infectious disease surveillance. The set question for this research 
work is captured below. 
 

1. To what extent can natural language processing for infectious disease surveillance be 
strengthened by exploring multiple deep learning models? 
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1.2 Research Objectives 

In a bid to provide answers to the set question for this research, two main objectives were 

defined. We believe these defined objectives adequately represent the main goal and original 

intent of this research work. 

1. Apply deep learning techniques to the natural language processing of multiple data 
sources. 

2. Determine the best combination of techniques for infectious disease surveillance using 
unstructured data. 

1.3 Data Sources 

For this research work, we gathered data from official and non-official sources for 

infectious disease surveillance. 

1. Official Sources: By official sources, we are referring to verified sources with 

repositories containing either semi-structured or unstructured data. For our research, 

we explored data from an institutional website. We trained and validated our model 

using the National Institute of Informatics Testbeds and Community for Information 

Access Research (NTCIR) classified tweets. The Medical Natural Language 

Processing for Web Document (MedWeb) classified tweets were used (Wakamiya et 

al., 2017). 

2. Non-official Sources: By unofficial sources, we are referring to social media and 

other microblog data sources (Arsevska et al., 2018). For our research, we explored 

Twitter data and Google search top ranking verifiable news blogs.  

In the next section, we provide a review of related research works on deep learning-

based NLP. In section 3, we described and justified our adopted methodology and 

architecture.  In Section 4, we present the details of our analysis and evaluation results. 

Section 5 and 6 provides further comparative analysis and outlines key points amidst 

suggestions for future works respectively. 
 

2 Literature Review 
NLP uses computational algorithms to analyse and represent human language in an 

automated fashion (Chae et al., 2018). NLP is behind several user-friendly applications like 

Google’s widely used search engine, and Alexa, Amazon’s voice assistant. NLP is also relevant 

in training machines to perform complex natural language tasks such as sentiment analysis and 

machine translation (Edo-Osagie et al., 2019). 

Not until recent times, a good number of methods applied to NLP problems used 

inefficient machine learning models that are time-consuming due to hand-crafted labelling or 

annotation (Goel et al., 2020). This repeatedly led to issues like the curse of dimensionality due 

to the representation of linguistic information with high-dimensional features (Goel et al., 

2020).  

However, the recent advances in the use of neural based word and character embedding 

models have achieved state-of-the-art results on various applications to language-related tasks. 

The neural networking of low dimensional and distributed representations has been noted to 

outperform machine learning models like SVM or RF (Aiello et al., 2020). 
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2.1 Distributed Representations 

As earlier noted, neural-based models provide a good alternative to challenges like the 

curse of dimensionality posed by traditional machine learning models. 

1. Word Embeddings: Also known as distributional vectors, they are based on a 

distributional hypothesis (Feldman et al., 2019). This states that words that appears 

within similar contexts possess similar meanings. With the objective of predicting a 

word based on its context, word embeddings are pre-trained on a task with the use of a 

shallow neural network. The word vectors are embedded with syntactic and semantic 

information. This step is believed to be the game changer in many NLP tasks such as 

sentiment analysis. The introduction of continuous bag-of-words (CBOW) and skip-

gram models has increased the popularity of distributed representation for NLP tasks. 

They became popular due to their efficiency in the construction of superior word 

embeddings and their usefulness for semantic compositionality. 

2. Word2vec: As stated in the previous paragraph, CBOW and skip-gram models are game 

changers. CBOW uses a neural approach for the construction of word embeddings with 

the sole purpose of computing the conditional probability of a target word using its 

context within a set window. Skip-gram is another neural approach to construct word 

embeddings that predicts the surrounding context words based on a central target word 

(Gibbons et al., 2019). The two models determine their word embedding dimension 

through an unsupervised computational prediction of accuracy. A major challenge with 

word embedding is obtaining vector representations for some phrases like “cold tea” or 

“Texas Ranger”. These individual word vector representations can’t just be simply 

combined because the phrases don’t represent the individual word’s combination of 

meaning. When considering longer phrases or sentences, this gets even more 

complicated. Another limitation is the use of smaller window sizes. This is usually 

counterproductive for tasks that requires proper differentiation of words like sentiment 

analysis. It is also important to note that word embeddings are dependent on the 

application they are used for. While the re-training of task specific embeddings for 

every new task is a considerable practice, it is computationally expensive, and it is 

better addressed with the use of negative sampling (Goel et al., 2020). The model does 

not take polysemy into account and training data has a huge potential of introducing 

bias to the model. 

3. Character Embeddings: Some tasks like named-entity recognition (NER) and parts-of-

speech (POS) tagging perform better with the use of morphological information in 

words (Gibbons et al., 2019). Morphologically rich languages such as Chinese, 

Portuguese, Spanish are naturally processed better with the use of character embedding. 

Finally, it’s important to note that word vectors are limited in how well they capture 

conceptual meaning of words (Feldman et al., 2019). Hence, it takes more than distributional 

semantics to understand the concepts behind words. There has been recent works and debate 

on meaning representation in the context of NLP systems (Feldman et al., 2019). 

2.2 Convolutional Neural Network (CNN) 

CNN is a neural-based approach that extracts higher-level features by applying a feature 

function to constituting words or n-grams. Amidst several tasks, its abstract features have been 
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successfully deployed for sentiment analysis, question answering, and machine translation. 

One of the early methods deployed, transformed words into a vector representation via a look-

up table. This introduced a basic word embedding approach that is used to learn weights during 

the training of a network. 

To perform sentence modelling with a primitive CNN, first, sentences are tokenized into 

words. Next, they are transformed into a word embedding matrix. Then, the application of 

convolutional filters on the input embedding layer to produce a feature map. This is followed 

up by a max-pooling operation that ensures the application of a max operation on each filter to 

reduce dimensionality and obtain a fixed length output. This procedure generates the final 

sentence representation. 

An increase in the complexity of the basic CNN described above and its adaptation to NLP 

tasks like NER, word prediction, and POS is still currently understudied (Fast et al., 2018). It 

requires a window-based approach that considers a fixed size window of neighbouring words 

for each word. Also, a standalone CNN is applied to neighbouring words with the training 

objective of predicting the word at the centre of the window. This phenomenon is called word-

level classification. 

A dissuasive issue with basic CNN is its inability to model NLP tasks that requires long 

distance dependencies (Naoui et al., 2020). To work around this challenge, CNNs have been 

combined with time-delayed neural networks (TDNN) to enable larger contextual range during 

training. Another example of CNN variant that have been successful deployed for NLP tasks 

like sentiment prediction and question type classification is known as dynamic convolutional 

neural network (DCNN). Dynamically filtering span variable ranges, DCNN makes use of a 

dynamic k-max pooling technique to perform sentence modelling. 

With the use of external knowledge, CNNs have also been deployed to handle complex 

tasks that requires varying lengths of texts like sentiment analysis on Twitter’s microtexts. 

CNN has also been proven to be useful for other tasks like query-document matching, question-

answer representations, and speech recognition. Also, DCNN has been deployed to 

hierarchically learn and compose lexical features for summarization of texts. 

In conclusion, CNNs mine semantic clues in contextual windows efficiently but they 

perform poorly when it comes to long-distance modelling and sequential ordering of contextual 

information. Recurrent models perform better for such learning and are discussed next. 

2.3 Recurrent Neural Network (RNN) 

As highlighted above, RNNs are effective at processing sequential information. They 

recursively apply a computation to every input sequence instance based on the previously 

computed results. Sequences are sequentially fed to a recurrent unit represented by a fixed-size 

vector of tokens. The game changing ability RNN introduces is its capacity to memorize the 

results of previous computations and use same for current computation (Wang et al., 2015). 

This is why RNNs are suitable for the modelling of context dependencies. Amidst others, 

RNNs have been found useful for NLP tasks like language modelling, machine translation, and 

image captioning. RNN models are not necessarily superior to CNN models as they are both 

effective for different aspects of NLP tasks. RNN typically ingests one-hot encodings or word 

embedding inputs, and sometimes ingests abstract representations constructed by another 

model (Naoui et al., 2020). An established issue with simple RNNs is the vanishing gradient 
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problem. This makes learning and parameter tuning difficult in early layers. To overcome this 

limitation, other RNN based models like long short-term memory (LSTM) networks, gated-

recurrent networks (GRU), and residual networks (ResNets) were developed. LSTM has input, 

forget, and output gates and calculates the hidden state by combining the three (Wang et al., 

2015). A bit similar to LSTMs, GRUs consist of only two gates and are arguably more effective 

due to their less complexity (Joshi et al., 2019). One of our reviewed study explains that it is 

hard to say which of the gated RNNs are more effective, and they are selected based on the 

available computing power.  

2.4 Attention Mechanism 

The attention mechanism technique is a modification to the earlier described RNN-based 

technique. Along with the calculated information using the input hidden state sequence, the 

decoder part of the RNN-based framework uses the last hidden state (Joshi et al., 2019). This 

is important and crucial to tasks that rely on some form of alignment between output and input 

texts. Successfully, attention mechanism techniques have been deployed to tackle NLP tasks 

like in machine translation, dialogue generation, text summarization, sentiment analysis, and 

image captioning (Șerban et al., 2019). Several types and forms of attention mechanisms have 

been explored and this remains an important NLP research area. 

2.5 Recursive Neural Network 

Just like RNNs, recursive neural networks are used to model sequential data. Languages 

are seen as a recursive structure where words and sub-phrases have hierarchical composition 

use into higher-level phrases. Such structures use a representation of all its children nodes to 

capture a non-terminal node. A basic recursive neural network combines constituents using a 

bottom-up approach for the computation of higher-level phrases (Joshi et al., 2019). A variant, 

MV-RNN, uses matrix and vector to represent a word using parameters learnt by the network 

to represent each constituent. Recursive neural networks are quite flexible and can be combined 

with LSTM to deal with gradient vanishing problems. Recursive neural networks are widely 

used for sentence relatedness, parsing, sentiment analysis, and semantic relationship 

classification (Naoui et al., 2020). 

2.6 Reinforcement Learning 

Reinforcement learning trains agents to perform discrete actions followed by a reward 

(Joshi et al., 2019). It is widely used for natural language generation (NLG) like text 

summarization. For NLP, a reinforcement algorithm called REINFORCE was developed for 

image captioning and machine translation. This framework consists of an agent that interacts 

with input words and context vectors at every time step. The agent predicts the next word of a 

sequence at each time step and updates its internal state (Fast et al., 2018). This iterates until a 

reward is calculated at the end of the sequence. 

2.7 Unsupervised Learning 

This is the mapping of sentences to fixed-size vectors in an unsupervised manner. The 

distributed representations are trained using an auxiliary task and are used for capturing 

semantic and syntactic properties from languages (Șerban et al., 2019). A major example of 
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this is the ‘a skip-thought model’ (Naoui et al., 2020). Similar to word embedding technique, 

adjacent sentence is predicted using a centre sentence. It is trained using the seq2seq framework 

that allows decoder to generate target sequences while the encoder extracts generic features, 

learning word embeddings in the process. 

2.8 Memory-Augmented Network 

Memory-augmented network refers to the coupling of neural networks with some form of 

memory to solve NLP tasks like language modelling, part-of-speech tagging, visual QA, and 

sentiment analysis (Joshi et al., 2019). A good example is solving QA tasks. To do this, 

common sense knowledge is fed into the model to provide some form of memory. Probably 

the most advanced implementation of Memory-Augmented Network is the Dynamic Memory 

Networks, it employs neural networks models for input representation, attention, and QA. 

From bodies of existing research works and implementations, capacity and effectiveness 

of neural-based models such as CNNs and RNNs are well in advanced stages (Joshi et al., 

2019). Also, the awareness on the possibilities of applying reinforcement learning, deep 

generative models, and unsupervised learning to complex NLP tasks such as sentiment 

analysis, visual QA and machine translation has been raised. Attention mechanisms and 

memory-augmented networks have been hypothesized to be powerful but barely researched 

(Naoui et al., 2020). 

The combination of all these powerful techniques provides a convincing basis to keep 

working on the demystification of language complexities. It also provides plethora of options 

that can be researched for infectious disease surveillance. In this paper, we present the result 

of our performance evaluation on RNN LSTM and CNN models for infectious disease 

sentiment analysis on MedWeb classified tweets, Twitter data and news articles. 

 

3 Methodology 
For this research, we adopted the CRISP-DM methodology. As earlier stated, we 

developed three models based on LSTM and CNN models to perform sentiment analysis. In 

this section, we provide details on our data, pre-processing steps and an overview of the 

implemented RNN LSTM and CNN models. The following summarizes the methods adopted. 

1. Data Ingestion: In addition to MedWeb classified tweets, recent tweets and news 

articles were continuously streamed and downloaded using Centre for Disease Control 

(US CDC) list of infectious disease symptoms as keywords. 

2. Natural Language Pre-processing: Texts were pre-processed; this included language 

filtering, removal of stop words, text cleansing, lemmatization, stemming and word 

tokenization. 

3. Sentiment Analysis: Pre-trained and In-training word embedding techniques, LSTM 

and CNN text classification models were implemented with bi-directional LSTM model 

being deployed for further analysis of more recent dataset. 

3.1 Data Pre-processing 

Generally, the pre-processing of our datasets involves the removal of user mentions, 

spaces, non-alphabetic characters, apostrophes, web links, single characters, and stop words 
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(Carrillo-de-Albornoz et al., 2018). It also involved tokenization, lemmatization and 

stemming of words. 

By tokenization, we mean the breaking down of text/sentences into words; it is the 

conversion of words into vectors for computer interpretation and understanding (Du et al., 

2018). Stemming involves the chopping off of derivational affixes to get the base word. We 

implemented this and cautiously accepted the arguments from previous studies that 

sentiments are often associated to words (Carrillo-de-Albornoz et al., 2018). Finally, we 

remove inflectional endings. This morphological and vocabulary analysis is called 

lemmatization (Yoon et al., 2018). 

3.2 Word Embedding 

For the purpose of this research, two highly recommended embedding methods from 

literature were implemented. We applied a pre-trained embedding called GloVe embedding to 

the corpus to produce the best result for our CNN implementation. For our LSTM 

implementations, we implemented in-training embedding. The Keras embedding layer was 

trained on our dataset to achieve this. 

3.3 Long Short-term Memory NLP Framework 

As noted in the literature review section, LSTM is a popular RNN framework for 

modelling sequential data (Wang et al., 2015). It captures long term dependencies better than 

the vanilla RNN model. Like every other RNN, LSTM network gets the input at each time-step 

and the output from the previous timestep to produce an output to be used for the next time 

step (Joshi et al., 2020). The hidden layer(s) from all or the last time-step are then used for 

classification (Sosa, 2017, p.5). 

To capture long term dependencies or solve the issue of gradient vanishing, LSTM 

network uses some internal gates. The LSTM framework uses a memory cell and three gates 

namely; input gate, output gate, forget gate. While the three gates regulate the flow of 

information in and out of the cell, the cell memorises values over arbitrary time intervals 

(Joshi et al., 2020). The equation for a simple LSTM is captured below: 

𝑓𝑡  =  σ(𝑊(𝑓) 𝑥𝑡 +  𝑈(𝑓)ℎ𝑡−1 + 𝑏(𝑓)) 

𝑖𝑡  =  σ(𝑊(𝑖) 𝑥𝑡 +  𝑈(𝑖)ℎ𝑡−1 +  𝑏(𝑖)) 

𝑜𝑡  =  σ(𝑊(𝑜) 𝑥𝑡 +  𝑈(𝑜)ℎ𝑡−1 +  𝑏(𝑜)) 

𝑐𝑡  =  𝑓𝑡  ⨀ 𝑐𝑡−1 +  𝑖𝑡⨀ tanh (𝑊(𝑐) 𝑥𝑡 +  𝑈(𝑐)ℎ𝑡−1 +  𝑏(𝑐)) 

ℎ𝑡  =  𝑜𝑡⨀ tanh(𝑐𝑡) 

Where: 

σ = sigmoid function for mapping the values within 0 and 1 

𝑥𝑡  ∈  𝑅𝑑 = input at timestep t 

𝑑 = feature dimension for each word 

⨀ = element-wise product 

𝑐𝑡 = memory cell designed to lower the risk of vanishing gradient 

𝑓𝑡 = the forget gate to reset the memory cell 

𝑖𝑡 = input gate 

𝑜𝑡 = output gate 
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In this research, firstly, we used a four-layer sequential model with a LSTM layer of 256 

units, which uses the embedding layer of Keras to prepare sequential input for the Dense layer 

to predict sentiment. 

Secondly, we used a four-layer bi-LSTM model, which also uses the embedding layer of 

Keras to prepare sequential input for the Dense layer with relu and sigmoid activations to 

predict the sentiment of the tweet in review. The diagram below shows a simple LSTM network 

framework. 

 

Figure 1: Simple LSTM network. 

3.4 Convolutional Neural Network NLP Framework 

 The second framework implemented is based on convolutional neural network 

(CNN). In recent years, CNNs solutions have been successfully deployed for several NLP 

and computer vision tasks. From early works till date, CNN has performed excellently on text 

classification tasks (Joshi et al., 2019). Performing text classification with CNN requires the 

stacking together of the embedding from different words of a sentence to form a two-

dimensional array, and the application of convolution filters to produce a new feature 

representation (Sosa, 2017, p.5). Some pooling techniques are applied on the new features, 

and then the hidden representations are formed from the concatenation of pooled features 

from different filters. To make final predictions, the hidden representations are followed by 

fully connected layer(s). The figure below shows CNN’s general framework. 
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Figure 2: Simple CNN framework 

In our implementation, we used a five-layer sequential model with a one-dimensional 

convolution layer which uses pre-trained GloVe vector embeddings to prepare sequential 

input for one-dimensional max pooling. Two Dense layers with rectified linear unit and 

sigmoid activation functions respectively were used for sentiment prediction. 

3.5 Ethical Consideration 

In the cause of our implementation, some ethical issues were discovered and addressed. 

We took all possible ethical issues into consideration; before, during and after research. We 

reviewed the European Union’s General Data Protection Regulation (GDPR), Irish Data 

Protection Act, Irish e-Privacy Regulations, and adopted positions from existing research 

works on similar ethical issues (Garattini et al., 2019).  

Learning from earlier works, the ethical strategies adopted for this research includes 

getting a general consent from Twitter to analyse its user data, privacy cautious data 

access/storage and de-identification of tweets containing personal identifiers (Garattini et al., 

2019). We developed and adhered to a standardized operating guideline. 

While we agree that there are divergent views on ethics from existing literatures (Ahmed 

et al., 2019), it is important to state that this research work is not in violation of any known 

statutory regulations. 

 

4 Results 
In this section, we present our findings on how natural language processing for infectious 

disease surveillance can be strengthened using deep learning models. To provide needed 

insight, we applied three deep learning classification techniques to a health tweet sentiment 

dataset. We compared the performance of LSTM, Bi-directional LSTM and CNN frameworks, 

noting that Bi-directional LSTM performed better than the other two with an accuracy score of 

95.4%. 

4.1 Data 

As stated in section 1.3, the data used in this research was gotten from official and non-

official sources. We present an overview of the dataset used for this research in the following 

outlines. 
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1. NTCIR-13 MedWeb Dataset: The Medical Natural Language Processing for Web 

Document (MedWeb) contains 2,560 classified pseudo tweets for eight symptoms 

or diseases (Wakamiya et al., 2017). The tweets were classified based on their 

sentiment; p representing positive sentiment and n representing negative sentiment. 

Positive sentiment classification means that the tweet is a valid report of a symptom 

or disease. The diseases/symptoms captured in the dataset are cold, cough, diarrhea, 

fever, hay fever, headache, influenza and runny nose (Wakamiya et al., 2017). For 

our analysis, we coded positive sentiments as 1 and all negative sentiments as 0.  

Also, we combined all symptoms leaving us with two classes; valid (positive) and 

invalid (negative) tweets. The next two figures below capture the top words for 

valid and invalid infectious disease tweets. 

 

Figure 3: Word cloud for valid infectious disease top words. 
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Figure 4: Word cloud for invalid infectious disease top words. 

2. News Articles: We deployed a python-coded Google pagerank solution to identify 

top news websites based on the earlier listed symptoms. We then pick top five and 

scrape these websites for disease or symptoms, extracting numbers, location and 

time stamps (Yoon et al., 2018). 

3. Twitter Dataset: Using python’s tweepy library, we streamed twitter data using the 

earlier listed symptoms/diseases as keywords (Ahmed et al., 2019). We extracted 

tweet text, location and date. 

In summary, our models were trained and validated using the MedWeb sentiment 

classification dataset. The Bi-directional LSTM model being the best performing model was 

then deployed to classify tweets (Twitter Dataset) and news articles into valid and invalid 

infectious disease corpus. 

4.2 Parameters 

Having gone through LSTM and CNN implementations of well cited papers, we 

adopted the parameters that produced best results and manually fine-tuned them where 

necessary. The parameter captured in the table below seemingly produced the best results to 

compare the model performances. 

 

Epoch 10 

Batch Size 20 

Training/Validation Dataset 80/20 

Dropout 0.001 

Embedding Dimension 16 

Word Embedding GloVe Embedding and Keras Trained 

Dataset-based Embedding 

Table 1: Parameters adopted for our LSTM and CNN implementations. 
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4.3 Model Performance and Comparison 

In this section, we present the results of our sentiment analysis using the three earlier 

mentioned frameworks. Averagely, our CNN model achieved a 1% accuracy higher than our 

LSTM model but performed 11.8% worse than our bi-directional LSTM model. In other 

words, our bi-directional LSTM model performed best with a 12.8% and 11.8% higher 

accuracy score than that of our simple LSTM and CNN models respectively. 

These results prove that our earlier intuition was not amiss, and that by introducing a 

bi-directional temporal information flow to our LSTM model, we were able to provide 

additional context to our network, and this resulted in a faster and better learning. It is safe to 

say that the 12.8% and 11.8% differences between our bi-directional LSTM model and the 

two others is a clear difference and not just a coincidence.  

Comparing the performance of our CNN model to bi-directional LSTM model, we 

came up with a logical explanation that the convolutional layer of our CNN model is losing 

some of the text sequence/order information. We believe the bi-directional LSTM model 

performed better by quite a noticeable margin because it leverages both the input sequence 

and its reverse order. 

Also, the fact stated above also explains why the bi-directional LSTM outperformed 

our simple LSTM model. The bi-directional LSTM model takes a step further by encoding 

the reverse order for every token in the input (Minaee et al., 2019). As with all LSTM based 

models, previous tokens are also linked. 

Noting that the bi-directional model outperformed the other two models, it is pertinent 

to note that none of the models performed too poorly. The three models had an accuracy 

score of over 80% and are good enough models when compared to implementations from 

existing body of works. The table below presents the accuracy score for each of the models. 

 

Model Optimal Epochs Optimal Accuracy Average Accuracy 

LSTM 6 85.4 84.6 

CNN 2&4 87.3 85.6 

Bi-directional LSTM 7 97.8 97.4 

Table 2: Accuracy score of deep learning neural network models. 

4.4 Learning Rate 

Our research revealed that our models have varying learning rates. This means some 

models learn faster and start to over-fit quicker than others. In the order of learning rate, we 

have CNN, LSTM and Bi-directional LSTM. 

 

Epoch LSTM CNN Bi-directional LSTM 

3 83.9 85.7 90.6 

5 84.4 86.7 96.4 

8 82.7 85.6 97.4 
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Table 3: Model accuracy at different epoch sizes 

As presented in Table 3 and the plot below, training our CNN model with just a few 

epochs was enough to get accuracy above 80%. Our CNN model performed best at two and 

four epochs. We noted that too many epochs reduce our CNN model’s accuracy 

 

Figure 5: CNN model accuracy plot. 

Our LSTM and bi-directional LSTM models’ accuracy peaked at six and seven 

epochs respectively. They performed well with an accuracy of 70% with just a few epochs 

too. We noted that going above 10 epoch sizes starts reducing the models’ accuracy. 

However, we also noted that an increase in epochs resulted in less overfitting.  

The figures below show the described learning rates for our LSTM and bi-directional 

LSTM models. 
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Figure 6: LSTM model accuracy plot. 

 

 

Figure 7: Bi-directional LSTM model accuracy plot. 

4.5 Dropout Effect 

We included dropout layers in our implementation to test its effect on our model 

performances. We included a dropout layer with 1% and 10% probability interchangeably, all 

other parameters remaining the same. Table 4 shows the result of applying dropout. 

 

Dropout Rate LSTM CNN Bi-directional LSTM 

1% 84.6 85.6 97.4 

10% 81.2 83.9 95.3 
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Table 4: Model accuracy at different dropout rate 

4.6 Pre-trained versus In-Training Embeddings 

In addition to using Keras embedding layer to learn the word embeddings during 

training, we also used the popular pre-trained GloVe word embeddings. While the GloVe 

word embeddings yielded better accuracy for our CNN model, it resulted in a lower but 

arguably good accuracy for our LSTM models. It seems it is due to the textual irregularities 

introduced into the MEdWeb dataset. 

Tweets are limited to a maximum of 140 characters and it very likely to have slangs, 

misspellings, and word abbreviations that are not present in the pre-trained GloVe word 

embeddings. For obvious reasons, this complicates sentiment analysis. 

We also noted that our Bi-directional LSTM model still outperformed CNN model even 

with GloVe embeddings. We believe this is so because of its reverse encoding learning 

(Minaee et al., 2019). 

Table 5 presents the results of using GloVe pre-trained embeddings as opposed to using 

Keras in-training embedding layer. 

 

Embeddings LSTM CNN Bi-directional LSTM 

GloVe Embedding 

(Pre-trained) 

79.9 85.6 89.8 

Keras Embedding 

Layer (In- training) 

84.6 81.7 97.4 

Table 5: Model accuracy using pre-trained and in-training embedding techniques 

4.7 Model Deployment 

In this section, we present a sample result of our deployment. Having implemented three 

models, we deployed the best performing model from the three. We applied the bi-directional 

model to our streamed Twitter dataset and news articles. The table below shows a sample 

snapshot of what our result output looks like. 

 

I have the worst runny nose today. 1 

Apparently there are allergies in the fall, too. 0 

Is there a medicine that's good for a head cold? 1 

I have a super runny nose. There's no way I can go. 1 

It seems like we're getting less pollen this year, but for those super sensitive to pollen, 

a small difference doesn't really matter.  0 

Table 6: Sample bi-directional LSTM model result 

As captured in the table above, valid (positive sentiment) infectious disease tweets are 

coded as 1 while invalid infectious disease (negative sentiment) tweets are coded as 0. 

5 Discussion 
In this section, we present a brief comparison of our work to similar existing work from 

existing literature review. A close look at the implementation results of LSTM, CNN and Bi-

directional LSTM models, revealed that our models performed better than many. We 

compare the performances of our model to that of two very closely related work in the field 

of deep learning-based NLP. The table below captures our comparison. 
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Model Accuracy Dataset Reference 

LSTM 80% SST2 (Minaee et al., 2019) 

CNN 80.2% SST2 

LSTM and CNN 

Ensemble 

90% SST2 

LSTM 66.7% Twitter (Sosa, 2017, p.7) 

CNN 72.5% Twitter 

LSTM and CNN 

Ensemble 

75.2% Twitter 

Table 7: Model comparison of related works 

We noted that SST2 dataset being a less complicated dataset had a better result than that 

of its counterpart. However, with our carefully picked parameters, we were able to achieve an 

accuracy that is over 7% better than any result from the two compared works.  

While the authors gave explanations on why they think their ensemble models performed 

better and should be a go to modelling options, we defy the odds by implementing our bi-

directional LSTM model to put forward a new argument that a model’s performance is as 

good as its implementation. By putting the temporal flow of information in both directions of 

network into use, we were able to achieve a near perfect accuracy of 97.4%. 

It’s safe to say that with the appropriate combination of parameters, model performances 

can be improved. 

6 Conclusion and Future Works 
In this paper, we have presented our implementation of three deep learning-based NLP 

models with the aim of determining the best combination of techniques for infectious disease 

surveillance using unstructured data. Optimally, our CNN model achieved a 1.9% accuracy 

higher than our LSTM model but performed 10.5% worse than our bi-directional LSTM 

model. In other words, our bi-directional LSTM model performed best with a 12.4% and 

10.5% higher accuracy score than that of our LSTM and CNN models respectively. 

In our bid to establish the best combination of techniques/parameters, we carried out an 

in-depth investigation on how number of epochs, dropout rate, and word embedding methods 

in our models affect performance. We were able to establish how these techniques/parameters 

go a long way in boosting model performance, providing future researchers with a better 

starting point.  

As detailed in our literature review section, there are several other deep learning 

techniques and frameworks that can still be investigated for a possibility of better 

performance. 

Our models seem to have a better performance than known existing CNN and LSTM 

models and might be worthwhile applying them to other tasks like text generation. Also, it 

might be worthwhile to try other types of RNNs aside LSTM and bi-directional LSTM. We 

think using a GRU or ResNets framework or architecture might yield a better result. 

Lastly, it is important to state that while we capped our implementation at identifying 

valid and invalid infectious disease tweets in this paper, we hope to move forward by 

comparing structured data from official sources to formulate a working model that predicts 

infectious disease outbreak more accurately (Chae et al., 2018). We have no doubt that this 

research will help future implementation of accurate sentiment analysis. 
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