ﬁ

\‘
National
Collegeof

Ireland

Configuration Manual

MSc Research Project
MSc Data Analytics

Adebola Abdullahi-Attah
Student ID: X19119283

School of Computing
National College of Ireland

Supervisors: Dr Paul Stynes & Dr Pramod Pathak

‘-
National College of Ireland \ National

MSc Project Submission Sheet College of
School of Computing

Ireland

Student Adebola Abdullahi-Attah

) 1= 1 1 1 1= PP
X19119283

(Y T e =Y 1 1 A o TSNP
MSc Data Analytics 2020

Programme: ... Year:cooviiieeeeiennns .
MSc Research Project

o« 1T =TS
Dr Paul Stynes & Dr Pramod Pathak

=T ot o 1 =T -SSP

Submission 17% August 2020

[0 T L= D 1= of - SRR
A Novel Feature Based Ensemble Approach to Bankruptcy Detection

o4 o) =T ot Bl I L= S SRS SRR PR PR
1215 14

Word Count: ... Page Count: ...

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author's written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Y e L 1= T] <SSO SRR OPRRRPURO

[- 1 « T

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple | o
copies)

Attach a Moodle submission receipt of the online project a
submission, to each project (including multiple copies).

You must ensure that you retain a HARD COPY of the project, both | o
for your own reference and in case a project is lost or mislaid. It is not
sufficient to keep a copy on computer.

Assignments that are submitted to the Programme Coordinator Office must be placed
into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

Configuration Manual

Adebola Abdullahi-Attah
Student ID: X19119283

1 Introduction

This manual shows the hardware and software requirements, Also the steps taken to
accomplish the implementation of the research thesis on “A novel feature selection based
ensemble approach to bankruptcy detection”.

2 Hardware and Software Requirements

2.1 Hardware Description

The research implementation was carried out on a Hewlett-Packard (HP) laptop having this
description.

Operating system: Window 10 Home (2019)

Processor: Intel ® Core ™ i7-8565U CPU @ 1.80ghz

System Type: 64-bit operating System, x64-based processor

Installed Memory (RAM): 8.00 GB

2.2 Software Description
The following software enabled the implementation
e Microsoft office: Excel, Word
e Web browser: Google Chrome, Microsoft Edge
e Programming Tool: Python version 3, Google Colaboratory (Cloud based Jupyter
notebook environment)
e Drawing tool: Lucidchart

3 Methodology & Implementation

3.1 Data Collection and Preparation

Step 1
The first step is getting the Polish company bankruptcy dataset from the university of
California Irvine (UCI) data repository as shown in figure 1.

UDC\HJR‘*

Machlnc Lcarnlng Re

Polish companies bankruptcy data Data Set
Downioad: Data der, Data Set Description

Abstract: The dataset is about bankrupicy prediction of Polish companies. The bankrupt companies were analyzed in the periad 201 while the still operating companies were evaluated from 2007 to
2013

10503 || Area:

uuuuuuuuuuuuuuuuu ributes: || 64 Date Donated

Associated Tasks: Classification || Missing Values? Yes Number of Web Hit: 106064

Flgure 1 Dataset from UCI

1

Step 2
The dataset contains five files which is downloaded in a folder named data as shown in figure
2.

{8 data (1).zip (evaluation copy) — O >

@. L'—=J Ai_i.jt

VirusScan Comment SFX

File Commands Tools Favorites Options Help

B oame @

Add ExtractTo Test View Delete Find Wizard Info

™ |M data (1).zip - ZIP archive, unpacked size 21,319,380 bytes

Name Size Packed Type Modified CRC32

.

°1year,arff 3,432,892 1,421,768 ARFF Data File 11/04/2016 16:.. 55B3257D

°2year.arff 4,987,459 2,065,942 ARFF Data File 11/04/2016 16:... 525A0212

OSVEar.arﬂ 5,169,674 2,143,330 ARFF Data File 11/04/2016 16... DBOCCBOA

°4year.arff 4,829,865 2,001,507 ARFF Data File 11/04/2016 16:.. BAADGSF7

o Syear.arff 2,899,490 1,201,162 ARFF Data File 11/04/2016 16:... A0789316

- Total 21,319,380 bytes in 5 files

Figure 2: Dataset Files
Step 3

The folder is uploaded into an existing G-mail account drive (adebolaaattah@gmail.com) as
shown in figure 3.

LDrive Q, Searchin Drive - @ & i 0

My Drive ~ 8
Fonew 4 @ =
b@ My Drive Folders Name
2} Shared with me
= Colah Notebooks B data B personal rating [/}
® Recent
Files
v Stamed
+
T Trash

o n n n n
1.7 GB of 15 GB used

Buy storage

B tyeerarff B 2yeerarff B 3yeararf B yearardf

Figure 3: Upload data on drive

3.2 Google Colaboratory Environment Setup

The google colaboratory (colab) is set up for the smooth running of the python codes. An
existing Google e-mail address is used as adebolaaattah@gmail.com. Figure 4 shows the
setup environment.

mailto:adebolaaattah@gmail.com
mailto:adebolaaattah@gmail.com

File Edit View Insert Runtime Tools Help

coO Welcome to Colaboratory @ Share £t o

e X + Code + Text & Copy to Drive Connect ~ 7 Ec 4] ~
= Table of contents

v e /g OE
<> Getting started

(O What is Colaboratory?

M e learnir .
RN eaing Colaboratory, or ‘Colab'’ for short, allows you to write and execute Python in your browser, with

More re

« Zero configuration required

Machine learning examples
ATng examy « Free access to GPUs

Section « Easy sharing

Whether you're a student, a data scientist or an Al researcher, Colab can make your work easier. Watch Introduction to Colab
to find out more, or just get started below!

Figure 4: Signing into Google Colaboratory.
Step 1
Go to chrome browser and type in the address https://colab.research.google.com

Step 2
Go to file and open a new notebook to get started

Step 3
Mount google drive in colab Jupyter notebook and execute as shown in figure 5.

from google.colab import drive
drive.mount('fcontentfdhive'ﬂ

Figure 5: Mount google drive

Step 4
Click on the url as shown in figure 6

from google.colab import drive
drive.mount(’/content/drive’)

Go to this URL in a browser: https://accounts.gocgle.com/o/oauth2/auth?client id=947318989883-6bnéqk8qdgfandg3pfee6491hc@bredi.apps.googleusercontent. ¢

Enter your authorization code:

Figure 6: Acessing authorization code

Step 5
Select the Google account to be used for the colab set up

& Sign in with Google

=3

Google Drive File Stream wants
to access your Google Account

o adebolaaattah@gmail.com

This will allow Google Drive File Stream to:

L See, edit, create, and delete all of your Google @
Drive files

Figure 7: Selecting google account

Step 6
copy the authorization code and paste into the space provided on the notebook to enable the
jupyter notebook access to the file location.

Google

Sign in

Please copy this code, switch to yvour application and paste it there:

4/ 2wFgIvit GT9IbCAFvXSANTUATOS1ISRIx7iod4R1kBilWwAGWgPS II:]
SIWR - E

Figure 8: Copy authorization code

Ffrom google.colab import driwve
drive.mountl(" /content/drive"”)I

Go tTo this URL inmn a browser: https://accounts.google.com/S/o/oaL

Enter wour authorization code:

Mounted at /Jcontent/drive

Figure 9: Drive mounted in Jupyter notebook

3.3 Importing Libraries

The libraries needed for the exploratory data analysis, imputation of missing values, graph
plotting and statistical analysis, oversampling of the minority class, implementation of the
particle swarm optimization which had to be installed as shown in the figure below.

& ADE (1).ipynb

File Edit View Insert Runtime Tools Help Lastsaved at3:05PM

+ Code + Text

° #importing libraries
impert warnings
warnings.filterwarnings("ignore")
warnings.filterwarnings("ignore", category=DeprecationWarning)
impert pandas as pd
impert numpy as np
import seaborn as sns
import copy
from scipy.io import arff
import matplotlib.pyplot as plt
import fancyimpute
import missingno as msno
from collections import OrderedDict
from imblearn.over_sampling import SMOTE
import pyswarms as ps
%matplotlib inline
%load_ext autoreload
%autoreload 2

[1 Ipip install pyswarms
Requirement already satisfied: pyswarms in /usr/local/lib/python3.6/dist-packages (1.1.8)

Figure 10: Importing Libraries

3.4 Accessing Data and Storing into list

& ADE (1).ipynb
File Edit View Insert Runtime Tools Help Lastsaved at3:05PM

+ Code + Text

Store arff files into a list

[1 # Loads the 5 raw .arff files into a list
def load_data():
N=5
return [arff.loadarff("/content/drive/My Drive/" + str(i+l) + 'year.arff') for i in range(N)]
store raw .arff files into dataframes
def real_data():

return [pd.DataFrame(data_i_year[@]) for data_i_year in load_data()]

BankDF is a list of 5 dataframes
BankDf = real_data()

VIew the first 5 rows of the dataset 'yearl”
BankDf[©].head()

Attrl Attr2 Attr3 Attra Attr5 Attreé Attr7 Attrs Attro Attrie Attril

Attri2

0 0.200550 0.37951 0.39641 2.0472 32.3510 0.38825 0.249760 1.33050 1.1389 0.50494 0.249760 0.65980

1 0.209120 0.49988 0.47225 1.9447 14.7860 0.00000 0.258340 0.99601 1.6996 0.49788 0.261140 0.51680

Figure 11: Loading data

3.5 Imputing missing values using MICE

The missing values were imputed using the Iterativelmputer which was imported from

fancyimpute package across the five years annual data.
& ADE (1).ipynb
File Edit View Insert Runtime Tools Help Lastsaved at 3:05PM

- Code + Text

[1 from fancyimpute import IterativeImputer
MICE_imputer = IterativeImputer()
First_MICE = normalized_Firstdf.copy(deep=True)
First_MICE.iloc[:, :] = MICE_imputer.fit_transform(First_MICE)
FirstYr_imp = First_MICE.iloc[:, :]
FirstYr_imp.head()

Second_MICE = normalized_Seconddf.copy(deep=True)
Second_MICE.iloc[:, :] = MICE_imputer.fit_transform(Second_MICE)
SecondYr_imp = Second_MICE.iloc[:, :]

SecondYr_imp.head()

Third_MICE = normalized_Thirddf.copy(deep=True)
Third_MICE.iloc[:, :] = MICE_imputer.fit_transform(Third_MICE)
ThirdYr_imp = Third_MICE.iloc[:, :]

ThirdYr_imp.head()

Fourth_MICE = normalized_Fourthdf.copy(deep=True)
Fourth_MICE.iloc[:, :] = MICE_imputer.fit_transform(Fourth_MICE)

FourthYr_imp = Fourth_MICE.iloc[:, :]
FourthYr_imp.head()

Figure 14: Filling missing values using Multiple Imputation by Chained Equations

3.6 Executing Feature Selection Techniques

This section shows the execution of the six feature selection techniques for ease of replication

of experiments.

The sklearn package enabled the implementation of the classifier based feature selection
techniques after splitting the data in figure 16, libraries such as mutual_info_classif,
mutual_info_regression, SelectKBest, SelectPercentile were imported for the mutual gain as

shown in figure 17, Also, from the sklearn.ensemble the GradientBoostingClassifier and the
RandomForestClassifier is imported as shown in figure 19 and 20. The
mixtend.feature_selection enabled the importation of the ExhaustiveFeatureSelector as shown
in figure 21. The features gotten from each technique is then ensemble through a voting
technique of unanimous, minority, hard voting, and any vote. The features selected are shown
in the appendix.

& ADE (1).ipynb
File Edit View Insert Runtime Tools Help Lastsavedat3:05PM

Code + Text

[1 #Pearson Correlation
def correlation(dataset, threshold):
col_corr = set()
corr_matrix = dataset.corr()
for i in range(len(corr_matrix.columns)):
for j in range(i):
if abs(corr_matrix.iloc[i, j]) > threshold:
colname = corr_matrix.columns[i]
col_corr.add(colname)
return col_corr

corr_features = correlation(FullMice_Imputed, 9.6)
print('correlated features: ', len(set(corr_features))) #33 features

correlated features: 33

[1 FullMice_ ImputedCorr = FullMice_Imputed
FullMice_ImputedCorr.drop(labels=corr_features, axis=1, inplace=True)
FullMice_ImputedCorr.head()

X1 X2 X4 X5 X7 X8 X9 X12 X13 X15 X

0 0.036336 -0.033776 -0.043896 0.007971 -0.007676 -0.069140 -0.043276 -0.026338 -0.012065 -0.015553 -0.012C

Figure 15: Execution of Pearson Feature Selection

& ADE (1).ipynb
File Edit View Insert Runtime Tools Help Lastsaved at3:05PM

+ Code + Text

[1 #split data
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(FullMice_Imputed, ax,
test_size=0.3,
random_state=101)

Figure 16: Data split for classifier-based feature selection.

& ADE (1).ipynb
File Edit View Insert Runtime Tools Help Lastsaved at3:05PM

+ Code + Text

[1 #Mutual Information Gain
from sklearn.feature_selection import mutual_info_classif, mutual_info_regression
from sklearn.feature_selection import SelectKBest, SelectPercentile
mutual_info = mutual_info_classif(X_train.fillna(@), y_train)
#mutual_info
mi_series = pd.Series(mutual_info)
mi_series.index = X_train.columns
mi_series.sort_values(ascending=False)
#K best feature
k_best_features = SelectKBest(mutual_info_classif, k=31).fit(X_train.fillna(e@), y_train)
print('Selected top 31 features: {}'.format(X_train.columns[k_best_features.get_support()]))

Selected top 31 features: Index(['X1', 'X2', 'X4', 'X5', 'X7', 'X8', 'X9', 'X12', 'X13', 'X15', 'X20',
'X21', 'X27', 'X28', 'X29', 'X3@', 'X32', 'X33', 'X37', 'X39', 'X41',
'X42', 'X43', 'X47', 'X53', 'X55', 'X56', 'X57', 'X58', 'X59', 'X61'],
dtype="object')

[1 #remove columns by information gain
FullMice_ImputedInfoGain = FullMice_Imputed
FullMice_ImputedInfoGain = FullMice_ImputedInfoGain.filter(X_train.columns[k_best_features.get_support()])

Figure 17: Features selected by Information gain.

& ADE (1).ipynb
File Edit View Insert Runtime Tools Help Lastsavedat3:05PM

+ Code + Text

r——————

[] from sklearn.ensemble import GradientBoostingClassifier
def gbt_importance(X_train,y_train,max_depth=10,top_n=31,n_estimators=50,
random_state=0):

model = GradientBoostingClassifier(n_estimators=n_estimators,
max_depth=max_depth,
random_state=random_state)

model.fit(X_train, y_train)

importances = model.feature_importances_

indices = np.argsort(importances)[::-1]

feat_labels = X_train.columns

std = np.std([tree[@].feature_importances_ for tree in model.estimators_],

axis=8) # dinter-trees variability.
for ¥ in range(X_train.shape[1]):
print(feat_labels[indices[f]])
return model

gbt_importance(X_train,y_train)

X27
X29
X9

X55
X56

vee

a Commer

Conr

Figure 18: Execution of Gradient Boosting Classifier for feature selection and importance.

& ADE (1).ipynb
File Edit View Insert Runtime Tools Help Lastsaved at3:05PM

+ Code + Text

[1 #Recursive Feature Elimination (RFE)
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import roc_auc_score

def recursive_feature_elimination_rf(X_train,y_train,X_test,y_ test,
tol=e.e01,max_depth=None,
class_weight=None,
top_n=31,n_estimators=5@,random_state=0):

features_to_remove = []

count = 1

initial model using all the features

model_all_features = RandomForestClassifier(n_estimators=n_estimators,

max_depth=max_depth,

Figure 19: Execution of Recursive elimination feature selection technique

& ADE (1).ipynb
File Edit View Insert Runtime Tools Help Lastsaved at3:05PM

+ Code + Text

[] #Feature Shuffle
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import roc_auc_score

def feature_shuffle_rf(X_train,y_train,max_depth=None,class_weight=None,
top_n=31,n_estimators=58,random_state=8):

model = RandomForestClassifier(n_estimators=n_estimators,max_depth=max_depth,
random_state=random_state,
class_weight=class_weight,
n_jobs=-1)

model.fit(X_train, y_train)

Figure 20: Execution of feature shuffle method

£&. ADE Thesis (1).ipynb

File Edit View Insert Runtime Tools Help All changes saved
+ Code + Text
L 1] #Exhaustive search
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import roc_auc_score
from mlxtend.feature_selection import ExhaustiveFeaturesSelector as EFS
efsl = EFS{RandomForestClassifier(n_jobs=-1,n_estimators=5, random_state=8),
min_features=1,
max_features=31,
scoring="'roc_auc’,
print_progress=True,
cw=2)
efsl = efsl.fFit(np.array(X_train[X_train.celumns[@:64]].Ffillna(@)), y_train)
L 1 EFSLabels= np.array(['X27", X2, "X15", "X55", X229, X1, 'X39°"', X9,
"X58°", X221, "X61°", 0570 - b L 'xa1°’, X113, X8,
"Xa2", X112, X3, "Xa5 ", "xXa43", 'xXa7", XS5, "X53",
"X33°, "X32° , A= s "X28"', "x11", 'x38°"' 1)

FullMice_ImputedEFS

FullMice_Imputed

FullMice_ImputedEFS = FullMice_ImputedEFS.filter(EFSLabels)

Figure 21: Execution of Exhaustive search method

3.7 Modelling

This section shows the steps taken to build the models that would enable the prediction of
bankruptcy.
Step 1

The voting table is loaded unto the jupyter notebook shown in figure 22

#Load voting table from Excel
VotingTable = pd.read_csv("/content/drive/My Drive/Voti

ngTableA.csv")

VotingTable.head()

Figure 22: Loading Voting Table
Step 2

SMOTE is implemented on the data using imblearn library as shown in figure 23.

& ADE (1).ipynb
File Edit View Insert Runtime Tools Help Lastsaved at 3:05PM

+ Code + Text

@ #sMOTE split data
from imblearn.over_sampling import SMOTE
sm = SMOTE(random_state = 181)
X_smoteALL, y_smoteALL = sm.fit_sample(X_trainALL, y_trainALL.ravel())
X_smote5, y_smote5 = sm.fit_sample(X_train5, y_trainS.ravel())

X_smoted, y_smoted = sm.fit_sample(X_traind4, y_traind.ravel())

X_smotel, y_smotel = sm.fit_sample(X_trainl, y_trainl.ravel())

X_train5_sm, X_test5_sm, y_train5_sm, y_test5_sm = train_test_split(X_smote5, y_smote5,

test_size=8.3, random_st.
X_trainALL_sm, X_testALL_sm, y_trainALL_sm, y_testALL_sm = train_test_split(X_smoteALL, y_si

test_size=8.3, random_st.
X_traind_sm, X_testd _sm, y_traind_sm, y_testd _sm = train_test_split(X_smoted, y_smoted,

test_size=8.3, random_st.
X_trainl_sm, X_testl_sm, y_trainl_sm, y_testl_sm = train_test_split(X_smotel, y_smotel,

test_size=©.3, random_s"

Figure 23: Execution of balanced data

Step 3

ANN Execution

For the execution of the ANN execution the Pyswarm library is used from python. Figure 24
& 25 shows the execution of the PSO-ANN model. The number of hidden layers is built
using the 2/3 number of inputs with the addition of the number of outputs rule system.

& ADE Thesis (1).ipynb

File Edit View Insert Runtime Tools Help Allchanges saved

+ Code + Text

[1 #0_ofFsT
Forward propagation
def forward_prop_1(params):
"""Forward propagation as objective function

This computes for the forward propagation of the neural network, as
well as the loss. It receives a set of parameters that must be
rolled-back into the corresponding weights and biases.

params: np.ndarray
The dimensions should include an unrolled version of the

weights and biases.

Returns

float
The computed negative log-likelihood loss given the parameters

Neural network architecture
n_inputs = 34

n_hidden = 25

Figure 24: Execution of PSO-ANN model

&. ADE Thesis (1).ipynb

File Edit Wiew Insert Runtime Tools Help All changes saved

+ Code + Text

° # Neural network architecture
n_inputs = 34
n_hidden = 25
Nn_classes = 2

Roll-back the weights and biases

Wl = pos_1[@:85@] .reshape((n_inputs,n_hidden))

bl = pos_1[85@:875] .reshape({(n_hidden,))

W2 = pos_1[875:925] .reshape((n_hidden,n_classes))
b2 = pos_1[925:927] .reshape((n_classes,))

Perform forward propagation

zl = FullMice_Imputedl_arr.dot{(Wl) + bl # Pre-activation in Layver 1
al np.tanh{(z1) # Activation in Layer 1

=2 al.dot(W2) + b2 # Pre-activation in Layer 2

logits = z2 # Logits for Layer 2

v_pred = np.argmax(logits, axis=1)
return y_pred

-.33827575e+080
-l132e4l48e+00
.eeay73728e-01
.es5752el14e-01

.e5647734e-081 4 .22984841le-01 1.38744928=+00
.88699637=2-01 5.44352955e-01 1.35642596e+00
.91@e85387e-21 9.164254904e-01 l1.e93l1l2z2leee+00
.72515441e-©1 1.34785652e+00 2.5e337356e-21

TwoN W
WEHH

Figure 25: Execution of ANN Architecture

10

& ADE Thesis (1).ipynb

File Edit View Insert Runtime Tools Help Allchanges saved

+ Code + Text

[] #accuracy of ANN with PSO
(predictl_sm(X_trainl_sm, pos_1_sm) == y trainl_sm).mean()#8.969

8.969938195302843
[1 #ROC of ANN with PSO
from sklearn import metrics

fpr, tpr, thresholds = metrics.roc_curve(y_trainl_sm, predictl_sm(X_trainl_sm, pos_1_sm))
metrics.auc(fpr, tpr) #6.969

©.9699367296499444

Figure 26: Results of PSO-ANN on balanced data.

Step 4

Random Forest model Execution

The libraries needed for the implementation is imported as shown below in figure 27. The
random.seed is also set to enable different outputs for each iteration of the experiment.

& ADE Thesis (1).ipynb

File Edit View Insert Runtime Tools Help All changes saved

+ Code + Text

#Import Random Forest Model
from sklearn.ensemble import RandomForestClassifier
from sklearn import metrics

#Create a RF classifier

rf_classifier = RandomForestClassifier(n_estimators = 200,
bootstrap = True,
random_state = 101)

#5

Figure 27: Libraries imported for random forest model

11

Step 5

XGhoost model Execution

The libraries needed for the implementation is imported as shown below in figure 28. The
random.seed is also set to enable different outputs for each experiment.

& ADE (1).ipynb

File Edit View Insert Runtime Tools Help Allchanges saved

+ Code + Text

[1 #Import XGBoost Model
from sklearn.ensemble import GradientBoostingClassifier
from sklearn import metrics

#Create a RF classifier
xgb_classifier = GradientBoostingClassifier(n_estimators = 2@e,
max_depth = 18,
random_state = 181)

Fre

Figure 28: Libraries imported XGboost model

Step 6
The library needed for the execution of SVC is imported from sklearn library shown in figure
26.

& ADE (1).ipynb

File Edit View Insert Runtime Tools Help All changes saved

Code + Text

° from sklearn.svm import SVC
from sklearn.ensemble import GradientBoostingClassifier
from sklearn.ensemble import RandomForestClassifier
from sklearn import metrics

#Create a XGB classifier
xgb_classifier = GradientBoostingClassifier(n_estimators = 280,
max_depth = 18,
random_state = 181)
#Create a RF classifier
rf_classifier = RandomForestClassifier(n_estimators = 208,
bootstrap = True,

random_state = 181)

models = [xgb_classifier, rf_classifier]

Figure 26: Libraries imported for the ensemble model of SVC-RF-XGboost

4 Appendix

12

4.1

Feature selection table

Features
X1
X2
X3
X4
X5
X6
X7
X8
X9
X10
X11
X12
X13
X14
X15
X16
X17
X18
X19
X20
X21
X22
X23
X24
X25
X26
X27
X28
X29
X30
X31
X32
X33
X34
X35
X36
X37
X38
X39
X40
X41
X42
X43
x44
X45
X46
X47
X48
X49
X50
X51
X52
X53
X54
X55
X56
X57
X58
X59
X60
X61
X62
X63
X64

Exhaustive feature

*
*

*

Random shuffling Recursive feature elimination

*

*

13

Gradient boosting Information gain Correlation Count

*

*

*

*

*

*

O O O OO0 & 000 U1 OO OO0 OO0 O O O 0O O kF OO O O OO O U OO o o0 O O Ul o 1o OO0 OO0 O O Ul OO0 O o o O Ul kFHF O o O Ul o v ul » o u

References

Son, H., Hyun, C., Phan, D. and Hwang, H.J. (2019) ‘Data analytic approach for bankruptcy
prediction’, Expert Systems with Applications, 138, p. 112816, ScienceDirect. doi:

10.1016/j.eswa.2019.07.033

Zigba, M., Tomczak, S.K. and Tomczak, J.M. (2016) ‘Ensemble boosted trees with synthetic
features generation in application to bankruptcy prediction’, Expert Systems with
Applications, 58, pp. 93-101, ScienceDirect. doi: 10.1016/j.eswa.2016.04.001

14

