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Configuration Manual

Animesh Kumar
X18184731

1 Introduction

This configuration manual frames the various software and hardware specifications and
their versions used while implementing procedures of research topic ”Brain Age Classi-
fication from Brain MRI using ConvCaps Framework”. This work will help the future
researchers to replicate the research work for further analysis and extension without any
difficulties.

2 System Configuration

2.1 Hardware specification

This is the current system hardware configuration which facilitates an Intel i7-8550U
processor with a max clock speed of 1.99GHz.Figure

View basic information about your computer
‘Windows edition
Windows 10 Home Single Language -- .
© 2019 Microsoft Corporation. All rights reserved. .. WI n d OWS 1 O
System
Manufacturer: ASUSTek Computer Inc
Processor: Intel(R) Core(TM) i7-8550U CPU @ 1.80GHz 1.99 GHz rp————
Installed memory (RAM): 160 GB (15.9 GB usable) m’sm
System type: 64-bit Operating System, x64-based processor
Pen and Touch: No Pen or Touch Input is available for this Display
ASUSTek Computer Inc. support
Website: Online support
Computer name, domain, and workgroup settings
Computer name: LAPTOP-KO9ILNAV Qt'ﬂange settings
Full computer name: LAPTOP-KO9ILNAV
Computer description:
Workgroup: WORKGROUP

Figure 1: Hardware specification of the system

2.2 Software specification

Below are the software specification used while executing implementation procedures.

2.2.1 Python 3.7.3

Latest version of Python 3.7.3 has been used for this research.




anime>python

:: Anaconda, Inc. on win32

Figure 2: Python version

2.2.2 Google Colaboratory

All implementation are performed on Google Colab notebook platform. It is a cloud
based platform, which provides set of GPU’s and CPU’s to process code faster and
reduces computational time. For deep learning models GPU’s are highly recommended
as with increase in data size, model run time with rise. All data related to the project
were uploaded in google drive for faster retrieval. Figure

& Brain Age Estimation.ipynb
Fie Edi View Insert Runtime Tools Help Changes willnotbe saved

_  +Code +Tex & CopytoDrive

4 Brain Age Estimation using Machine Learning
e

In this notebook we use the python programming language to perform brain age estimation based on MRl images

Lines beginning with a # are comments

Figure 3: Google colaboratory sign-in

2.2.3 Anaconda

Anaconda app suite is freely available platform for python application. It facilitates
python notebook know as Jupyter. Jupyter notebook is a well verse python IDE (Integ-
rated Development Suite). Some data pre-processing were performed on Jupyter, due to
storage limitation of google drive.Figure

{2 Anaconda Navigator — O X
File Help
i) ANACONDA NAVIGATOR sign n t0 Anaconda Cloud
o Applications on | base (root) s Channels Refresh
‘ Environments -
o o] o
J 3 'A. ;;.
M Lezarning Jupyter @ J"._
> &
."wf N
- Community Notebook Orange 3 Powershell Prompt
M 57.8 A 3230 0.0.1
Web-based, interactive computing Component based dakts mining Framework. Run a Powershell terminal with your
notebook environment. Edit and run Data visualization and data analysis For current environment From Nawvigator
human-readable docs while describing the novice and expert. Interactive workflows activated
Documentation data analysis. with a large toolbox.
i
fiou hd
o ) . N .

Figure 4: Anaconda app suite



2.2.4 Overleaf

All reporting and explanation of research were performed on Overleaf.Figure
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Figure 5: Overleaf GUI

2.2.5 Libraries

Python is well known for its libraries for any utility. This research comprises libraries
like Tensorflow, Keras, CV2, Shutil and PIL to name the few.Figure [f]

import numpy as np

import os

import pandas as pd

from keras.preprocessing.image import ImageDataGenerator
from keras import callbacks

from keras.utils.vis utils import plot_model

import cv2

import random

import shutil

from sklearn.model selection import train_test split
import tensorflow as tf

from tensorflow import keras

import zipfile

import matplotlib.pyplot as plt

from tgqdm import tqdm, tqdm_notebook

import warnings

from keras.utils import to catepgorical

from tensorflow.keras.preprocessing.image import ImageDataGenerator
from tensorflow.keras.optimizers import Adam

from tensorflow.keras.callbacks import EarlyStopping

from tensorflow.keras.callbacks import ModelCheckpoint

Figure 6: Python libraries



3 Data Collection and Preparation

Data is collected from OASIS (Open Access Series of Imaging Studies) Marcus et al.
(2007) which provides free subscription for all datasets on registering to their website.
The dataset contained images and CSV demographics with detail like age, dementia
rating, gender and etc.The data was present in different folders out of which only images
from FSLSEG and PREPROCESSED were collected for this research as shown in figure

Figure [7]

A ; | ; OASIS-1: Cross-sectional MRI Data in Young. Middle Aged.
Nondemented and Demented Older Adults F S L S E G

OPEN ACCESS SERIES
OF IMAGING STUDIES

Subjecs MR Sessions:

PROCESSED
416 434

RAW

Figure 7: (a) OASIS (b) OASIS-1 Dataset (c) Folder

Data fetched from sub-folders FSLSEG and PREPROCESSSED as shown in Figure 8]

Data from below folders get extracted in a new folder [OASIS_data_image]

1. FSL_SEG: Contain GM, WM, CSF segmented image generated from the masked atlas image
2. PREPROCESSED : Contain folder (T88_111) which includes the atlas-registered field-corrected gain images and a brain-masked image
version resampled to isatropic voxels of Tmm .

[ 1 #Copying required files from original OASIS dataset to new folder

def file extract(src,dest):
for file_name in os.listdir(src):
sub_dir_path = directory + file_name
fn = file name[:-4]
proc_dir_path = (sub_dir_path + "\\' + fn)
file_copy(proc_dir_path,fn,dest)

def file_copy(path,file,dest):

far folder in os.listdir(path):
# Copying files from preprocessed path
preprocessed_path = glob.glob(path + "\\' + folder + '\PROCESSED\MPRAGE\\T88_111\\**anon_111_t88_masked_gfc_tra_90.gif') #constructing required path
preprocessed_pathl = preprocessed_path[@]
img_preprocessed = Image.open(preprocessed _pathl)
img_preprocessed.save (dest + folder + 'pp.gif' ,'gif') # Saving to folder

#Copying file from FSL_SEG path

FSL_SEG_path = glob.glob(path + '\\' + folder + '\FSL_SEG\**anon 111 t88_masked gfc fseg tra 98.gif') #constructing required path
FSL_SEG_pathl = FSL_SEG_path[@]

img_mask = Image.open(FSL_SEG_pathl)

Figure 8: Loaded data in (.gif) format

3.1 Data Storage

Images were stored in GIPHY format first to the local system as shown in Figure[9] The
stored data were converted into PNG format which reduced the size of images to 1/4th
of original data as shown in Figure



& OAS1_0001_MR1_mpr_n4_anon_111_t88_masked_gfc_fseg_tr.. X

2 General  Security Details  Previous Versions

= E ‘v‘\m_mpr_n"r_anon_‘l‘\1_t88_masked_gfc_fseg_tra_5‘0
OAST_0001_MR1
_mpr_n4_anon_11
1.188_masked gf

i Type offile GIF File (.gif)

c_fseg_tra_90 Opens with: Photos Change.
Location: Di\research_proj\datasefi0ASIS\oasis_img
Size: 12.0 KB (12.389 bytes)

Size on disk: 16.0 KB (16.384 bytes)

OAS1_0013_MR1
_mpr_n4_anon_11

1.188_masked_gf Madified Monday, June 29, 2020, 8:16:10 AM
c_fseg_tra_90

Created. Monday. July 27, 2020, 12:50:49 PM

Accessed Monday, July 27, 2020, 12:50:43 PM

Attributes: [JRead-only  []Hidden Advanced

OAS1_0025_MR1
_mpr_n4_anon_11
1_t88_masked_gf

c_fseg_tra_90 Cancel Apply

Figure 9: Loaded data in (.gif) format

3.2 Outlier check and removal

Images were checked for outliers like blank images. Code is shown in Figure

#renoving outlier with blank image of shape (208,176) and removing corresponding rows from dataframe

import cv2
import os

#Refrence blank image for comparison
blank_image = np.zeros((208,176), np.uint8)
blank_image. fil1(255)

blank_image. shape

src = 'D:/research_proj/dataset/oasis_1_6/data_oasis_copy/' #source folder
for name in os.listdir(src):

file name = src + name # file path

file_load = cv2.imread(file_name, cv2.IMREAD_UNCHANGED) # load file

if file load.shape == blank_image.shape: # comparing with blank image

ocasis_df[oasis_df.ID != name[0:13]] # remove image id row from dataframe
os.remove(file_name) # remove file from folder

Figure 10: Outlier check

3.3 Data Conversion

Images are stored in GIPHY format first to the local system as shown in Figure [



& OAS1_0001_MR1fsl Properties X

General  Security Detsils  Previous Versions

-

IE ‘OAS‘I_DDD‘\_MRWS\

OAS1_0001_MR1f

sl Type offile PNG File (. png)
Opens with Photos Change
Location: Diresearch_proj\datasetiOASIS\oasis_new_png
Size! 235 KB (2409 bytes)
OAS1_0006_MR1 Size ondisk: 400 KB (4096 bytes)
Created: Tuesday, August 4, 2020, 2:35:23 PM
Modified: Friday. July 31, 2020, 1:1221 PM

Accessed: Tuesday. August 4, 2020, 2:35:23 PM

o
°

OAS1_0013_MR1f Attributes [JRead-only [ ]Hidden Advanced

-ﬂ

Figure 11: Data conversion in (.png) format

3.4 Demographic Storage and Conversion

Data demographics was present with several details as mentioned above however, only
image ID and Age were taken for this study as shownFigure [12. The data were further
classified into 6 classes as shown in Figure

df_oasis = pd.read_csv("/content/oasis cross-sectional.csv")
df_oasis.head()

ID M/F Hand Age Educ SES MMSE CDR eTIV nWBV  ASF Delay
0 OAS1_0001_MR1 F R 74 20 3.0 290 00 1344 0743 1306 NaN
1 OAS1_0002_MR1 55 40 1.0 290 0.0 1147 0810 1531 NaN
OAS1_0003_MR1 73 40 30 270 05 1454 0708 1207 NaN

28 MNaN NaN NaN NaN 1588 0.803 1.105 NaN

A AW A A

F
e
OAS1_0004_MR1 M
M

oW N

OAS1_0005_MR1 18 NaN NaN NaN NaN 1737 0848 1.010 NaN

Figure 12: Loaded data demographic



df oasis cls = pd.read csv("/content/drive/My Drive/
df oasis cls.head()

ID category
0 OAS1_0001_MR1 5
1 OAS1_0002_MR1 3
2 OAS1_0003 MR1 5
3 OAS1_0004_MR1 2
4 OAS1_0005_MR1 1

Figure 13: Data demographic converted into classes from 1 to 6

3.5 Test Train Split

Test data is split from train data before performing augmentation so as to get real testing
accuracy of the model. The split ratio was 0.2 Figure [14]

Test_Train Split

Test data is taken out from entire dataset before augmentation

Testing ratio = 0.20.

[ ] from sklearn.model_selection import train_test_split

train, test = train_test split(oasis data,test size=0.20, random state=42,shuffle=True)

Figure 14: Test train split

3.6 Data Augmentation

Images were augmented in 12 different filters Mikolajczyk and Grochowski (2018) as
shown in Figure [[5Figure




dest = "/content/drive/My Drive/Augmentation/oasis_augmentation/" # Destination augmentation folder

def augmentation(path):
for image in os.listdir(path):

img_path = os.path.join(path + image)

img_load = cv2.imread(img_path)

#img_load = tf.convert_to_tensor(img_inp, dtype=None, dtype_hint=None, name=None)

#flipping right to left

flippedrl = tf.image.flip_left_right(img_load)

fliprl = np.asarray(flippedrl)

eV Imerite(destit imaaels 4]t ToELELYSE 1. prts FHpEL)

#rotating by 99 degree
rotated = tf.image.rot90(img_load)
rot = np.asarray(rotated)

cv2.imwrite(dest + image[:-4] + '_rotateS®' + '.png', rot)

#flipping up to down

flippedud = tf.image.flip up down(img_load)

flipud = np.asarray(flippedud)

cv2.imwrite(dest + image[:-4] + '_flipud' + '.png', flipud)

#cropping by ©.8 feaction
cropped = tf.image.central crop(img load, central fraction=8.8)
crop = np.asarray(cropped)

Figure 15: Augmentation code

Figure 16: Data augmentation: - 1) Original Data 2) Left-Right Flip 3) Brightness(0.2) 4)
Center Cropping (0.8) 5) Rotation 90 6) Upside Down 7) Random Contrast 8) Saturation
(10) 9) Adjust Contrast (8), 10) Random Hue 11) Segmented 12) Random Gamma 13)
Random Saturation

Augmented images are further divided into different classes from class 1 to class 6 in
respective folders Figure



Class folder will act labels for the image.

[ ] # % Creating Train / Val / Test folders (One time use)
root_dir = '/content/drive/My Drive/OASIS_data/train/’
classes dir = ['1',°2',73",°4",'5","6"]

et 00 train

for cls in classes_dir:
# creating required directories
os.makedirs(root_dir +'train’ + cls)

os.makedirs(root_dir +'val” + cls) tra I n E

# Creating partitions of the data after shuffeling
src = root_dir + cls # Folder to copy images from

et - o s ) train3

#ratio of split
np. random. shuffle(allFileNames)
train FileNames, val FileNames = np.split(np.array(allFileNames),

[int(len(allFileNames)* (1 - val_ratio))]) tra i n-q-

train_FileNames = [src+'/'+ name for name in train_FileNames.tolist()] #train data list
val_FileNames = [src+'/' + name for name in val_FileNames.tolist()] #val data list

trainb

print('Total images: ', len(allFileNames))
int(’ : *, len(train_FileNames))

*, len(val_FileNames))

. trainb

for name in train_FileNames:
shutil.copy2(name, root_dir +"train’ + cls)

for name in val_FileNames:
shutil.copyd(name, root_dir +'val' + cls)

Figure 17: (a) Class division code (b) Different class folders

Class folders are divided into train and validation folder as shown in which was fed
as input for InceptionV3 and DenseNet architectures Figure [18]

# Creating folders for traing and validation
root_dir = '/content/drive/My Drive/0ASIS data/train/' #
model folder = ['train®,'val’']
for cls in model folder:
os.makedirs(root_dir + cls)

#Moving files into created train folders

classes dir = ['1°,°2','3","4",'5",76"]
root_dir = “"/content/drive/My Drive/class 6 dataset/cls 6_train val/"

Lin T 5 B S S R

des_cls = ['train’, ‘val']

for 1 in classes_dir: train
for j in des_cls:
src = os.path.join(root dir + j + 1i,) I
dest = (os.path.join(root_dir +3)) Ua
shutil.move(src,dest)

Figure 18: (a) Train validation split code (b) Train and validation folders

4 Model Implementation

There are four models implemented under this project. The state-of-the-art is the baseline
model which was replicated under baseline implementation 1 followed by the novel ar-
chitecture proposed in this research as Convolutional Capsule Network. The pre-trained
models like InceptionV3 and DenseNet were used for model analysis and comparison.

4.1 Baseline model:Alexnet-CNN (State-of-the-art)

The model consist of convolutional layer block inspired from alexnet model as shown in
Figure [19) And model run is shown in Figure [20]



def CNN_model():
model = Sequential()
model.add(ConvaD(filters = 16, kernel size = 3, padding = 'same', activation = 'relu’, input_shape = (224, 224, 3)))
model. add (Drapout(2.3))
model. add(MaxPooling2D(pool_size = 3))

model.add(Conv2D(filters = 32, kernel size = 3, padding = 'same’, activation = 'relu'))
model. add (Dropout(@.3))
model. add(MaxPooling2D(pool_size = 3))

model.sdd(ConvaD(filters = 64, kernel_size = 3, padding = 'same’, activation = ‘relu’))
model. add (Dropout(8.3))
model. add (MaxPooling2D(pool_size = 3))

model.sdd(Conv2D(filters = 128, kernel_size = 3, padding = ‘same’, activstion = 'relu'})
model. add (Dropout(8.3))
model. add (MaxPooling2D{pocl_size = 3})

model.add(Flatten())
model.add(Dense (1024, activation='relu’)}
model. add(Dropout(2.3))
model.add(Dense(512, activation='relu'))
model. add(Dropout(2.3))

model.add(Dense(9, activation = 'softmax'))

Figure 19: Alexnet-CNN modelling

model = CNM_model()
epochs = 58

STEP_SIZE_TRAIN=train.n//train.batch_size
STEP_SIZE VALID=valid.n//valid.batch_size

early stopping = tf.keras.callbacks.EarlyStopping(monitor="val_accuracy’, patience=12, restore_best weights=Tru
time_callback = TimeHistory()

def scheduler(epoch)
# This function keeps the learning rate at 0.001 for the first ten epochs
# and decreases it exponentially after that.
if epoch < 12:
rn ©.001

return ©.001 * tf.math.exp(@.5 * (12 - epoch))
learning_rate_scheduler = tf.keras.callbacks.learningRateScheduler(scheduler)
with tf.device('/GPU:8"):

# model training
history = model.fit_generator(train,
steps_per_epoch=STEP_SIZE_TRAIN,
validation_data=valid,
validation_steps=STEF_SIZE VALID,
epachs=16@, callbacks= [time callback])

WARNING: tensorflow:From <ipython-input-24-a6f8a0f90acd>:29: Model.fit_generator (from tensorflow.python.keras.e
Instructions for updating:

Please use Model.fit, which supports generators.

Epoch 1/5@

183/183 [ ] - 178s 2s/step - loss: 8.3297 - accuracy: 8.2362 - val_loss: ©.3336 -
Epoch 2/58

1e3/183 [ 1 - 173s 2s/step - loss: ©.327@ - accuracy: ©.2393 - wal_loss: ©.3359 -
Epoch 3/58

183/183 [ 1 - 173s 2s/step - loss: ©.3242 - accuracy: @.2661 - wval loss: ©.3331 -
Epoch 4/58

Figure 20: ALexnet-CNN model run

4.2 Proposed model:Convolutional Capsule Network

Model is the combination of Capsule network E| and convolutional block. The CNN layers
are at the starting for sub-sampling followed by CAPSNET for classification.Figure
denotes the modelling of ConvCaps with convolutional layers and capsule layer. The
hyper-parameters considered for this model is shown in Figure 27] Also, in Figure
model run with steps per epoch is shown.

thttps://github.com/XifengGuo/CapsNet-Keras
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The proposed ConvCaps contains important class functions for individual working of

the architecture as shown below in figure (21] 26)).

class Length(layers.Layer)
#Compute the length of vectors. This is used to compute a Tensor that has the same s

def call(self, inputs, **kwargs):
return K.sgrt(K.sum(K.square(inputs), -1))

def compute output shape(self, input_shape):
return input_shape[:-1]

Figure 21: Caps length formation layer

class Mask(layers.Layer):
Mask a Tensor with shape=[None, d1, d2] by the max value in axis=1.
Output shape: [None, d2]
def call(self, inputs, **kwargs):
# use true label to select target capsule, shape=[batch_size, num_capsule]
if type(inputs) is list: # true label is provided with shape = [batch_size, n_cla
assert len(inputs) == 2
inputs, mask = inputs
else: # if no true label, mask by the max length of vectors of capsules
x = inputs
# Enlarge the range of values in x to make max{new_x)=1 and others < @
x = (x - K.max(x, 1, True)) / K.epsilon() + 1
mask = K.clip(x, ©, 1) # the max value in x clipped to 1 and other to @

# masked inputs, shape = [batch_size, dim_vector]
inputs_masked = K.batch_dot(inputs, mask, [1, 1])

return inputs_masked

Figure 22: Masking layer

def squash(vectors, axis=-1):
The non-linear activation used in Capsule. It drives the length of a large vector to near 1
:param vectors: some vectors to be sguashed, MN-dim tensor
:param axis: the axis to squash
:return: a Tensor with same shape as input vectors
s_squared_norm = K.sum(K.square(vectors), axis, keepdims=True)
scale = s _squared_norm / (1 + s_squared_norm) / K.sqrt(s_squared_norm)
return scale * vectors

Figure 23: Squashing layer

11



class Capsulelayer(layers.Layer):|
def __init_ (self, num_capsule, dim_vector, num_routing=3,
kernel_initializer="glorot_uniform',
bias_initializer='zeros’,
**kwargs) :
super(CapsuleLayer, self). init  (**kwargs)
num_capsule

self.num_capsule
self.dim_vector = dim_vector

self.num_routing = num_routing

self.kernel initializer = initializers.get(kernel initializer)

self.bias_initializer = initializers.get(bias_initializer)

def build(self, input_shape

assert len(input_shape) >= 3, "The input Tensor should have shape=[None, input_num_capsule, input_dim vector]”

self.input_num_capsule = input_shape[1]
self.input_dim vector = input_shape[2]

# Transform matrix

self.W = self.add_weight(shape=[self.input_num_capsule, self.num capsule, self.input_dim_vector, self.dim vector],
initializer=self.kernel_initializer,
name="W")

# Coupling coefficient. The redundant dimensions are just to facilitate subsequent matrix calculation.
self.bias = self.add_weight(shape=[1, self.input_num_capsule, self.num_capsule, 1, 1],
initializer=self.bias_initializer,

neme='bias’,

trainable=False)
self.built = True

Figure 24: Main capsule layer

def PrimaryCap(inputs, dim_vector, n_channels, kernel size, strides, padding):
Apply Conv2D “n_channels’ times and concatenate all capsules
:param inputs: 4D tensor, shape=[None, width, height, channels]
:param dim vector: the dim of the output vector of capsule
:param n_channels: the number of types of capsules

eturn: output tensor, shape=[None, num_capsule, dim_vector]

output = layers.Conv2D(filters=dim vector*n_channels, kernel size=kernel size, strides=strides, padding=padding)(inputs)
outputs = layers.Reshape(target_shape=[-1, dim_vector])(output)
return layers.Llambda(squash)(outputs)

Figure 25: Primary caps layer

from keras import layers, models

om keras import backend ss K

t to_categorical

def Capsiet(input_shape, n_class, num_routing):

om keras.utils im

A Capsule Network on brain age data
shope: data shape, 4d, [Nore, width, height, channels]
number of classes|

iparam num_routing: number of routing iterations
turn: A Keras Model with 2 inputs and 2 outputs

% = layers.Input(shape=input_shape)

# Convl: Just a conventional Conv2D layer
b1kl conv_64 = layers.Conv2D(filters=64, kernel size=
blkl conv_2 64 = layers.ConvD(filters=64, kernel siz
max_pool_1 64 = layers.MsxPool2D(pool_size=(2,2),strides

4" )(x)
64') (blkl_conv_64)

seme’, activation='relu’, name='con
‘same’, activation="relu’, name='com
max_pool_64') (b1K1_conv_2_64)

# Conv2: For further sub sampling
bil2 conv_128 =layers.Conv2D{filters=123, kernel size=3, strides » activation='relu’, name='conv_128')(max_pcol 1 64)
bicl2_conv_2_128 =layers.Conv2D(filters=128, kernel_size=3, strides=l, padding='same', activation="relu’, name='conv_2 128")(bk12_conv_128)
max_pool_2 128 = layers.MaxPool2D{pool size=(2,2),strides=(2,2), name='max_pocl 128')(bk12 conv_2 128)

cony_756' ) (max_pool_2_128)
onv2' ) (bk13_cony_256)#(mex_pool 3 256)

relu’, nam
alid’, activation="relu’, name:

bi13_conu_256 =layers.Conv2D{Filters:
conv2_caps = layers.Conv2D(filters:

56, kernel_size=3, stride
kernel_size=g, strides=

m_vector]
alid')

£ P
primarycaps = PrimaryCap(conv2_caps, dim_vector=g, n_channels=32, kernel siz

ary Caps layer: Conv2D layer with “squash’ activation, then reshape to [None, num_capsule,
9, strides=2, padding:

wer. Routing algorithm works here.
» num_routing=num_routing, name:

# Digit caps layer: Capsule
digitcaps = CapsuleLayer(num_capsule=n_class, dim_vector=1

gitcaps®)(primarycaps)

# Output caps layer: This is an auxiliary layer to replace each capsule with its length. Just to match the true label's shape.
out_caps = Length(name="caps")(digitcaps)

# Decoder network.
¥ = layers.Input(shape=(n_class,))
masked = Mask(}([digitcaps, y1) # The true label is used to mask the output of capsule layer.

x_recon = layers.Dense(512, activation='relu')(masked)

x_recon = layers.Dense(1024, activation='relu’)(x_recon)

x_recon = layers.Dense(np.prod(input_shape), activation='softmax')(x_recen)
x_recon = layers.Reshape(target_shape=input_shape, name='recon’)(x_recon)

# two-input-two-output keras Model
return models.Model([x, y1, [out_caps, x reconl)

Figure 26: ConvCaps block
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compile the model
odel.compile{optimizer="adam",

loss=[margin_loss, ‘mse'],
loss_weights=[1., 8.8885],
metrics={"caps': '"accuracy'})

Figure 27: Hyper-parameter tuning

#time counter for model time capturing
import time
time.perf counter()

#training model with data and created model
train_model({model=model, data=((x_train, y_train), (x_test, y_test)))

Epoch 1/1@8
WARMING: tensorflow:From fusr/local/lib/python3.6/dist-packages/keras/backend/tensorflow_backen

WARNING:tensorflow:From fusr/localflib/python3.6/dist-packages/keras/backend/tensorflow_backen)
WARNING: tensorflow:From fusr/local/lib/python3.6/dist-packages/keras/backend/tensorflow_backen

WARNING:tensorflow:From fusr/local/lib/python3.6/dist-packages/keras/backend/tensorflow_backen

WARNMING: tensorflow:From fusr/local/lib/python3.6/dist-packages/keras/backend/tensorflow_backen

246/245 [=== === === =] - 123%9s 5s/step - loss: 1.1335 - caps_loss: 1.1334 -

: wal_loss improved from inf to 1.86416, saving model to weights-81.h5

Epoch 2/1@8
246/245 [=== === === =] - 12395 5s/step - loss: 1.1318 - caps_loss: 1.1317 -

Encch BO@G37 sl Joce dAfd nod dmaecue Feom 1 GEATES

Figure 28: ConvCaps model run

4.3 Supporting models: InceptionV3 and DenseNet

For pre-trained Transfer Learning models data were passed through image generator
with real time augmentation. The data were stored in test. train and valid folders for
processing Figure [29
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image size = 175 #input image size

# real time augmentation fro training data

dataGenerator = ImageDataGenerator{horizontal flip=True,
wertical_flip=True,
rotation_range=45,
width_shift_range=8.2,
height_shift_range=8.2,
Zoom_range=.4,
fill mode=' T3 il
shear_range:
rescale=1/255,
Y#validat.

ion_split=6.2

#testing data scaling
test_Data_Generator = ImageDataGenerator(rescale=1/255)

#train data load

trainGenerator = dataGenerator.flow_from_directory('/content/dr: ly Drive/new_classes_6/train_classes/train/’',
class_mode="categorical™,
target_size=(image_size, image_size),
color_mode="rgb",
shuffle=True,
batch_size=32)

#val data load

validGenerator = test_Data_Generator.flow_from_directory('/content/drive/My Drive/new_classes_b/train_classes/val/',
target_size=(image size,image size),
class_mode="categorical",
shuffle=False,
batch_size=32)

#test data load
test_gen = test_Data_Generator.flow_from_directory('/content/drive/My Drive/new_classes_6/test_class/',

target_size=(image_size,image_size)},
class_mode="categorical’,
shuffle=False,

batch_size=32)

Figure 29: Test, train and validation data fetching code

4.3.1 InceptionV3

InceptionV3 E| has been trained on "ImageNet” weights and same has been imported as
shown in Figure The input image size was given as 175 X 175. A dense layer is added
in fully connected block with softmax as activation function for image clasification.

https://www.tensorflow.org/api docs/python/tf/keras/
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# importing inceptionV3 model
from tensorflow.keras.applications.inception v3 import Inceptionv3d

#import ImageNet weights for inceotion model and defined input size

pre_trained_model = InceptionV3(input_shape = (175, 175, 3), # Shape of our images
include_top = False, # Leave out the last fully connected layer
weights = 'imagenet')

Downloading data from hitps://storage.googleapis.com/tensorflow/keras-applications/inception w3/
87916544/87918968 [== == ===] - 1ls @us/step

# trainig data on pretrained weights

for layer in pre_trained_model.layers:
layer.trainable = False

#adding flatten layer to model architecture
x = layers.Flatten(){pre_trained_model.output)

Add & fully connected layer with 1,824 hidden units and RelU activation

x = layers.Dense(1824, activation="relu')({x)
x = layers.Dense(6, activation='softmax')(x) #softmax

#final modelling
model = Model( pre_trained model.input, x)

Figure 30: InceptionV3 Modelling

The model compilation included hyper-parameter shown in Figure and time was
calculated using time function. Model has been supplied with pre-defined steps per epoch
value.

# hyper paraemeter tunning
adam = Adam(1r=0.0801)
model.compile(loss='categorical_crossentropy’,optimizer=adam, metrics=['accuracy'])

# training model

train_step = trainGenerator.n//trainGenerator.batch_size # step per epoch for train data
val_step = validGenerator.n//validGenerator.batch_size # validation per epoch for val data

time_callback = TimeHistory()

history = model.fit_generator(trainGenerator,
steps_per_epoch=train_step,
validation data=validGenerator,
validation_ steps=val step,
epochs=100, callbacks=[es,mc,log,time_callback])

Epoch 1/100

180/180 [ 1 - ETA: @s - loss: 1.4983 - accuracy: 0.3951

Epoch ©0001: val_accuracy improved from -inf to ©.49028, saving model to ./drive/my Drive/large_inceptionv3_1_mode|
180/186 [ ] - 94s 521ms/step - loss: 1.4983 - accuracy: ©.3951 - val loss: 1.1435 - v|
y: 0.4903

Figure 31: InceptionV3 compilation and epoch run

4.3.2 DenselNet

The DenseNet El model has higher parameter count than Inception which also get reflected
in time consumption by both the models Figure 32} Also, model compilation and run is
shown in Figure [33]

3https://www.tensorflow.org/api docs/python/tf/keras/
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#Denselet model import

base_model = densenet.DenseNetl69(input_shape={175, 175, 3],

tweights="imagenet"',
weights = "imagenst”,
include_top=False,
pooling="avg")

for layer in base_model.layers:
layer.trainable = True

x = base_model.output

#Adding softmax layer for image classification
predictions = Dense(6, activation='softmax'){x)

=

# importing base model

model = Sequential()
model = Model(base_model.input, predictions)

#model

sSummary

model. summary ()

Figure 32: DenseNet modelling

#Hyper-parai

optimizer =
model. compi

train_step
val_step =

time_callba:

model_histol
train,
epochs=
steps_p
validat
validat
callbac|

Epoch 1/1@@
180/188 [

meter tunning

Adam(lr=2.0001, beta 1=0.9, beta_2=0.292, epsilon=1s-88)
le({loss="categorical crossentropy’, optimizer="adam', metrics=["acc’, 'mse'])

= trainGenerator.n//trainGenerator.batch_size # step per epoch for train data
validGenerator.n//validGenerator.batch_size # step per epoch for validation data

ck = TimeHistory()
ry = model.fit_generator(

1688,
er_epoch=train_step,
ion_data=valid,
ion_steps=val step,
ks=[tims_callback])

Epoch 2/1@@

] - 18@s 555ms/step - loss: 1.4452 - acc: 8.4991 - ms

180/180 [
Epoch 3/lee
180/180 [

] - 58s 321ms/step - loss: 1.2317 - acc: @.4489 - mse

] - 68s 332ms/step - loss: 1.2335 - acc: @.4649 - mse

Figure 33: DenseNet compilation and run
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5 Model Evaluation Comparison

Model evaluation is initially checked using model accuracy and validation accuracy. For
further analysis, benchmarks like F1-Score, Recall and Precision were used. Model com-
parison is shown in Figure [35]

5.1 Ewvaluation

Model evaluation is performed using classification report from sklearn library. The report
consist of weight average result of recall, F1-score and precision Figure [34]

from sklearn.metrics import classification report

target names = ['1", '2', '3', '4','5','6"'] #classes
print(classification report(test gen.classes, pred, tar

precision recall fi1-score  support

1 0.88 0.65 0.75 23

2 0.83 8.92 8.87 48

E ©.93 8.9 0.92 38

4 0.80 0.80 0.80 15

5 ©.78 8.97 0.86 29

6 .93 .68 0.79 19

accuracy .85 164

macro avg 0.86 8.82 0.83 le4

weighted avg 9.86 ©.85 0.84 164

Figure 34: Preision report of Inception

5.2 Model Comparison

Different model are compared in below Figure 35 From table it can be inferred that the
ConvCaps and inception model were performed better than state-of-the-art model.

Method Accuracy  Precision Recall F1-Score
CNN 79% 89% 50% 64%
(State-of-the-art)
ConvCaps 81% 83% 80% 80%
InceptionV3 85% 86% 85% 84%
DenseNet 60% 18% 17% 17%

Figure 35: Model comparison table
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