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1 Introduction 
This report forms part of the submission by student Cillín Ó Foghlú as the configuration 

manual which describes how to implement that Classification of Deep Space Objects using 

Deep Learning Techniques submission for M. Sc in Data Analytics. 

Section 2 covers additional details on the research project which complement the Research 

Report paper submitted. Section 3 details the hardware used while section 4 describes how to 

install the relevant software. Section 5 details the process to select and download the images 

used. Section 6 describes the python code used to acquire and pro-process the SDSS images.  

Section 7 covers the extraction of images form STScI. Section 8 describes the models 

training and section 9 covers the results from the training. 

. 

 

2 Supplementary Details from Technical Report 
The following are additional details which were identified or investigated as part of the 

research project, however due to constraints in the documentation, were not inserted into the 

final report, however are detailed below for information and supplementary details in support 

of the research. 

2.1 Research Methodology 

TensorFlow is a machine learning system that operates at large scale and in heterogeneous 

environments. TensorFlow uses dataflow graphs to represent computation, shared state, and 

the operations that mutate that state. It maps the nodes of a dataflow graph across many 

machines in a cluster, and within a machine across multiple computational devices, including 

multicore CPUs, general purpose GPUs, and custom-designed ASICs known as Tensor 

Processing Units (TPUs). This architecture gives flexibility to the application developer: 

whereas in previous “parameter server” designs the management of shared state is built into 

the system. TensorFlow enables developers to experiment with novel optimizations and 

training algorithms. TensorFlow supports a variety of applications, with a focus on training 

and inference on deep neural networks.  

Several of Googles’ services use TensorFlow in production, and it has been released as an 

open-source project and it has become widely used for machine learning research. In this 

paper, the TensorFlow dataflow model is described and demonstrated.  The compelling 

performance that TensorFlow achieves for several real-world applications. (Abadi et al., n.d.) 

(Chapman, et al., 2000) was identified as the best suited to this research problem  

 

2.2 Learning Approach 

As all the outcomes for the classifications were known in advance, the data mining fell into 

the class of supervised training methodology (Post Grad Programme in Data Analytics, 

2019).  The images were presented to the ANN using TensorFlow objects and the Keras 

method.  This is a computer vision and image classification method which is widely regarded 

as industry standard currently.  A CNN is a class of deep learning neural networks which are 

commonly used for image analysis as they do not require complex methods  such as 

“momentum, weight decay, structure- dependent learning rates, averaging layers, tangent 

prop, or even finely-tuning the architecture” (Simard, et al., 2013) 

 

CNN’s layers are randomly seeded with values initially and these values get modified by the 

model as it “leans” through the process of back-propagation as it computes the loss function 
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and gradient (Goodfellow, et al., 2016). Features are not defined initially, they are “learnt”, 

and the network used adjusts these values based on the outcomes of each image used and the 

known outcome.   

 

2.3 Convolutional Neural Networks 

An artificial neural network is a computer system whose design is based on the structure of 

biological neural networks and is designed to perform “human like” tasks, such as image or 

handwriting recognition. The concept dates back to early 1960’s when (Hubel & Wiesel, 

1962) introduced what many considered as the first convolutional neural network.  While is 

lacked the advancements od recent years, such as back-propagation which was proposed  

(LeCun, et al., 1989) in applying recognition to handwritten zip codes.  Back propagation is 

used to compute the gradient of the loss function so that the model can adjust weights and 

biases.  

2.4 Design for Data Acquisition 

Once the URL’s were known, then a locally executed “wget” command was called using an 

input text file with just the URL’s as a parameter. This triggered the download of the 

associated fits files to the local hard drive.  It is important to restate that the goal of this 

project was to validate the ability of local processing to complete the work as much as 

possible to allow home users support the professional community. 

 

FITS files were downloaded from https://dr12.sdss.org/sas/dr12/boss/photoObj/frames/301/ 

SDSS JPEG files were available at: http://skyserver.sdss.org/dr16/SkyServerWS/ImgCutout/ 

And STScI jpeg files at: http://skyserver.sdss.org/dr16/SkyServerWS/ImgCutout/getjpeg? 

followed by the ra, dec, and size of the required images. 

2.5 Design for Processing and Modelling of Data 

Once the data was retrieved in fits format, it was then processed to reduce both size and to 

convert to an image format for later processing.  This processing along with the remainder of 

the model design, training and testing was completed locally.  FITS files were downloaded 

and saved into sub-directories, one per class. Then the images were extracted into a plot from 

each FITS image and saving out as a PNG before closing the image and moving on to the 

next image in the directory. This process was coded in Python and full details on the 

hardware and software used are in the Configuration Manual submitted with this report. 

For SDSS JPEG images this was again using a ‘wget’ command and the files were also saved 

into subdirectories, one per class. Python was used to rename all images to *.jpg to allow for 

future processing as images input to the models.  For STScI jpeg images, the same CAS 

results were used and ‘wget’ commands used to download these images to subdirectories, one 

per class.    

 

2.6 Data Selection and extraction 

The data source in this case is the Slone Deep Space Survey archive servers.  The data used is 

held on the dr12.sdss.org servers.  In this case dr12 related to the 12th data release of data 

from the survey’s results and is described, by the SDSS press release as : “ Data Release 12 

(DR12) is the final data release of the SDSS-III, containing all SDSS observations through 

July 2014. It includes the complete dataset of the BOSS and APOGEE surveys, and also 

newly includes stellar radial velocity measurements from MARVELS”.  All data has already 

been pre-processed and digital noise or “bad” images removed.  Images impacted by poor 

https://dr12.sdss.org/sas/dr12/boss/photoObj/frames/301/
http://skyserver.sdss.org/dr16/SkyServerWS/ImgCutout/
http://skyserver.sdss.org/dr16/SkyServerWS/ImgCutout/getjpeg
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weather conditions or unfavourable atmospherically conditions were also removed prior to 

the data release. 

 

2.7 Data Transformation – possible cut and move to config 

Generally, data transformation refers, with the computing sphere, process of converting data 

from one format to another.  In this case there are multiple steps in the process, and these are 

detailed below. 

2.7.1 Extracting Images from FITS format to PNG 

Using Python, the fits files were opened, and the images plotted before being saved out as 

“png” files.  Astronomical data is generally held in fits files which contain more data than 

was necessary for this CNN – the fits file sizes made utilisation of them too cumbersome and 

memory / CPU intensive.  This reduces the size of the files from between 2 and 4 MB to 

approximately 120k.  It also reduced the image size from 1409x2048 to 576x432.  The file 

names were used minus the “.fits.bz2” as the new names for the images. A leading character 

was added, “s” for Stat files, “g” for Galaxy files and “q” for quasar files.  he images files 

were also written to individual folders, based on their classification, for future processing. 

Figure 1 – Sample images from SDSS across all filters post stage 2 processing shows a 

sample of the images extracted from the “fits” files.  Local processing allowed for approx. 40 

fits files to be converted to smaller “.png” files at the rate of 40 per minute. 

Further transformation was carried out by using Python to combine the visible light filters 

into a 2 channel RGB format and saving the files as colour files, see Figure 1.  This was also 

used as training input to the CNN and the results are discussed in Section 8.4 

 

 
frame-g-000109-6-0065.png 

 
frame-1-000109-6-0065.png  

frame-r-000109-6-0065.png 

 
frame-i-000109-5-0013.png 

 

No Z Frame exists for this image in 

SDSS Archives 

frame-z-000109-5-0013.png 

 
RGB Composite of 000109-6-0064 

Figure 1 – Sample images from SDSS across all filters post stage 2 processing 

 

This process had the double advantage of both reducing the size of files, in the example of 

start fits from 150GB per filter to under 10GB and also only having images to be processed, 

all superfluous data was not brough forward into the next stage of the process – the neural 

network. It was noted that images, examples in Figure 2, had more than just one object in 

them and that this was  a potential issue for later processing.   
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qframe-i-002126-1-0263 

 
sframe-g-000307-3-0162 

 
gframe-z-002964-4-0243 

Figure 2 - Samples of all categories with more miltiple objects in a single image 

 

For images extracted from STScI another Python script was used, a modification to the script 

published in the STScI’s GitHub pages. The modification took an input text file in 3 columns 

and generated a call to the STScI’s servers, and the returned jpeg was saved to a working 

directory locally. A sample of the imagery from STSci is in Figure 3 

 

 

Figure 3 : Sample of 9 jpg Images from STScI with category indices 

 

2.8 CNN Model  

CNN models are made up of input layers, a number of hidden layers and an output layer.  

The number of hidden layers used is not an exact science, research conducted by (Ma, et al., 

2014) on using hidden layers in language processing tended for a trial and error approach, 

that there was no fixed rules in selecting the correct number of layers at each stage within a 

deep learning model.  Other reasons to limit the depth of the ANN was degradation and 

vanishing/exploding gradient problems.  These factors were factored into the design of the 

modifications to the models used. 
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2.8.1 Activation Functions within TensorFlow  

Deep Learning models make use of several different types of activation functions, 

optimisation functions as well as metrics to evaluate the output.  Tensor has many options for 

each, and the ones used in this project are listed below along with the rational for their use. 

2.8.2 Adam Optimiser 

The Adaptive moment estimation or Adam optimisation is a stochastic gradient descent 

method that is based the Root Mean Square Propagation (RMSprop) optimiser and 

momentum.  Momentum takes past gradients as input to smooth the gradient steps in the 

model. According to (Diederik P. Kingma, 2015) the method is "computationally efficient, 

has little memory requirement, invariant to diagonal rescaling of gradients, and is well suited 

for problems that are large in terms of data/parameters"  It offers a straightforward 

implementation which is computationally efficient and has little memory requirements.  It is 

well suited for problems with large data or parameters.  In choosing which optimizer to select 

out of the various options, research by (Ruder, 2016) and (Kingma & Lei Ba, 2015) guided 

the selection. Figure 4 : Comparison of Adam to other Optimization Algorithms taken from 

(Ruder, 2016) report titles “An overview of gradient descent optimization algorithms”  

 

 

Figure 4 : Comparison of Adam to other Optimization Algorithms 

2.8.2.1Relu Activation 

The Rectified Linear Unit (ReLU) function, Figure 5, within CNN’s, is used to increase the 

non-linearity in the images presented to the CNN.  Its purpose is to increase the non-linearity 

of the images.  It is used to transform the summed weighted input from a node into the 

activation of the nodes output for that input (Brownlee, 2019)  Based on researching a 

number of different CNN’s it was noted that this was the de facto standard used in many 
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NN’s as Brownlee said  “because a model that uses it is easier to train and often achieves 

better performance”. 

 

 

Figure 5 : ReLU Activation Function 

 

2.8.2.2Softmax () Activation  

Softmax() is a function, Equation 1, used to set the outcome into a set of probabilities.  In this 

case the outcomes were a probability of an image being of a star, galaxy or a quasar.  Using 

softmax() the outcome with the highest probability became the category of the image. 

(Wikepedia, n.d.) describes softmax() as a “generalization of the logistic function that 

"squashes" a K-dimensional vector of arbitrary real values to a K-dimensional vector of real 

values in the range [0, 1] that add up to 1. 

 

Equation 1 - Softmax Function 

2.9 The ResNet50 

The degradation problem was overcome by the introduction of residual networks.  ResNet50 

stacks residual blocks stacked into 50 layers.  A sample of this design, Figure 6 is in below. 

 

 

Figure 6 : Basic block in ResNet 50 
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3 Hardware Configuration 
 

PC:    Custom Build PC  

Processor  Intel i7-3770 @3.40 GHz 8 cores 

RAM   24Gb DDR3 

OS   Windows 10 Pro 64 bit edition 

Graphics Card  NVIDIA GForce GT640 2Gb DDR3 128Bit Bus 

   This was replaced with NVIDIA GForce GTX1660 Ti ,6GB DDR6 

 

4 Software Used and Installation Process 
This section lists all installed applications required to run the project along with the detailed 

installation process and screen shots. 

4.1 Microsoft Applications 

No installation instructions are provided for the standard Microsoft Office and Operating 

system used in this research.  Any additional components are listed which were used. 

 

Microsoft Word 

 Add-In for Zotero 

Microsoft Excel 

Microsoft PowerPoint 

Microsoft Snipping Tool 

 

4.2 Anaconda 3 IDE & Spyder Python 

Both applications are contained in a single install package which is detailed below 

 

1) Download from https://www.anaconda.com/distribution/ 

 

2) Chose 64-bit Graphical Installer and save file as per Figure 7 

 

 

Figure 7 : Chose version of Python 

 

https://www.anaconda.com/distribution/
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3) Open Installation package from downloaded directory as per Figure 8 

 

 

Figure 8 : Select where to install Python 

 

4) Select Next to start the installation on  

 

 

 

Figure 9 : Anaconda Installation Welcome Screen 
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5) Accept the Licencing Agreement and select Next as in Figure 10  

 

 

Figure 10 : Anaconda Licence Screen 

 

6) Chose Installation Type - in this case the recommended option was chosen and select 

Next as in Figure 11 

 

 

Figure 11 : Anaconda Select Installation Type 
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7) Chose Installation Directory and select Next as described in Figure 12   

 

 

 

Figure 12 : Anaconda Install Folder 

 

8) Register Anaconda Python as default Python installation and select Next to include 

Python in the Windows Path as shown in Figure 13 

 

 

Figure 13 - Add Python to PATH in Windows 
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9) The installation process will commence as per Figure 14 

 

 

Figure 14 - Python starting installation process 

 

10) Installation Completed.  Select Next to complete as per Figure 15 

 

 

Figure 15 - Completion of Installation Notification 
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11)  Select Next to complete the installation process and see available support site as per 

Figure 16 

 

 

Figure 16 - Link to PyCharm site 

 

12) And finally click the Finish button as per Figure 17 

 

 

Figure 17 - Final Installation Notification 
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13) Optional installation of Kite was chosen.  Kite is an autocompletion tool within the 

Anaconda framework which helps by suggesting remaining test to be written – Figure 

18  

 

Figure 18 - Add Kite to installation 

14) Spyder Python comes as part of this installation and the version being used is 4.0.1 

see Figure 19 

 

 

Figure 19 - Anaconda Package Installer 
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4.3 Install “wget” for windows 

The required file can be downloaded from: 

https://medium.com/@medasuryatej/install-tensorflow-gpu-2-0-f4e215438199 

 

Installation only required a copy of the downloaded file to the required directory. This file 

was used to download the image files from the SDSS archive servers. 

4.4 CUDA 9.0  

In order to utilise the GPU, Nividai CUAD was required and is available at 

https://developer.nvidia.com/cuda-90-

downloadarchive?target_os=Windows&target_arch=x86_64 

 

Select the appropriate version for your computer as be Figure 20 

 

 

 

Figure 20 : Download CUDA Toolkit 

Once downloaded this package was installed. By clicking the package as downloaded.  No 

configuration is required. 

 

4.5 CUDNN v7.6.5 

The Nividia support toolkit for Neural Networks is available at: 

https://docs.nvidia.com/deeplearning/cudnn/install-guide/index.html 

 

there is an ethics agreement required when logging in first time.  This is to ensure that the 

toolkit is not used for rational or genttic profiling and in accordance with Nidivia’s ethical 

statement.  You must agree to this before downloading the package.  Once downloaded the 

files are extreacted from a zip folder and the pocess to install is detailed in Figure 21 and 

Figure 22 

 

https://medium.com/@medasuryatej/install-tensorflow-gpu-2-0-f4e215438199
https://developer.nvidia.com/cuda-90-downloadarchive?target_os=Windows&target_arch=x86_64
https://developer.nvidia.com/cuda-90-downloadarchive?target_os=Windows&target_arch=x86_64
https://docs.nvidia.com/deeplearning/cudnn/install-guide/index.html
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Figure 21 : CUDNN Installation Process Stage 1 
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Figure 22 : CUDNN Installation Process Stage 2 

 

Both packages are required to utilize the advances TensorFlow has made in GUP support. 

4.6 Using Anaconda Navigator 

 

Anaconda Navigator was used to install some of the required packages. Others were directly 

installed using the PIP command.  Installation of opencv for python is detailed in Figure 23 
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Figure 23 : Using Anaconda Navigator to install packages 

 

This was to support the cv2 library required to work with images in python. And resulted in 

additional dependencies, see Figure 24, being updated. 

 

 

Figure 24 : Packages installed via Anaconda Navigator 
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4.7 Packages installed using PIP 

Httplib was installed using the Python PIP command as detailed in Figure 25: 

 

 

Figure 25 : Screen Shot of HTTPLIB installation 

 

Tensorflow Nightly Update to get latest support for the libraries being used 

 

 Pip install tf-nightly  

 

The version of Tensorflow installed for this project was 2.3 and a nightly dev version which 

had stable support for GPU and other packages used in this project is detailed in Figure 26 

 

 

Figure 26 : Print version of TensorFlow 

 

PIP install tf-nighly-gpu  

 

To get the latest GPU support – this allowed for faster processing by moving some of the 

processing from the CPU to the GPU’s in the graphics card. 

 

The following Python libraries were installed using “pip install” followed by the package 

name: 

 

• matplotlib 

• PLI  

• Pillow 

• Install aspropy in order to be able to manage FITS files as in Figure 27. 
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• Figure 27 : Installation of astropy 

 

 

5 How to download project images 
Images were downloaded from SDSS and Kepler archive servers.  In both cases the format of 

the queries was dictated by the site in question.  For SDSS it was a simple wget command as 

outlines below in Section 5.1 to below. 

 The query from Kepler was designed by the STSCI.EDU and a modification to their script 

allowed for it to take an input file and work through lines in the input file to process more 

than a single image at a time. 

5.1 SQL to SDSS Catalogue Archive Servers 
The command below, as per Figure 28 was run on the SDSS CAS servers, which are found 

at: http://skyserver.sdss.org/dr9/en/tools/search/sql.asp 

. The command to extract the details of the required images is per Figure 28, Figure 29 

 

Figure 28 - SQL Command to extract catalogue from SDSS Catalogue Servers 

 

The extracted excel file is included in the accompanying pack and it called 

Skyserver_SQO4_6_2020 1_30_47 PM (version 4).xls 

 

http://skyserver.sdss.org/dr9/en/tools/search/sql.asp
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This returned 10000 records which listed the fields which later were used to create the input 

files for “wget” to extract the images from the sites.  The pattern for SDSS and STScI were 

different, however the data returned by the SDSS CAS servers allowed both request formats 

to be generated. 

 

The SQL returned a CSV file, Figure 29, which was taken into Excel and the two extraction 

formats for images were generated using a combination of concatenation of returned fields 

and text. 

 

 

Figure 29 : CSV output from SDSS CAS Servers opened in Excel 

 

5.2 SDSS Image Download – FITS files 

Complete documentation on how to download the images from SDSS was described at 

https://dr12.sdss.org/documentation as is in Figure 30 

 

 

Figure 30 : Instructions from SDSS on how to generate URL to download images 

By following th eformat as perscribed by SDSS and adding in new fields to make up the 

desired enteries to the output from the CAS Excel file,Figure 31,  a subsequent concatanation 

function was run to complete the formatting and allow for extraction of the data into text files 

for further processing 

 

https://dr12.sdss.org/documentation
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Figure 31 : Excel fields used to generate URL 

 

The contatanation to build the final URL required is in Figure 32: 

 

 

Figure 32 : concatenation function to generate URL 

 

The output is below in  Figure 33 

 

Figure 33 : Example of format required for SDSS files to be downloaded 

 

 

Using wget and the concatenation from above as an input file the following commands were 

used to download the required images from the SDSS servers 

 

Wget -i input.txt where input.txt is a text file listing the fits files in the format as per Figure 

34 

 

This proceeded to call the SDSS servers and download the fits files as per the input.txt file.  

|n example of the flow is shown in Figure 34 which shows the “starts” files being 

downloaded. 

 



23 

 

 

 

Figure 34 : Fits files downloading 

5.3 Structure of FITS files 

The following section shows the structure of the FITS files extracted from the SDSS CAS 

servers. Is detailed in Figure 35, Figure 36, Figure 37,.  
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Figure 35 : General structure of SDSS FITS file 

 

Figure 36 :Details of FITS Header - 1 
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Figure 37 : Details of FITS Header - 2 

 

6 SDSS Images 
The images from SDSS used fel into 2 categories, either filter images across the 5 bands or 

RGB which were a combination of the R, G, B bands of the filters from category 1.  

6.1 Extracting Images from FITS files 

This file sets the working directory to whichever of the folder the images were downloaded.  

In this case it was d:\project\masters\fits and then either the galaxy, starts or quasar folders.  

It then recursively goes through the images and extracts a plot for each image and saves to 

the same folder.  The request is all plots are extracted for each of the image types in one of 

three folders corresponding to their classification. See Figure 38 for details. 

The plot is shown on the console as well as the image name to show the progress through the 

images, as well as a count to ensure that progress is monitored. 
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Figure 38 : Code to extract plot from FITS file 

 

The images were extracted, and a sample is in Figure 39 
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Figure 39 - This is a galaxy plot extracted from a FITS file. 

The images were saved to separate folders for each category, this later became the input 

folders for the different datasets and working folders parameters. 

6.2 Creating RGB from FITS filter images 

This Python file opens the filter images from SDSS based on their “G” band and then 

combines the R and B bands along with the G band to make a single image which is then 

saved as a PNG to the working directory.  This provided a second image format for training 

and testing by the ANN and the process is in Figure 40 with a sample output in Figure 41 

 



28 

 

 

 

Figure 40 : Code to Combine RBG filters to a single file 

 

The directory used here is for “v2” which refers to the RGB Images from SDSS.  Other 

directories were used referring to the filters and jpg images from the data sources – see 

section 8.3 later in this document for more details. 
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Figure 41 : Sample Star image below is a combination of RGB B&W filters as be the script above. 

6.3 Extracting RGB images directly form SDSS 

Details of how to extract cut-out jpg images form the FITS images produced is documented 

at  http://skyserver.sdss.org/dr16/en/help/docs/api.aspx#imgcutout   

 

This was built using the same output from SQL CAS request excel file and a concatenation 

function to generate the URL’s which were extracted using a wget command. As per Figure 

42 with a sample of the output in Figure 43 - Sample of a Quasar JPG from SDSS Archive 

Servers 

 

 

Figure 42 : Concatenation function to generate SDSS RGB Image 

 

http://skyserver.sdss.org/dr16/en/help/docs/api.aspx#imgcutout
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Figure 43 - Sample of a Quasar JPG from SDSS Archive Servers 

 

 

7 STScI Images 
Most of the code used below is provided by the STScI support team to allow for the 

extraction of jpg images from the site is outlined in Figure 44 : Code to extract JPG from 

STScI site - part 1Figure 44 and Figure 45 
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Figure 44 : Code to extract JPG from STScI site - part 1 
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Figure 45 : Code to extract JPG from STScI site - part 2 

 

By changing the code to recursivally go through an input file the code was modified to take 

an input and extract, download all required images in one process.  The input fiole tool the 

format as per Figure 46 : Input to GetImagesfromKepler.py. The data for these images was 

also taken form the excel file “Skysaver_SQL4_6_2020 1_3-+47 PM (version4).xls which is 

submitted as part if the ICT solution pack. These fields refer to the RA and DEC and 

classifiation of the object in question. 
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Figure 46 : Input to GetImagesfromKepler.py 

 

The images downloaded with no extension so a simple Python code was developed to rename 

the files.  All images started with “getjpeg” and this was used as key to find image files and 

append a jpg to the filename. See Figure 47 for the code and Figure 48 for a sample of the 

putput. 
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Figure 47 : code to rename STScI download images as JPG files 

 

 

 

Figure 48 - Sample quasar from STScI Kepler servers 

 

 

8 Models and Training Code 
All models used for training the various datasets are included in the accompanying pack. The 

models covered in this project utilised MobileNet, ResNet50, VGG16, and Xception. Each 
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model followed the same format, however the trained weights from the model as it was 

trained using Image Net images was downloaded on the initial run for each model – see 

Figure 49. 

 

 

 

Figure 49 : example of weights being downloaded 

 

The code used comes in 4 parts – the initial addition of required python libraries, the 

inclusion of the ImageNet trained model, the importing of the dataset for training and testing, 

followed by the training, testing and output of results. The results for all models will be 

covered in Section 8.4 

 

8.1 Inclusion of required Python Libraries and environmental variables 

The same libraries were included in all models and the code is as per Figure 50: 

 

 

Figure 50 : standard Python libraries included in all CNN programs 
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This also set the parameters to utilise the GPU to perform the training.  Also, the version of 

Tensorflow was printed to confirm that all models were run using the same version. 

 

The number of Epochs was set to 10 which was increased to 50 for the best performing 

models.    

The working directory and the input folders were also set at this stage.  The folders path was 

changed to correspond to each dataset., see Figure 51  With the following order: 

 

1 – SDSS Fits Plots 

2 – RGB from FITS Filters 

3 – STScI JPG Images 

4 – SDSS Jpg Images 

 

 

Figure 51 : set working directory and path to test / train images 

By changing the os.chdir, train_path and test_path variables, it is easy to repoint the models 

at new datasets and ensure that the model processed the required images. 

 

8.2 Base Model and modification to it 

Each model was imported using the following code – the name of each model was changes 

and by changing the variable “model_name” to the relevant model name.  This was used to 

output the models name as part of the final trained model with weights. 

The base model was imported, the final layer was not.  The models were then set to 

untraonable to locl the already trained layers – these could already extract features from 

images.  5 additional layers were added to the models and set to be trainable. As per Figure 

51 
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Figure 52 : Import base models and add new layers. 

 

The last layer of the pre-trained model was not imported and this version of the model was 

set to be untrainable.  This then allowed for the addition of 5 more layers to be added to the 

model and these layers were allowed to be adjusted in line with the models loss function and 

training later.  The layers were displayed and the model summery was also displayed. 

8.3 Identification of Data for training and testing 

 

The images were imported and split into training and testing data.  The functions used 

allowed the import based on the directory structure for each image set.  An example of the 

folder structure for one set of test images is below in . 

 

 

Figure 53 : Sample folder structure for all datasets 

 

Using the following code, the images were imported, and the model compiled. All models 

were compiled with the same optimiser function.  
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Figure 54 : code to select images and compile models 

 

The models were run, using the model.fit() function  

 

 

Figure 55 : code to make use of GPU for running models 

 

Once the models had completed their training and testing the model plotted out its results and 

also saved the model to disk as per Figure 56:  
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Figure 56 : code to save results and plots as well as resulting models 

 

8.4 Results 

The following are the detailed results which were not put in the Project Report.  Each model 

was run, and the model’s accuracy was used as a measure of its performance. 

8.5 MobileNet Models Results  

 
STScI JPG Images Training Epoch Results - 

Accuracy 

Validation Epochs Results - 

Accuracy 

Epoch #1 0.8365 0.8801 

Epoch #2 0.8657 0.8798 

Epoch #3 0.8798 0.8830 

Epoch #4 0.8750 0.8827 

Epoch #5 0.8826 0.8829 

Epoch #6 0.8874 0.8864 

Epoch #7 0.8918 0.8873 

Epoch #8 0.8955 0.8874 

Epoch #9 0.8980 0.8863 

Epoch #10 0.9002 0.8715 
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SDSS JPG Images Training Epoch Results - 

Accuracy 

Validation Epochs Results - 

Accuracy 

Epoch #1 0.8055 0.8437 

Epoch #2 0.8311 0.8197 

Epoch #3 0.8397 0.8440 

Epoch #4 0.8417 0.8380 

Epoch #5 0.8466 0.8583 

Epoch #6 0.8455 0.8641 

Epoch #7 0.8471 0.8382 

Epoch #8 0.8507 0.8206 

Epoch #9 0.8505 0.8549 

Epoch #10 0.8527 0.8607 

 
SDSS Filters Images Training Epoch Results - 

Accuracy 
Validation Epochs Results - 
Accuracy 

Epoch #1 0.4281 0.3272 

Epoch #2 0.4437 0.3496 

Epoch #3 0.4512 0.3347 

Epoch #4 0.4562 0.3502 

Epoch #5 0.4575 0.3497 

Epoch #6 0.4588 0.3430 

Epoch #7 0.4621 0.3582 

Epoch #8 0.4635 0.3483 

Epoch #9 0.4658 0.3248 

Epoch #10 0.4712 0.3223 

 

 
SDSS RBG Images Training Epoch Results - 

Accuracy 
Validation Epochs Results - 
Accuracy 

Epoch #1 0.4184 0.4675 

Epoch #2 0.4499 0.4892 

Epoch #3 0.4532 0.4572 

Epoch #4 0.4647 0.4631 

Epoch #5 0.4680 0.4825 

Epoch #6 0.4691 0.4630 

Epoch #7 0.4703 0.5020 

Epoch #8 0.4765 0.4914 

Epoch #9 0.4818 0.5099 

Epoch #10 0.4806 0.4822 

 

8.6 Resnet50 Models Results 

 
STScI JPG Images Training Epoch Results - 

Accuracy 

Validation Epochs Results - 

Accuracy 

Epoch #1 0.3703 0.3650 

Epoch #2 0.3769 0.3650 

Epoch #3 0.3769 0.3650 

Epoch #4 0.3769 0.3650 

Epoch #5 0.3769 0.3650 

Epoch #6 0.3769 0.3650 
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Epoch #7 0.3769 0.3650 

Epoch #8 0.3769 0.3650 

Epoch #9 0.3769 0.3650 

Epoch #10 0.3769 0.3650 

Obvious that learning stopped very early in this model and no further improvements were 

made from epoch 2 onwards. 

 
SDSS JPG Images Training Epoch Results - 

Accuracy 

Validation Epochs Results - 

Accuracy 

Epoch #1 0.7490 0.8460 

Epoch #2 0.8258 0.8642 

Epoch #3 0.8459 0.8644 

Epoch #4 0.8566 0.8628 

Epoch #5 0.8650 0.8774 

Epoch #6 0.8745 0.8700 

Epoch #7 0.8783 0.9015 

Epoch #8 0.8802 0.9067 

Epoch #9 0.8847 0.8751 

Epoch #10 0.8838 0.8906 

 
SDSS Filters Images Training Epoch Results - 

Accuracy 
Validation Epochs Results - 
Accuracy 

Epoch #1 0.3959 0.3540 

Epoch #2 0.3970 0.3514 

Epoch #3 0.4023 0.3583 

Epoch #4 0.4067 0.3577 

Epoch #5 0.4240 0.3702 

Epoch #6 0.4343 0.3497 

Epoch #7 0.4448 0.3242 

Epoch #8 0.4479 0.3594 

Epoch #9 0.4508 0.3443 

Epoch #10 0.4511 0.3579 

 
SDSS RGB Images Training Epoch Results - 

Accuracy 

Validation Epochs Results - 

Accuracy 

Epoch #1 0.3703 0.3650 

Epoch #2 0.3769 0.3650 

Epoch #3 0.3769 0.3650 

Epoch #4 0.3769 0.3650 

Epoch #5 0.3769 0.3650 

Epoch #6 0.3769 0.3650 

Epoch #7 0.3769 0.3650 

Epoch #8 0.3769 0.3650 

Epoch #9 0.3769 0.3650 

Epoch #10 0.3769 0.3650 
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8.7 VGG16 Model Results 

STScI JPG Images Training Epoch Results - 

Accuracy 

Validation Epochs Results - 

Accuracy 

Epoch #1 0.7389 0.7605 

Epoch #2 0.8095 0.8046 

Epoch #3 0.8189 0.8483 

Epoch #4 0.8249 0.7390 

Epoch #5 0.8307 0.8492 

Epoch #6 0.8351 0.8536 

Epoch #7 0.8337 0.8593 

Epoch #8 0.8366 0.8579 

Epoch #9 0.8416 0.8630 

Epoch #10 0.8453 0.8393 

 
SDSS JPG Images Training Epoch Results - 

Accuracy 
Validation Epochs Results - 
Accuracy 

Epoch #1 0.68771 0.7516 

Epoch #2 0.74634 0.7665 

Epoch #3 0.76061 0.7358 

Epoch #4 0.76901 0.7781 

Epoch #5 0.78214 0.7391 

Epoch #6 0.78006 0.7807 

Epoch #7 0.78214 0.7795 

Epoch #8 0.78506 0.7893 

Epoch #9 0.78616 0.7863 

Epoch #10 0.78933 0.7951 

 
SDSS Filter Images Training Epoch Results - 

Accuracy 
Validation Epochs Results - 
Accuracy 

Epoch #1 0.4155 0.3219 

Epoch #2 0.4336 0.3169 

Epoch #3 0.4403 0.3343 

Epoch #4 0.4381 0.3343 

Epoch #5 0.4458 0.3516 

Epoch #6 0.4458 0.3570 

Epoch #7 0.4469 0.3584 

Epoch #8 0.4481 0.3520 

Epoch #9 0.4495 0.3575 

Epoch #10 0.4503 0.3520 

 
SDSS RGB Images Training Epoch Results - 

Accuracy 

Validation Epochs Results - 

Accuracy 

Epoch #1 0.4052 0.4389 

Epoch #2 0.4497 0.4577 

Epoch #3 0.4500 0.4577 

Epoch #4 0.4526 0.4730 

Epoch #5 0.4503 0.5106 

Epoch #6 0.4527 0.4965 

Epoch #7 0.4569 0.5093 

Epoch #8 0.4583 0.4679 

Epoch #9 0.4562 0.5161 

Epoch #10 0.4604 0.5235 
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8.8 Xception Model Results 

 
STScI JPG Images Training Epoch Results - 

Accuracy 

Validation Epochs Results - 

Accuracy 

Epoch #1 0.7614 0.8227 

Epoch #2 0.7961 0.8204 

Epoch #3 0.8038 0.8184 

Epoch #4 0.8104 0.8267 

Epoch #5 0.8177 0.8418 

Epoch #6 0.8215 0.8097 

Epoch #7 0.8254 0.8461 

Epoch #8 0.8289 0.8406 

Epoch #9 0.8302 0.8434 

Epoch #10 0.8316 0.8380 

 
SDSS JPG Images Training Epoch Results - 

Accuracy 
Validation Epochs Results - 
Accuracy 

Epoch #1 0.7732 0.7982 

Epoch #2 0.8046 0.8140 

Epoch #3 0.8154 0.8184 

Epoch #4 0.8237 0.8145 

Epoch #5 0.8285 0.8062 

Epoch #6 0.8347 0.8247 

Epoch #7 0.8391 0.8029 

Epoch #8 0.8448 0.8072 

Epoch #9 0.8474 0.8113 

Epoch #10 0.8520 0.8222 

 
SDSS Filter Images Training Epoch Results - 

Accuracy 

Validation Epochs Results - 

Accuracy 

Epoch #1 0.4091 0.3823 

Epoch #2 0.4277 0.4608 

Epoch #3 0.4329 0.3996 

Epoch #4 0.4369 0.4307 

Epoch #5 0.4381 0.4077 

Epoch #6 0.4396 0.4701 

Epoch #7 0.4438 0.4588 

Epoch #8 0.4465 0.4807 

Epoch #9 0.4523 0.4560 

Epoch #10 0.4532 0.4545 

 
SDSS RGB Images Training Epoch Results - 

Accuracy 

Validation Epochs Results - 

Accuracy 

Epoch #1 0.40928 0.4549 

Epoch #2 0.42760 0.4656 

Epoch #3 0.43486 0.4576 

Epoch #4 0.43968 0.4151 

Epoch #5 0.43834 0.4031 

Epoch #6 0.44124 0.4556 

Epoch #7 0.44552 0.4596 
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Epoch #8 0.44249 0.4598 

Epoch #9 0.44806 0.4791 

Epoch #10 0.45114 0.4656 

 

8.9 MobileNet 50 Epoch with SDSS Jpg Images 

 

 

 
 

Epoch 1/50 

1874/1874 [==============================] - 1866s 996ms/step - loss: 0.4744 - 

accuracy: 0.8050 - val_loss: 0.3848 - val_accuracy: 0.8527 

Epoch 2/50 

1874/1874 [==============================] - 175s 94ms/step - loss: 0.4111 - 

accuracy: 0.8325 - val_loss: 0.3907 - val_accuracy: 0.8459 

Epoch 3/50 

1874/1874 [==============================] - 176s 94ms/step - loss: 0.3975 - 

accuracy: 0.8386 - val_loss: 0.4456 - val_accuracy: 0.8160 

Epoch 4/50 
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1874/1874 [==============================] - 175s 93ms/step - loss: 0.3886 - 

accuracy: 0.8425 - val_loss: 0.3707 - val_accuracy: 0.8547 

Epoch 5/50 

1874/1874 [==============================] - 173s 92ms/step - loss: 0.3811 - 

accuracy: 0.8453 - val_loss: 0.3494 - val_accuracy: 0.8609 

Epoch 6/50 

1874/1874 [==============================] - 173s 92ms/step - loss: 0.3773 - 

accuracy: 0.8460 - val_loss: 0.4373 - val_accuracy: 0.8055 

Epoch 7/50 

1874/1874 [==============================] - 173s 92ms/step - loss: 0.3708 - 

accuracy: 0.8482 - val_loss: 0.3556 - val_accuracy: 0.8603 

Epoch 8/50 

1874/1874 [==============================] - 172s 92ms/step - loss: 0.3670 - 

accuracy: 0.8497 - val_loss: 0.3544 - val_accuracy: 0.8597 

Epoch 9/50 

1874/1874 [==============================] - 411s 219ms/step - loss: 0.3625 - 

accuracy: 0.8521 - val_loss: 0.3832 - val_accuracy: 0.8442 

Epoch 10/50 

1874/1874 [==============================] - 265s 141ms/step - loss: 0.3561 - 

accuracy: 0.8547 - val_loss: 0.3574 - val_accuracy: 0.8555 

Epoch 11/50 

1874/1874 [==============================] - 174s 93ms/step - loss: 0.3557 - 

accuracy: 0.8542 - val_loss: 0.3466 - val_accuracy: 0.8656 

Epoch 12/50 

1874/1874 [==============================] - 178s 95ms/step - loss: 0.3506 - 

accuracy: 0.8565 - val_loss: 0.3713 - val_accuracy: 0.8533 

Epoch 13/50 

1874/1874 [==============================] - 173s 92ms/step - loss: 0.3453 - 

accuracy: 0.8586 - val_loss: 0.4091 - val_accuracy: 0.8323 

Epoch 14/50 

1874/1874 [==============================] - 174s 93ms/step - loss: 0.3426 - 

accuracy: 0.8608 - val_loss: 0.3440 - val_accuracy: 0.8671 

Epoch 15/50 

1874/1874 [==============================] - 173s 92ms/step - loss: 0.3378 - 

accuracy: 0.8620 - val_loss: 0.3660 - val_accuracy: 0.8603 

Epoch 16/50 

1874/1874 [==============================] - 172s 92ms/step - loss: 0.3344 - 

accuracy: 0.8647 - val_loss: 0.3883 - val_accuracy: 0.8493 

Epoch 17/50 

1874/1874 [==============================] - 176s 94ms/step - loss: 0.3314 - 

accuracy: 0.8660 - val_loss: 0.3695 - val_accuracy: 0.8593 

Epoch 18/50 

1874/1874 [==============================] - 176s 94ms/step - loss: 0.3302 - 

accuracy: 0.8649 - val_loss: 0.4274 - val_accuracy: 0.8369 

Epoch 19/50 

1874/1874 [==============================] - 173s 92ms/step - loss: 0.3262 - 

accuracy: 0.8700 - val_loss: 0.3387 - val_accuracy: 0.8704 

Epoch 20/50 

1874/1874 [==============================] - 174s 93ms/step - loss: 0.3231 - 

accuracy: 0.8690 - val_loss: 0.3798 - val_accuracy: 0.8557 

Epoch 21/50 
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1874/1874 [==============================] - 172s 92ms/step - loss: 0.3207 - 

accuracy: 0.8707 - val_loss: 0.3571 - val_accuracy: 0.8651 

Epoch 22/50 

1874/1874 [==============================] - 172s 92ms/step - loss: 0.3175 - 

accuracy: 0.8709 - val_loss: 0.3487 - val_accuracy: 0.8643 

Epoch 23/50 

1874/1874 [==============================] - 172s 92ms/step - loss: 0.3169 - 

accuracy: 0.8724 - val_loss: 0.3658 - val_accuracy: 0.8593 

Epoch 24/50 

1874/1874 [==============================] - 172s 92ms/step - loss: 0.3142 - 

accuracy: 0.8717 - val_loss: 0.3569 - val_accuracy: 0.8643 

Epoch 25/50 

1874/1874 [==============================] - 172s 92ms/step - loss: 0.3130 - 

accuracy: 0.8738 - val_loss: 0.3868 - val_accuracy: 0.8597 

Epoch 26/50 

1874/1874 [==============================] - 172s 92ms/step - loss: 0.3086 - 

accuracy: 0.8749 - val_loss: 0.3679 - val_accuracy: 0.8634 

Epoch 27/50 

1874/1874 [==============================] - 172s 92ms/step - loss: 0.3088 - 

accuracy: 0.8751 - val_loss: 0.3583 - val_accuracy: 0.8621 

Epoch 28/50 

1874/1874 [==============================] - 174s 93ms/step - loss: 0.3080 - 

accuracy: 0.8734 - val_loss: 0.3858 - val_accuracy: 0.8545 

Epoch 29/50 

1874/1874 [==============================] - 173s 93ms/step - loss: 0.3034 - 

accuracy: 0.8760 - val_loss: 0.3936 - val_accuracy: 0.8619 

Epoch 30/50 

1874/1874 [==============================] - 173s 92ms/step - loss: 0.3033 - 

accuracy: 0.8774 - val_loss: 0.3592 - val_accuracy: 0.8723 

Epoch 31/50 

1874/1874 [==============================] - 174s 93ms/step - loss: 0.2994 - 

accuracy: 0.8781 - val_loss: 0.3633 - val_accuracy: 0.8711 

Epoch 32/50 

1874/1874 [==============================] - 175s 93ms/step - loss: 0.2980 - 

accuracy: 0.8788 - val_loss: 0.3720 - val_accuracy: 0.8671 

Epoch 33/50 

1874/1874 [==============================] - 173s 92ms/step - loss: 0.2964 - 

accuracy: 0.8788 - val_loss: 0.4058 - val_accuracy: 0.8492 

Epoch 34/50 

1874/1874 [==============================] - 174s 93ms/step - loss: 0.2969 - 

accuracy: 0.8791 - val_loss: 0.4165 - val_accuracy: 0.8563 

Epoch 35/50 

1874/1874 [==============================] - 174s 93ms/step - loss: 0.2932 - 

accuracy: 0.8817 - val_loss: 0.3857 - val_accuracy: 0.8576 

Epoch 36/50 

1874/1874 [==============================] - 173s 92ms/step - loss: 0.2913 - 

accuracy: 0.8829 - val_loss: 0.3862 - val_accuracy: 0.8619 

Epoch 37/50 

1874/1874 [==============================] - 173s 93ms/step - loss: 0.2884 - 

accuracy: 0.8824 - val_loss: 0.4008 - val_accuracy: 0.8583 

Epoch 38/50 
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1874/1874 [==============================] - 173s 93ms/step - loss: 0.2871 - 

accuracy: 0.8830 - val_loss: 0.3981 - val_accuracy: 0.8632 

Epoch 39/50 

1874/1874 [==============================] - 173s 92ms/step - loss: 0.2866 - 

accuracy: 0.8838 - val_loss: 0.3854 - val_accuracy: 0.8663 

Epoch 40/50 

1874/1874 [==============================] - 173s 92ms/step - loss: 0.2850 - 

accuracy: 0.8841 - val_loss: 0.3913 - val_accuracy: 0.8630 

Epoch 41/50 

1874/1874 [==============================] - 172s 92ms/step - loss: 0.2840 - 

accuracy: 0.8843 - val_loss: 0.3861 - val_accuracy: 0.8636 

Epoch 42/50 

1874/1874 [==============================] - 173s 92ms/step - loss: 0.2833 - 

accuracy: 0.8844 - val_loss: 0.4546 - val_accuracy: 0.8402 

Epoch 43/50 

1874/1874 [==============================] - 173s 92ms/step - loss: 0.2789 - 

accuracy: 0.8863 - val_loss: 0.4266 - val_accuracy: 0.8485 

Epoch 44/50 

1874/1874 [==============================] - 172s 92ms/step - loss: 0.2798 - 

accuracy: 0.8867 - val_loss: 0.4292 - val_accuracy: 0.8541 

Epoch 45/50 

1874/1874 [==============================] - 173s 92ms/step - loss: 0.2780 - 

accuracy: 0.8870 - val_loss: 0.4267 - val_accuracy: 0.8657 

Epoch 46/50 

1874/1874 [==============================] - 172s 92ms/step - loss: 0.2751 - 

accuracy: 0.8875 - val_loss: 0.4183 - val_accuracy: 0.8659 

Epoch 47/50 

1874/1874 [==============================] - 173s 92ms/step - loss: 0.2741 - 

accuracy: 0.8877 - val_loss: 0.4065 - val_accuracy: 0.8697 

Epoch 48/50 

1874/1874 [==============================] - 172s 92ms/step - loss: 0.2729 - 

accuracy: 0.8891 - val_loss: 0.4392 - val_accuracy: 0.8347 

Epoch 49/50 

1874/1874 [==============================] - 175s 94ms/step - loss: 0.2720 - 

accuracy: 0.8890 - val_loss: 0.4514 - val_accuracy: 0.8617 

Epoch 50/50 

1874/1874 [==============================] - 176s 94ms/step - loss: 0.2694 - 

accuracy: 0.8903 - val_loss: 0.4567 - val_accuracy: 0.8605 

 

 

8.10 MobileNet SDSS JPG Images -  50 Epochs 
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Total params: 5,854,403 

Trainable params: 2,625,539 

Non-trainable params: 3,228,864 

_________________________________________________________________ 

Found 60000 images belonging to 3 classes. 

Found 15000 images belonging to 3 classes. 

20200703-12:35 

 

Epoch 1/50 

1875/1875 [==============================] - 1998s 1s/step - loss: 0.4280 - 

accuracy: 0.8350 - val_loss: 0.3429 - val_accuracy: 0.8741 

Epoch 2/50 

1875/1875 [==============================] - 197s 105ms/step - loss: 0.3537 - 

accuracy: 0.8656 - val_loss: 0.3361 - val_accuracy: 0.8758 

Epoch 3/50 

1875/1875 [==============================] - 190s 101ms/step - loss: 0.3331 - 

accuracy: 0.8746 - val_loss: 0.3498 - val_accuracy: 0.8649 

Epoch 4/50 
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1875/1875 [==============================] - 188s 100ms/step - loss: 0.3199 - 

accuracy: 0.8803 - val_loss: 0.3148 - val_accuracy: 0.8845 

Epoch 5/50 

1875/1875 [==============================] - 183s 98ms/step - loss: 0.3063 - 

accuracy: 0.8847 - val_loss: 0.3082 - val_accuracy: 0.8860 

Epoch 6/50 

1875/1875 [==============================] - 184s 98ms/step - loss: 0.2975 - 

accuracy: 0.8881 - val_loss: 0.3188 - val_accuracy: 0.8780 

Epoch 7/50 

1875/1875 [==============================] - 184s 98ms/step - loss: 0.2880 - 

accuracy: 0.8924 - val_loss: 0.3078 - val_accuracy: 0.8846 

Epoch 8/50 

1875/1875 [==============================] - 184s 98ms/step - loss: 0.2828 - 

accuracy: 0.8955 - val_loss: 0.3119 - val_accuracy: 0.8855 

Epoch 9/50 

1875/1875 [==============================] - 184s 98ms/step - loss: 0.2741 - 

accuracy: 0.8968 - val_loss: 0.3172 - val_accuracy: 0.8842 

Epoch 10/50 

1875/1875 [==============================] - 184s 98ms/step - loss: 0.2683 - 

accuracy: 0.8988 - val_loss: 0.3101 - val_accuracy: 0.8891 

Epoch 11/50 

1875/1875 [==============================] - 189s 101ms/step - loss: 0.2602 - 

accuracy: 0.9026 - val_loss: 0.3129 - val_accuracy: 0.8864 

Epoch 12/50 

1875/1875 [==============================] - 189s 101ms/step - loss: 0.2531 - 

accuracy: 0.9055 - val_loss: 0.3170 - val_accuracy: 0.8849 

Epoch 13/50 

1875/1875 [==============================] - 193s 103ms/step - loss: 0.2498 - 

accuracy: 0.9063 - val_loss: 0.3021 - val_accuracy: 0.8902 

Epoch 14/50 

1875/1875 [==============================] - 192s 102ms/step - loss: 0.2441 - 

accuracy: 0.9073 - val_loss: 0.3213 - val_accuracy: 0.8885 

Epoch 15/50 

1875/1875 [==============================] - 191s 102ms/step - loss: 0.2371 - 

accuracy: 0.9119 - val_loss: 0.3150 - val_accuracy: 0.8883 

Epoch 16/50 

1875/1875 [==============================] - 191s 102ms/step - loss: 0.2316 - 

accuracy: 0.9146 - val_loss: 0.3149 - val_accuracy: 0.8899 

Epoch 17/50 

1875/1875 [==============================] - 192s 103ms/step - loss: 0.2248 - 

accuracy: 0.9165 - val_loss: 0.3247 - val_accuracy: 0.8855 

Epoch 18/50 

1875/1875 [==============================] - 192s 102ms/step - loss: 0.2182 - 

accuracy: 0.9184 - val_loss: 0.3637 - val_accuracy: 0.8795 

Epoch 19/50 

1875/1875 [==============================] - 192s 103ms/step - loss: 0.2142 - 

accuracy: 0.9202 - val_loss: 0.3301 - val_accuracy: 0.8906 

Epoch 20/50 

1875/1875 [==============================] - 195s 104ms/step - loss: 0.2077 - 

accuracy: 0.9227 - val_loss: 0.3949 - val_accuracy: 0.8863 

Epoch 21/50 
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1875/1875 [==============================] - 196s 105ms/step - loss: 0.2026 - 

accuracy: 0.9243 - val_loss: 0.3630 - val_accuracy: 0.8857 

Epoch 22/50 

1875/1875 [==============================] - 190s 101ms/step - loss: 0.1962 - 

accuracy: 0.9270 - val_loss: 0.3981 - val_accuracy: 0.8783 

Epoch 23/50 

1875/1875 [==============================] - 193s 103ms/step - loss: 0.1946 - 

accuracy: 0.9267 - val_loss: 0.3710 - val_accuracy: 0.8867 

Epoch 24/50 

1875/1875 [==============================] - 194s 104ms/step - loss: 0.1900 - 

accuracy: 0.9291 - val_loss: 0.4065 - val_accuracy: 0.8764 

Epoch 25/50 

1875/1875 [==============================] - 194s 103ms/step - loss: 0.1817 - 

accuracy: 0.9319 - val_loss: 0.3975 - val_accuracy: 0.8827 

Epoch 26/50 

1875/1875 [==============================] - 194s 103ms/step - loss: 0.1775 - 

accuracy: 0.9348 - val_loss: 0.3904 - val_accuracy: 0.8819 

Epoch 27/50 

1875/1875 [==============================] - 193s 103ms/step - loss: 0.1746 - 

accuracy: 0.9349 - val_loss: 0.4152 - val_accuracy: 0.8848 

Epoch 28/50 

1875/1875 [==============================] - 194s 104ms/step - loss: 0.1676 - 

accuracy: 0.9371 - val_loss: 0.4369 - val_accuracy: 0.8839 

Epoch 29/50 

1875/1875 [==============================] - 194s 104ms/step - loss: 0.1664 - 

accuracy: 0.9369 - val_loss: 0.4656 - val_accuracy: 0.8753 

Epoch 30/50 

1875/1875 [==============================] - 195s 104ms/step - loss: 0.1602 - 

accuracy: 0.9397 - val_loss: 0.4868 - val_accuracy: 0.8801 

Epoch 31/50 

1875/1875 [==============================] - 194s 103ms/step - loss: 0.1534 - 

accuracy: 0.9428 - val_loss: 0.4699 - val_accuracy: 0.8771 

Epoch 32/50 

1875/1875 [==============================] - 192s 102ms/step - loss: 0.1496 - 

accuracy: 0.9437 - val_loss: 0.4728 - val_accuracy: 0.8862 

Epoch 33/50 

1875/1875 [==============================] - 191s 102ms/step - loss: 0.1484 - 

accuracy: 0.9450 - val_loss: 0.4823 - val_accuracy: 0.8785 

Epoch 34/50 

1875/1875 [==============================] - 193s 103ms/step - loss: 0.1443 - 

accuracy: 0.9446 - val_loss: 0.4790 - val_accuracy: 0.8827 

Epoch 35/50 

1875/1875 [==============================] - 193s 103ms/step - loss: 0.1391 - 

accuracy: 0.9480 - val_loss: 0.4969 - val_accuracy: 0.8764 

Epoch 36/50 

1875/1875 [==============================] - 196s 105ms/step - loss: 0.1379 - 

accuracy: 0.9483 - val_loss: 0.4924 - val_accuracy: 0.8807 

Epoch 37/50 

1875/1875 [==============================] - 197s 105ms/step - loss: 0.1339 - 

accuracy: 0.9486 - val_loss: 0.5504 - val_accuracy: 0.8778 

Epoch 38/50 
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1875/1875 [==============================] - 198s 106ms/step - loss: 0.1267 - 

accuracy: 0.9528 - val_loss: 0.5283 - val_accuracy: 0.8788 

Epoch 39/50 

1875/1875 [==============================] - 197s 105ms/step - loss: 0.1266 - 

accuracy: 0.9518 - val_loss: 0.5447 - val_accuracy: 0.8771 

Epoch 40/50 

1875/1875 [==============================] - 196s 105ms/step - loss: 0.1212 - 

accuracy: 0.9544 - val_loss: 0.6066 - val_accuracy: 0.8754 

Epoch 41/50 

1875/1875 [==============================] - 187s 100ms/step - loss: 0.1217 - 

accuracy: 0.9540 - val_loss: 0.5701 - val_accuracy: 0.8777 

Epoch 42/50 

1875/1875 [==============================] - 190s 101ms/step - loss: 0.1131 - 

accuracy: 0.9566 - val_loss: 0.5961 - val_accuracy: 0.8744 

Epoch 43/50 

1875/1875 [==============================] - 186s 99ms/step - loss: 0.1136 - 

accuracy: 0.9569 - val_loss: 0.6159 - val_accuracy: 0.8771 

Epoch 44/50 

1875/1875 [==============================] - 187s 100ms/step - loss: 0.1090 - 

accuracy: 0.9589 - val_loss: 0.6672 - val_accuracy: 0.8711 

Epoch 45/50 

1875/1875 [==============================] - 186s 99ms/step - loss: 0.1058 - 

accuracy: 0.9600 - val_loss: 0.7415 - val_accuracy: 0.8649 

Epoch 46/50 

1875/1875 [==============================] - 190s 101ms/step - loss: 0.1067 - 

accuracy: 0.9599 - val_loss: 0.6303 - val_accuracy: 0.8791 

Epoch 47/50 

1875/1875 [==============================] - 192s 103ms/step - loss: 0.0998 - 

accuracy: 0.9617 - val_loss: 0.6955 - val_accuracy: 0.8789 

Epoch 48/50 

1875/1875 [==============================] - 192s 103ms/step - loss: 0.1014 - 

accuracy: 0.9620 - val_loss: 0.7429 - val_accuracy: 0.8701 

Epoch 49/50 

1875/1875 [==============================] - 188s 100ms/step - loss: 0.0973 - 

accuracy: 0.9628 - val_loss: 0.8140 - val_accuracy: 0.8695 

Epoch 50/50 

1875/1875 [==============================] - 187s 100ms/step - loss: 0.0981 - 

accuracy: 0.9630 - val_loss: 0.7039 - val_accuracy: 0.8707 

20200703-15:45 



52 

 

 

9 ICT Files and purpose 
This section lists the files which were submitted along with the configuration manual and 

which are required to run the application.  The purpose and manes of all files are below. 

 

To process downloaded images FITS Images the following files are required: 

 ProcessGalaxiesFITS.py 

 ProcessquasarsFITS.py 

 ProcessStartFITS.py 

 These files use the working directory as set in the parameters section and crawl down 

the folders as per the parameters set. 

 

To download images from STScI use the following file 

 GetImagesfromKepler.py 

 This file takes an input.txt file which lists all the images required in the tab delimited 

file with the format of RA DEC Classification, one per line. 

 

To rename files from STScI after downloading 

 RemaneFilesG.py for Galaxy folder 

 RemaneFilesQ.py for the Quasar folder 

 RemaneFilesS.py for the Star folder 

 

To combine files to make RGB files  

 RGBImages.py 

 

Training for models - set working directory first 

 Training_for_MobileNet.py 

 Training_for_ResNet.py 

 Training_for_VG16.py 

 Training_for_Xception.py 

 

Images Catalogue and URL are found in  

 Skysaver_SQL4_6_2020_1_30_47 PM (version4).xls 

From this file take the required URL’s and put in txt file.   

 

For SDSS use “wget -I input.txt” syntax to get FITS files from site, where input.txt is a test 

file with the url for the FITS files to be downloaded.  FITS files range in size from 2.5MB to 

3.5MB.   
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