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1 Introduction

This report forms part of the submission by student Cillin O Foghll as the configuration
manual which describes how to implement that Classification of Deep Space Objects using
Deep Learning Techniques submission for M. Sc in Data Analytics.

Section 2 covers additional details on the research project which complement the Research
Report paper submitted. Section 3 details the hardware used while section 4 describes how to
install the relevant software. Section 5 details the process to select and download the images
used. Section 6 describes the python code used to acquire and pro-process the SDSS images.
Section 7 covers the extraction of images form STScl. Section 8 describes the models
training and section 9 covers the results from the training.

2  Supplementary Details from Technical Report

The following are additional details which were identified or investigated as part of the
research project, however due to constraints in the documentation, were not inserted into the
final report, however are detailed below for information and supplementary details in support
of the research.

2.1 Research Methodology

TensorFlow is a machine learning system that operates at large scale and in heterogeneous
environments. TensorFlow uses dataflow graphs to represent computation, shared state, and
the operations that mutate that state. It maps the nodes of a dataflow graph across many
machines in a cluster, and within a machine across multiple computational devices, including
multicore CPUs, general purpose GPUs, and custom-designed ASICs known as Tensor
Processing Units (TPUs). This architecture gives flexibility to the application developer:
whereas in previous “parameter server” designs the management of shared state is built into
the system. TensorFlow enables developers to experiment with novel optimizations and
training algorithms. TensorFlow supports a variety of applications, with a focus on training
and inference on deep neural networks.

Several of Googles’ services use TensorFlow in production, and it has been released as an
open-source project and it has become widely used for machine learning research. In this
paper, the TensorFlow dataflow model is described and demonstrated. The compelling
performance that TensorFlow achieves for several real-world applications. (Abadi et al., n.d.)
(Chapman, et al., 2000) was identified as the best suited to this research problem

2.2 Learning Approach

As all the outcomes for the classifications were known in advance, the data mining fell into
the class of supervised training methodology (Post Grad Programme in Data Analytics,
2019). The images were presented to the ANN using TensorFlow objects and the Keras
method. This is a computer vision and image classification method which is widely regarded
as industry standard currently. A CNN is a class of deep learning neural networks which are
commonly used for image analysis as they do not require complex methods such as
“momentum, weight decay, structure- dependent learning rates, averaging layers, tangent
prop, or even finely-tuning the architecture” (Simard, et al., 2013)

CNN’s layers are randomly seeded with values initially and these values get modified by the
model as it “leans” through the process of back-propagation as it computes the loss function
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and gradient (Goodfellow, et al., 2016). Features are not defined initially, they are “learnt”,
and the network used adjusts these values based on the outcomes of each image used and the
known outcome.

2.3 Convolutional Neural Networks

An artificial neural network is a computer system whose design is based on the structure of
biological neural networks and is designed to perform “human like” tasks, such as image or
handwriting recognition. The concept dates back to early 1960’s when (Hubel & Wiesel,
1962) introduced what many considered as the first convolutional neural network. While is
lacked the advancements od recent years, such as back-propagation which was proposed
(LeCun, et al., 1989) in applying recognition to handwritten zip codes. Back propagation is
used to compute the gradient of the loss function so that the model can adjust weights and
biases.

2.4 Design for Data Acquisition

Once the URL’s were known, then a locally executed “wget” command was called using an
input text file with just the URL’s as a parameter. This triggered the download of the
associated fits files to the local hard drive. It is important to restate that the goal of this
project was to validate the ability of local processing to complete the work as much as
possible to allow home users support the professional community.

FITS files were downloaded from https://dr12.sdss.org/sas/dr12/boss/photoObj/frames/301/
SDSS JPEG files were available at: http://skyserver.sdss.org/dr16/SkyServerWS/ImgCutout/
And STScl jpeg files at: http://skyserver.sdss.org/dr16/SkyServerWS/ImgCutout/getjpeg?
followed by the ra, dec, and size of the required images.

2.5 Design for Processing and Modelling of Data

Once the data was retrieved in fits format, it was then processed to reduce both size and to
convert to an image format for later processing. This processing along with the remainder of
the model design, training and testing was completed locally. FITS files were downloaded
and saved into sub-directories, one per class. Then the images were extracted into a plot from
each FITS image and saving out as a PNG before closing the image and moving on to the
next image in the directory. This process was coded in Python and full details on the
hardware and software used are in the Configuration Manual submitted with this report.

For SDSS JPEG images this was again using a ‘wget’ command and the files were also saved
into subdirectories, one per class. Python was used to rename all images to *.jpg to allow for
future processing as images input to the models. For STScl jpeg images, the same CAS
results were used and ‘wget’ commands used to download these images to subdirectories, one
per class.

2.6 Data Selection and extraction

The data source in this case is the Slone Deep Space Survey archive servers. The data used is
held on the dr12.sdss.org servers. In this case drl12 related to the 12" data release of data
from the survey’s results and is described, by the SDSS press release as : “ Data Release 12
(DR12) is the final data release of the SDSS-III, containing all SDSS observations through
July 2014. It includes the complete dataset of the BOSS and APOGEE surveys, and also
newly includes stellar radial velocity measurements from MARVELS”. All data has already
been pre-processed and digital noise or “bad” images removed. Images impacted by poor
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weather conditions or unfavourable atmospherically conditions were also removed prior to
the data release.

2.7 Data Transformation — possible cut and move to config

Generally, data transformation refers, with the computing sphere, process of converting data
from one format to another. In this case there are multiple steps in the process, and these are
detailed below.

2.7.1 Extracting Images from FITS format to PNG

Using Python, the fits files were opened, and the images plotted before being saved out as
“png” files. Astronomical data is generally held in fits files which contain more data than
was necessary for this CNN — the fits file sizes made utilisation of them too cumbersome and
memory / CPU intensive. This reduces the size of the files from between 2 and 4 MB to
approximately 120k. It also reduced the image size from 1409x2048 to 576x432. The file
names were used minus the “.fits.bz2” as the new names for the images. A leading character
was added, “s” for Stat files, “g” for Galaxy files and “q” for quasar files. he images files
were also written to individual folders, based on their classification, for future processing.
Figure 1 — Sample images from SDSS across all filters post stage 2 processing shows a
sample of the images extracted from the “fits” files. Local processing allowed for approx. 40
fits files to be converted to smaller “.png” files at the rate of 40 per minute.

Further transformation was carried out by using Python to combine the visible light filters
into a 2 channel RGB format and saving the files as colour files, see Figure 1. This was also
used as training input to the CNN and the results are discussed in Section 8.4

frame-1-000109-6-0065.png

frame-r-000109-6-0065.png

No Z Frame exists for this image in
SDSS Archives
frame-z-000109-5-0013.png

0 250 100( 50 1500 2000

frame-i-000109-5-0013.png

RGB Composite of 000109-6-0064

Figure 1 — Sample images from SDSS across all filters post stage 2 processing

This process had the double advantage of both reducing the size of files, in the example of
start fits from 150GB per filter to under 10GB and also only having images to be processed,
all superfluous data was not brough forward into the next stage of the process — the neural
network. It was noted that images, examples in Figure 2, had more than just one object in
them and that this was a potential issue for later processing.
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Figure 2 - Samples of all categories with more miltiple objects in a single image

For images extracted from STScl another Python script was used, a modification to the script
published in the STScI’s GitHub pages. The modification took an input text file in 3 columns
and generated a call to the STScI’s servers, and the returned jpeg was saved to a working
directory locally. A sample of the imagery from STSci is in Figure 3

.° .u .H

Figure 3 : Sample of 9 jpg Images from STScl with category indices

2.8 CNN Model

CNN models are made up of input layers, a number of hidden layers and an output layer.
The number of hidden layers used is not an exact science, research conducted by (Ma, et al.,
2014) on using hidden layers in language processing tended for a trial and error approach,
that there was no fixed rules in selecting the correct number of layers at each stage within a
deep learning model. Other reasons to limit the depth of the ANN was degradation and
vanishing/exploding gradient problems. These factors were factored into the design of the
modifications to the models used.
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2.8.1 Activation Functions within TensorFlow

Deep Learning models make use of several different types of activation functions,
optimisation functions as well as metrics to evaluate the output. Tensor has many options for
each, and the ones used in this project are listed below along with the rational for their use.

2.8.2 Adam Optimiser

The Adaptive moment estimation or Adam optimisation is a stochastic gradient descent
method that is based the Root Mean Square Propagation (RMSprop) optimiser and
momentum. Momentum takes past gradients as input to smooth the gradient steps in the
model. According to (Diederik P. Kingma, 2015) the method is "computationally efficient,
has little memory requirement, invariant to diagonal rescaling of gradients, and is well suited
for problems that are large in terms of data/parameters” It offers a straightforward
implementation which is computationally efficient and has little memory requirements. It is
well suited for problems with large data or parameters. In choosing which optimizer to select
out of the various options, research by (Ruder, 2016) and (Kingma & Lei Ba, 2015) guided
the selection. Figure 4 : Comparison of Adam to other Optimization Algorithms taken from
(Ruder, 2016) report titles “An overview of gradient descent optimization algorithms”

1g1 MMIST Multilayer Meural Network -+ dropout
1\\"-.1 —  AdaGrad
"-.l-'“- i —  RMSFrop
S : —  SGDNesterov
My : —  AdaDelta
3
i
(=2
=
=
[
]_Ll'2 - R e Rl e ek ' R e e e :...
o 50 100 150 200
iterations ocwer entire dataset

Figure 4 : Comparison of Adam to other Optimization Algorithms

2.8.2.1Relu Activation

The Rectified Linear Unit (ReLU) function, Figure 5, within CNN’s, is used to increase the
non-linearity in the images presented to the CNN. Its purpose is to increase the non-linearity
of the images. It is used to transform the summed weighted input from a node into the
activation of the nodes output for that input (Brownlee, 2019) Based on researching a
number of different CNN’s it was noted that this was the de facto standard used in many
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NN’s as Brownlee said “because a model that uses it is easier to train and often achieves
better performance”.
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Figure 5 : ReLU Activation Function

2.8.2.2Softmax () Activation

Softmax() is a function, Equation 1, used to set the outcome into a set of probabilities. In this
case the outcomes were a probability of an image being of a star, galaxy or a quasar. Using
softmax() the outcome with the highest probability became the category of the image.
(Wikepedia, n.d.) describes softmax() as a “generalization of the logistic function that
"squashes” a K-dimensional vector of arbitrary real values to a K-dimensional vector of real
values in the range [0, 1] that add up to 1.

o(x;) =e* /(3 (i=1to n) e* ) (for j=1to n)

Equation 1 - Softmax Function

2.9 The ResNet50

The degradation problem was overcome by the introduction of residual networks. ResNet50
stacks residual blocks stacked into 50 layers. A sample of this design, Figure 6 is in below.

Figure 6 : Basic block in ResNet 50



3 Hardware Configuration

PC: Custom Build PC

Processor Intel i7-3770 @3.40 GHz 8 cores

RAM 24Gb DDR3

oS Windows 10 Pro 64 bit edition

Graphics Card NVIDIA GForce GT640 2Gb DDR3 128Bit Bus

This was replaced with NVIDIA GForce GTX1660 Ti ,6GB DDR6

4  Software Used and Installation Process

This section lists all installed applications required to run the project along with the detailed
installation process and screen shots.

4.1 Microsoft Applications

No installation instructions are provided for the standard Microsoft Office and Operating
system used in this research. Any additional components are listed which were used.

Microsoft Word

Add-In for Zotero
Microsoft Excel
Microsoft PowerPoint
Microsoft Snipping Tool

4.2 Anaconda 3 IDE & Spyder Python
Both applications are contained in a single install package which is detailed below

1) Download from https://www.anaconda.com/distribution/

2) Chose 64-bit Graphical Installer and save file as per Figure 7

ER Windows | & macos ‘ (?5 Linux

Anaconda 2020.02 for Windows Installer

. L]
Python 3.7 version Python 2.7 version
64-Bit Graphical Installer (466 MB) 64-Bit Graphical Installer (413 MB)
32-Bit Graphical Installer (423 MB) 32-Bit Graphical Installer (356 MB)

Figure 7 : Chose version of Python


https://www.anaconda.com/distribution/

3) Open Installation package from downloaded directory as per Figure 8

You have chosen to open:

[5] Anaconda3-2020.02-Windows-x86_6d.exe
which is: EXE file (466 MB)

from: https://repo.anaconda.com

Would you like to save this file?

Save File

Cancel

Pt

Figure 8 : Select where to install Python

4) Select Next to start the installation on

2 Anacenda3 2020.02 (B4-bit) Setup —

(64-bit) Setup

2020.02 (64-bit).

computer.

Click Mext to continue,

") ANACONDA.

Welcome to Anaconda3 2020.02

Setup will guide you through the installation of Anaconda3

It is recommended that you dose all other applications
before starting Setup. This will make it possible to update
relevant system files without having to reboot your

Cancel

Figure 9 : Anaconda Installation Welcome Screen
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5) Accept the Licencing Agreement and select Next as in Figure 10

2 Anaconda3 2020.02 (64-bit) Setup —
. License Agreement
:‘i‘) ANACONDA. Please review the license terms before installing Anaconda3

2020.02 (54-bit).

Press Page Down to see the rest of the agreement.

Copyright 2015-2020, Anaconda, Inc.
All rights reserved under the 3-dause BSD License:
This End IUser License Agreement {the "Agreement”) is a legal agreement between you

and Anaconda, Inc. {"Anaconda”) and governs your use of Anaconda Individual Edition
(which was formerly known as Anaconda Distribution). W

If you accept the terms of the agreement, dick I Agree to continue. You must accept the
agreement to install Anaconda3 2020.02 (64-bit).

< Back I Agree Cancel

Figure 10 : Anaconda Licence Screen

6) Chose Installation Type - in this case the recommended option was chosen and select

Next as in Figure 11

2 Anaconda3 2020.02 (64-bit) Setup —

Select Installation Type

J ANACONDA Please select the type of installation you would like to perform for

Anaconda3 2020.02 (64-bit).

Install for:

(®) Just Me {recommended)

() all Users (requires admin privileges)

<onc carcel

Figure 11 : Anaconda Select Installation Type
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7) Chose Installation Directory and select Next as described in Figure 12

.

. Choose Install Location
J ANACONDA Choose the folder in which to install Anaconda3 2020.02 (64-hit],

Setup will install Anaconda3 2020.02 (64-bit) in the following folder. To install in a different
folder, dick Browse and select another folder. Click Mext to continue,

Destination Folder

| D:\anaconda3 Browse. ..

Space reguired: 3.0GE
Space available: 573.4GE

< Back Mext = Cancel

Figure 12 : Anaconda Install Folder

8) Register Anaconda Python as default Python installation and select Next to include

Python in the Windows Path as shown in Figure 13

&

. Advanced Installation Options
_) ANACONDA.  customize how Anaconda integrates with Windows

Advanced Qptions

[]add Anaconda3 to my PATH environment variable

Mot recommended. Instead, open Anaconda3 with the Windows Start
menu and select "Anaconda (64-bit)", This "add to PATH" option makes
Anaconda get found before previously installed software, but may
cause problems reguiring you to uninstall and reinstall Anaconda.

Register Anaconda3 as my default Python 3.7

Thiz will allow other programs, such as Python Tools for Visual Studio
PyCharm, Wing IDE, PyDev, and MSI binary packages, to automatically
detect Anaconda as the primary Python 3.7 on the system,

< Back Install Cancel

Figure 13 - Add Python to PATH in Windows




9) The installation process will commence as per Figure 14

2 Anaconda3 2020.02 (64-bit) Setup —

Installing
;i_) ANACON DA Please wait while Anaconda3 2020.02 (64-bit) is being installed.

Setting up the package cache ...

Show details

Anaconda, Inc,

< Back Mext = Cancel

Figure 14 - Python starting installation process

10) Installation Completed. Select Next to complete as per Figure 15

2 Anaconda3 2020,02 (B4-bit) Setup —

Installation Complete
;i.) AN ACON DA Setup was completed successfully.

Completed

Show details

#inaconda, Inc,

< Back Cancel

Figure 15 - Completion of Installation Notification



11) Select Next to complete the installation process and see available support site as per
Figure 16

2 Anaconda3 2020.02 (64-bit) Setup — *

Anaconda3 2020.02 (64-bit)
-‘5_) ANACONDA. Anaceonda + JetBrains

Anaconda and JetBrains are working together to bring you Anaconda-powered
environments tightly integrated in the PyCharm IDE.

PyCharm for Anaconda is available at: I

https: /fwww.anaconda. com/pycharm

Fl

) ANACONDA.

ST

|

< Back Cancel

Figure 16 - Link to PyCharm site

12) And finally click the Finish button as per Figure 17

2 Anaconda3 2020.02 (64-bit) Setup —

Completing Anaconda3 2020.02
(64-bit) Setup

Thank you for installing Anaconda Individual Edition.

Here are some helpful tips and resources to get you started.
We recommend you bookmark these links so you can refer
badk to them later.

[] Anaconda Individual Edition Tutorial II

[JLearn More About Anaconda

") ANACONDA.

Figure 17 - Final Installation Notification



13) Optional installation of Kite was chosen. Kite is an autocompletion tool within the
Anaconda framework which helps by suggesting remaining test to be written — Figure
18

Click for d
Search.. Q. @ tofollow

cursor

os.makedirs

function
SIGNATURE

name ,
mode=511
HOW OTHERS USED THIS

makedirs(name )
makedirs(name, mode)

u throught the CESCRIPTION
Recursive directory creation function.
Like mkdir( ), but makes all

intermediate-level directories needed t
contain the leaf directory. Raises an

Jump to (R T -

Figure 18 - Add Kite to installation

14) Spyder Python comes as part of this installation and the version being used is 4.0.1
see Figure 19

_) ANACONDA NAVIGATOR

PY L] L] =}
Environments o . *
& /e
. Jupyter
4 N
.
N Learning CMD.exe Prompt JupyterLab Notebook
0.1.1 126 6.0.3
Run a cmd.exe terminal with your current | An extensible environment For interactive Web-based, interactive computing
environment From Navigator activated and reproducible computing, based on the notebook environment. Edit and run
pans Community Jupyter Notebook and Architecture. human-readable docs while describing the

data analysis.

,‘" ::Eg
Spyder Glueviz Orange 3
401 0.152 3231
Scientific P'rthon Development Multidimensional data visualization across Component based data mining framework.
EnviRonment. Powerful Pythen IDE with files. Explore relationships within and Data visualization and data analysis for
advanced editing, interactive testing, among related datasets. nowice and expert. Interactive workFlows
debugging and introspection Features with 2 large toolbox

Figure 19 - Anaconda Package Installer




4.3 Install “wget” for windows

The required file can be downloaded from:
https://medium.com/@medasuryatej/install-tensorflow-gpu-2-0-f46215438199

Installation only required a copy of the downloaded file to the required directory. This file
was used to download the image files from the SDSS archive servers.

4.4 CUDAO90

In order to utilise the GPU, Nividai CUAD was required and is available at
https://developer.nvidia.com/cuda-90-
downloadarchive?target os=Windows&target arch=x86 64

Select the appropriate version for your computer as be Figure 20

CUDA Toolkit 9.0 Downloads

Select Target Platform @

Click on the green buttons that describe your target platform. Only supported platforms will be shown

Operating System Mac 05X

Architecture @
Version m Server 2016 Server 2012 R2

Installer Type @ [ exe llocall ‘
Download Installers for Windows 10 x86_64

The base installer is available for download below.
There are 4 patches available. These patches require the base installer to be installed first.

> Base Installer Download [1.4 GB) &

Installation Instructions:

1. Double click cuda_9.0.176_win10.exe
2. Follow on-screen prompts

Figure 20 : Download CUDA Toolkit

Once downloaded this package was installed. By clicking the package as downloaded. No
configuration is required.

45 CUDNN v7.6.5

The Nividia support toolkit for Neural Networks is available at:
https://docs.nvidia.com/deeplearning/cudnn/install-quide/index.html

there is an ethics agreement required when logging in first time. This is to ensure that the
toolkit is not used for rational or genttic profiling and in accordance with Nidivia’s ethical
statement. You must agree to this before downloading the package. Once downloaded the
files are extreacted from a zip folder and the pocess to install is detailed in Figure 21 and
Figure 22
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3. Installing cuDNN On Windows

3.1. Prerequisites

Ensure you meet the following requirements before you install cuDNN.

+ For the [atest compatibility software versions of the 05, CUDA, the CUDA driver, and the NVIDIA hardware, see the cuDNN Support Matrix.

-

3.1.1. Installing NVIDIA Graphic Drivers
Install up-to-date NVIDIA graphics drivers on your Windows system.

Procedure
1. Go to: NVIDIA download drivers

2. Select the GPU and 0S version from the drop-down menus.

3. Download and install the NVIDIA driver as indicated on that web page. For more information, select the ADDITIONAL INFORMATION tab for step-by-step instructions for installing a driver.

4, Restart your system to ensure the graphics driver takes effect.

3.1.2. Installing The CUDA Toolkit For Windows

About this task

Refer to the following instructions for installing CUDA on Windows, including the CUDA driver and toolkit: NVIDIA CUDA Installation Guide for Windows

3.2, Downloading cuDNN For Windows

Procedure
1. Go to: NVIDIA cuDNN home page.
2. Click Download.
3. Complete the short survey and click Submit.
4, Accept the Terms and Conditions. A list of available download versions of cuDNN displays.
5. Select the cuDNN version to want to install. Alist of available resources displays.
6. Extract the cuDNN archive to a directory of your choice.

3.3. Installing cuDNN On Windows

The following steps describe how to build a cuDNN dependent program.
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Before issuing the following commands, youll need to replace x.x and 8.x.x.x with your specific CUDA version and cuDNN version and package date.
In the following sections the CUDA V9.0 is used as example:

+ Your CUDA directory path is referred to as C:\Progran Files\NVIDIA GPU Computing Toolkit\CUDA\vx.x

+ Your cuDNN directory path is referred to a5 <installpathy
Procedure

1. Navigate to your ¢installpathy directory containing cuDNN,

1. Unzip the cuNN package.
cudnn-X. x-windows-x64-v8.x.X.X.zip

or
cudnn-x. -windows18-x64-v8.x.x.x.zip

3. Copy the following files into the CUDA Toolkit directory.
a, Copy <installpathy\cuda\bin\cudnn*.d11 to C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\vx.x\bin.

b. Copy <installpathy\cuda\include\cudnn*.h to C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\vx.x\include.
¢. Copy ¢installpathy\cuda\lib\x64\cudnn*.1ib to C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\vx.x\lib\x4.

4. Set the following environment variables to point to where cuDNN is located. To access the value of the §(CUDA_PATH) environment varizble, perform the following steps:
3. Open a command prompt from the Start menu,

b. Type Run and hit Enter,

C. lssue the control sysdm.cpl command.

d. Select the Advanced tab at the top of the window,

e, Click Environment Variables at the bottom of the window.

f. Ensure the following values are set:

Variable Neme: CUDA_PATH
Variable Value: C:\Progran Files\NIDIA GPU Computing Toolkit\CUDA\vx.x

5. Include cudnn. 130 inyour Visual Studio project.
a, Open the Visual Studio project and right-click on the project name.

b. Click Linker > Input > Additional Dependencies.

Figure 22 : CUDNN Installation Process Stage 2

Both packages are required to utilize the advances TensorFlow has made in GUP support.

4.6 Using Anaconda Navigator

Anaconda Navigator was used to install some of the required packages. Others were directly
installed using the PIP command. Installation of opencv for python is detailed in Figure 23
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ﬁ Home

L
I Leaming

an Community

J ANACONDANAVIGATOR

Q | ‘ Nt installed V| Chennels Updateindex.. | v X
base (root) } Name ¥ T Description
J— 0 cvcanon ) Low-level library to perform the matrix building step in cuxpy
0 cvxopt :_‘} Convex optimization package

DO dashesearchoy ) ToolsFor doing hyperparameter search with st ez and dask

0 libapency ) Computer vision and machine lezrning soFtware library
@ opency ) Computer vision and machine lezrning software [brery.
0 py-opency ’) Computer vision and machine learing software library.

Signin to Anaconda Cloud

Version

014
120

020

401

401

Figure 23 : Using Anaconda Navigator to install packages

This was to support the cv2 library required to work with images in python. And resulted in
additional dependencies, see Figure 24, being updated.
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& packages will be installed

kame Unlink Link
1 opencv - 3.4.1
z =hspy 2100 280
3 *hdFfs 1.10.4 1.10.2
4 *libopency - 3.41
L Epy-opency - 3.4.1
& *pytables 3.6.1 344

Channel
pkas/main
pkgs/main
pkasfmain
pkas/main
pkgs/main

pkas/main

* indicates the package iz a dependency of a selected package

e [

Figure 24 : Packages installed via Anaconda Navigator



4.7 Packages installed using PIP
Httplib was installed using the Python PIP command as detailed in Figure 25:

»pip install httplib2

Figure 25 : Screen Shot of HTTPLIB installation

Tensorflow Nightly Update to get latest support for the libraries being used
Pip install tf-nightly

The version of Tensorflow installed for this project was 2.3 and a nightly dev version which
had stable support for GPU and other packages used in this project is detailed in Figure 26

In [2]:

print(tf.__version_ )
2.3.0-dev20200625

In [3]:

Figure 26 : Print version of TensorFlow

PIP install tf-nighly-gpu

To get the latest GPU support — this allowed for faster processing by moving some of the
processing from the CPU to the GPU’s in the graphics card.

The following Python libraries were installed using “pip install” followed by the package
name:

matplotlib

PLI

Pillow

Install aspropy in order to be able to manage FITS files as in Figure 27.
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(project) C:\Users\cilli>pip install astropy
Collecting astropy
Downloading astropy-4.0.1.post1-cp37-cp37m-win_amdé4.whl (6.1 MB)
| 6.1 MB 3.3 MB/s
Requirement already satisfied: numpy>=1.16 in c:\users\cilli\appdata\roaming\python\python37\site-packages (frd
Installing collected packages: astropy

Successfully installed astropy-4.0.1.postl

(project) C:\Users\cilli

e Figure 27 : Installation of astropy

5 How to download project images

Images were downloaded from SDSS and Kepler archive servers. In both cases the format of
the queries was dictated by the site in question. For SDSS it was a simple wget command as
outlines below in Section 5.1 to below.

The query from Kepler was designed by the STSCIL.LEDU and a modification to their script
allowed for it to take an input file and work through lines in the input file to process more
than a single image at a time.

5.1 SQL to SDSS Catalogue Archive Servers

The command below, as per Figure 28 was run on the SDSS CAS servers, which are found
at: http://skyserver.sdss.org/dr9/en/tools/search/sql.asp
. The command to extract the details of the required images is per Figure 28, Figure 29

Line#

1. SELECT TOP 100000

2. p.obiid,p.ra,p.dec, P W R T R LRl R Zs
3. p.run, p.rerun, p.camcol, p.field,

4. s.specebjid, s.class, s.z as redshift,
3. s:plate, s.md, s.fiberid

6. FROM PhotoOb; AS p

7. JOIN SpecObj AS s ON s.bestobjid = p.objid
8. WHERE

9. p.u BETWEEN 0 AND 19.6

10. AND g BETWEEN 0 AND 20

Figure 28 - SQL Command to extract catalogue from SDSS Catalogue Servers

The extracted excel file is included in the accompanying pack and it called
Skyserver_SQO4_6 2020 1_30_47 PM (version 4).xls
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http://skyserver.sdss.org/dr9/en/tools/search/sql.asp

This returned 10000 records which listed the fields which later were used to create the input
files for “wget” to extract the images from the sites. The pattern for SDSS and STScl were
different, however the data returned by the SDSS CAS servers allowed both request formats
to be generated.

The SQL returned a CSV file, Figure 29, which was taken into Excel and the two extraction
formats for images were generated using a combination of concatenation of returned fields
and text.

A B © D E F G H J K L M N o P Q R

1

2 objid |~ |ra ~l/dec |~lu g ~|r v i vz ~ |run ~ rerun |~ camcol ~ field |~ |specob ¥ [class |-¥ redshif * plate |~ mjd | ~ fiberid ~
6 | 1.24E+18 49.6275 -1.04177 17.6561 16.1713 15.5894 15.3785 15.2674 109 301 1 100 1.71E+18 STAR -9.77E-05 1515 52932 208
7 | 1.24E+18 40.2721 -0.64251 19.234 17.5333 16.8743 16.6316 16.4976 109 301 2 37 1.20E+18 STAR -5.22E-05 1070 52591 114
9 1.24E+18 40.582 0.13477 18.6456 16.4434 15.5245 15.1819 14.9886 109 301 a4 39 8.25E+18 STAR 0.00017 7330 56684 997
12 | 1.24E+18 57.2816 0.01877 16.4848 149299 14.5605 14.5305 14.1939 109 301 4 151 1.40E+18 STAR -0.00014 1242 52901 476
13 [ 1.24E+18 57.5121 0.08489 18.839 17.6309 17.0908 16.8463 16.7146 109 301 4 153 1.84E+18 STAR 8.89E-05 1633 52998 491
14 | 1.24E+18 57.6054 0.02728 18.218 15.9543 149567 14.5948 14.3627 109 301 a4 153 1.40E+18 STAR -2.62E-05 1242 52901 495
16 | 1.24E+18 57.9435 0.05968 16.934 15.3849 14.6991 14.4432 14.3309 109 301 4 155 1.40E+18 STAR 0.00012 1242 52901 544
18 | 1.24E+18  58.304 0.01381 18.5322 17.2466 16.7749 16.5976 16.5032 109 301 4 158 1.72E+18 STAR 4.66E-05 1529 52930 533
19 | 1.24E+18 583957 0.20977 17.0049 15.3609 14.4984 14.3981 13.7894 109 301 4 158 1.40E+18 STAR 0.00061 1242 52901 633
20 | 1.24E+18 36.6537 0.6311 19.4573 18.126 17.6266 17.453 17.3283 109 301 5 13 8.26E+18 STAR 9.13E-05 7333 56686 921
21 1.24E+18 37.6901 0.63037 19.25 18.3297 179823 17.8607 17.7824 109 301 5 20 8.81E+18 STAR 0.0001 7828 57039 838

Figure 29 : CSV output from SDSS CAS Servers opened in Excel

5.2 SDSS Image Download — FITS files

Complete documentation on how to download the images from SDSS was described at
https://dr12.sdss.org/documentation as is in Figure 30

The fields page, which displays a given imaging field and information about the data, can be
accessed directly with the RUN, CAMCOL, and FIELD of the field:

http://dri2.sdss.org/fields/runcamcolField?run=RUN&camcol=CAMCOL&field=FIELD
e.g., http://dr12.sdss.org/fields/runCamcolField ?field=187&camcol=3&run=3712

This page opens onto a view of the field, with some of its associated information, with some links
to download the full FITS format spectrum. To download the images directly, the most efficient
way is to access the flat file at its URL:

http://dri12.sdss.org/sas/dri12/boss/photoObj/frames/RERUN/RUN/CAMCOL/frame-FILTER-RUNG-
CAMCOL-FIELD.fits.bz2

where 'RERUN' should be replaced by the appropriate imaging reduction number (currently
'301"), 'RUN' should be replaced by the run number, 'CAMCOL' should be replaced by the single-
digit camecol number (1-6), 'FILTER' should be replaced by the filter name (W', 'g’, 'r', ', '2'),
'RUNG6' should be replaced by the zero-padded, 6-digit run number and 'FIELD' should be

replaced by the zero-padded, 4-digit field number.

Figure 30 : Instructions from SDSS on how to generate URL to download images

By following th eformat as perscribed by SDSS and adding in new fields to make up the
desired enteries to the output from the CAS Excel file,Figure 31, a subsequent concatanation
function was run to complete the formatting and allow for extraction of the data into text files
for further processing
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https://dr12.sdss.org/documentation

T U V' W X by Z AA AB
hitps://dr 301 109 1 frame-u- 109 1 100 .fits.bz2
https://dr 301 109 2 frame-u- 109 2 37 .fits.bz2
https://dr 301 109 4 frame-u- 109 4 39 fits.bz2
https://dr 301 109 4 frame-u- 109 4 151 .fits.bz2
https://dr 301 109 4 frame-u- 109] 4 153 .fits.bz2
hitps://dr 301 109 4 frame-u- 109 4 153 fits.bz2
https://dr 301 109 4 frame-u- 109 4 155 .fits.bz2

fing//ds 201 109 A framan 109 4 158 fitc bz

Figure 31 : Excel fields used to generate URL

The contatanation to build the final URL required is in Figure 32:

=CONCATENATE(AE6,AF6,"&dec=" AG6,AH6)

Figure 32 : concatenation function to generate URL

The output is below in Figure 33

Jr =CONCATENATE(T2096,U2096,"/",V2096,"/" W2096,"/",X2096,Y2096,72096,AA2096,AB2096)

T U \ w X Y z AA AB AC

https://dr 301 109 1 frame-u- 109 1 100 fits.bz2  https://dr12.sdss.org/sas/dr12/boss/photoObj/frames/301/109/1/frame-u-1091100.fits.bz2
https://dr 301 109 2 frame-u- 109 2 37 fits.bz2 https://dr12.sdss.org/sas/dr12/boss/photoObj/frames/301/109/2/frame-u-109237 fits.bz2
https://dr 301 109 4 frame-u- 109 4 39 .fits.bz2 https://dr12.sdss.org/sas/dr12/boss/photoObj/frames/301/109/4/frame-u-109439.fits.bz2
https://dr 301 109 4 frame-u- 109 4 151 fits.bz2  https://dr12.sdss.org/sas/dr12/boss/photoObj/frames/301/109/4/frame-u-1094151 fits.bz2
https://dr 301 109 4 frame-u- 109 4 153 fits.bz2  https://dr12.sdss.org/sas/dr12/boss/photoObj/frames/301/109/4/frame-u-1094153 fits.bz2
https://dr 301 109 4 frame-u- 109 4 153 fits.bz2  https://dr12.sdss.org/sas/dr12/boss/photoObj/frames/301/109/4/frame-u-1094153 fits.bz2
https://dr 301 109 4 frame-u- 109 4 155 fits.bz2  https://dr12.sdss.org/sas/dr12/boss/photoObj/frames/301/109/4/frame-u-1094155 fits.bz2
https://dr 301 109 4 frame-u- 109 4 158 fits.bz2  https://dr12.sdss.org/sas/dr12/boss/photoObj/frames/301/109/4/frame-u-1094158 fits.bz2
https://dr 301 109 4 frame-u- 109 4 158 fits.bz2  https://dr12.sdss.org/sas/dr12/boss/photoObj/frames/301/109/4/frame-u-1094158 fits.bz2
https://dr 301 109 5 frame-u- 109 5 13 fits.bz2 https://dr12.sdss.org/sas/dr12/boss/photoObj/frames/301/109/5/frame-u-109513 fits.bz2
https://dr 301 109 5 frame-u- 109 5 20 fits.bz2  https://dr12.sdss.org/sas/dr12/boss/photoObj/frames/301/109/5/frame-u-109520.fits.bz2
https://dr 301 109 5 frame-u- 109 5 38 fits.bz2  https://dr12.sdss.org/sas/dr12/boss/photoObj/frames/301/109/5/frame-u-109538.fits.bz2

Figure 33 : Example of format required for SDSS files to be downloaded

Using wget and the concatenation from above as an input file the following commands were
used to download the required images from the SDSS servers

Waget -i input.txt where input.txt is a text file listing the fits files in the format as per Figure
34

This proceeded to call the SDSS servers and download the fits files as per the input.txt file.
[n example of the flow is shown in Figure 34 which shows the “starts” files being
downloaded.
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1) [applicati
1-0592.fits.b

FINISHED --2020
Total wall cl

Figure 34 : Fits files downloading

5.3 Structure of FITS files

The following section shows the structure of the FITS files extracted from the SDSS CAS
servers. Is detailed in Figure 35, Figure 36, Figure 37,.
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In [202]: hdu.info()
Filename: d:\projectmasters\frame-u-885194-2-8645.Tits
Mo Name Ver Type Cards Dimensions  Format
8 PRIMARY 1 PrimaryHDU 96 (2848, 1489) float32
1 1 ImageHDU 6 (2843,) float32
2 1 BinTableHDU ey 1R x 3C [49152E, 2848E, 1489E]
3 1 BinTableHDU 79 1R x 31C [, >, 1, A, D, D, 23,21, D, D, D, D, D, D, D, D, D,
p,D,D,D,D,D,D,D, D, D, D, D, E, E]

Figure 35 : General structure of SDSS FITS file
In [204]:

SIMPLE

BITPIX -32 / 32 bit floating point

NAXIS 2

MAXIS1 2848

MAXIS2 1489

EXTEND T [Extensions may be present

BZERD @.08008 /Set by MRD _SCALE

BSCALE 1.08808 /Set by MRD _SCALE

TAL 4617336121.16 / 1st row - Number of seconds since Nowv 17 1858
RA = 214.87868 / 1st row - Right ascension of telescope boresigh
DEC 19.908436 / 1st row - Declination of telescope boresight (d
SPA 18@.719 1st row - Camera col position angle wrt north (
IPA 131.788 1st row - Instrument rotator position angle (de
IPARATE @.eeas 1st row - Instrument rotator angular velocity (
AZ 35.304994 / 1st row - Azimuth (encoder) of tele (@=N?) (de
ALT 74.462173 [/ 1st row - Altitude (encoder) of tele (de
FOCUS -158.88088 / 1st row - Focus piston (microns?)

DATE-OBS= '28@85-83-12° 1st row - TAI date

TAIHMS = '89:22:81.15' 1st row - TAI time (HH:MM:55.55) (TAI-UT = appr
COMMENT TAI,RA,DEC,SPA,IPA, IPARATE,AZ,ALT,FOCUS at reading of col @, row @
ORIGIN = 'SDSS '

TELESCOP= '2.5m '

TIMESYS "TAI '

RUN Run number

FRAME Frame sequence number within the run

CCOLOC Survey location of CCD (e.g., rowCol)

STRIPE Stripe index number (23 <--> eta=8)

STRIP = 'S Strip in the stripe being tracked.

FLAVOR = 'science Flavor of this run

OBSERVER= "sjnk Observer

SYS_SCN = "mean System of the scan great circle (e.g., mean)
EQNX_SCN= 2606 . 00 Equinox of the scan great circle. (years)

NODE 95 . Baeaa RA of the great circle's ascending node (deg)
INCL 22.50060 Great circle's inclination wrt cel. eq. (deg)
XBORE 22.74 Boresight x offset from the array center (mm)
YBORE Q.08 Boresight x offset from the array center (mm)
OBJECT = '19 & ' e.g., 'stripe 50.6 degrees, north strip’
EXPTIME = '53.987456" Exposure time (seconds)

SYSTEM "FKS ' System of the TCC coordinates (e.g., mean)
CCOMODE = "DRIFT "STARING' or 'DRIFT'

C_0BS CCD row clock rate (usec/row)

COLBIN Binning factor perpendicular to the columns
ROWBIN Binning factor perpendicular to the rows

DAVERS 'vl4 47 Version of DA software

SCOMETHD= 'sqrtDynamic' scdMethod

SCOWIDTH= scdDisplayWidth

T T T T g T e

S

Figure 36 :Details of FITS Header - 1




SCDDECMF= 1 / scdDecimateFactor
Display0f

SCODYNTH= i DynamicTh

SCDSTTHL= / A

SCDSTTHR=

Row in the imaging camera
{ Number of bad lines in frame

/ software "bi to all DN
/ 1 nanoma e-6 Jy
{ filter used

2 / column in the imaging camera

national stial Ref. System
CTYPEL "RA AN {Coordinate type
CTYPE2 'DEC--TAN' f
CUNIT1 ‘deg '
CUNITZ2

of reference pi
. of reference p
Dec of reference pixel (deg
A deg per column pixel
eg per row pixel
deg per column pixel

NT Floats truncate
8. f count]
NMGYTIVAR= P.1518 / e wvariance
VERSIDL = '7.8 ! ‘o

‘riemann/raid@e6/ W oss/ ib/2689-86-14/cal’
iemann/raid /gro 0 W / value of
/ rerun
HISTORY ° _FRAME_ASTROM: Astrometry fixed for dr9 Sat Jun 23 87:46:38 2012

Figure 37 : Details of FITS Header - 2

6 SDSS Images

The images from SDSS used fel into 2 categories, either filter images across the 5 bands or
RGB which were a combination of the R, G, B bands of the filters from category 1.

6.1 Extracting Images from FITS files

This file sets the working directory to whichever of the folder the images were downloaded.
In this case it was d:\project\masters\fits and then either the galaxy, starts or quasar folders.
It then recursively goes through the images and extracts a plot for each image and saves to
the same folder. The request is all plots are extracted for each of the image types in one of
three folders corresponding to their classification. See Figure 38 for details.

The plot is shown on the console as well as the image name to show the progress through the
images, as well as a count to ensure that progress is monitored.
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#import numpy as np

fimport pandas as pd

$from array import *

from astropy.io import fits

import matplotlib.pyplot as plt

from astropy.visualization import astropy mpl style
plt.style.use(astropy mpl style)

import os
import glob, os
os.chdir('d:\\project\\masters\\fits\\galaxy")

#import cv2

# open input file to process it line by line.
# each line is the name of a fits compressed file

# after taking in the file name the end of line ( "\n" ) character must be removed
i=0
Hfor file in glob.glob("*#*/*.fits.bz2", recursive = True):

fits file = fits.open(file, memmap=True)
image = fits file[0].data

# plot the image and then save it with the new naming format
# close plots once saved to conserve memory

plt.figure()

plt.imshow(image, cmap='gray', vmin=0, vmaxz=0)

plt.colorbar()

# remore the "'fits.bz2 " from file names

file = file[:-9]

# add an "g" to the file to signify that the image file is for a galaxy
plt.savefig("g" + file + ".png")

plt.close()

i= i+l
# tracker to show progress
print (i)

E print(file)

Figure 38 : Code to extract plot from FITS file

The images were extracted, and a sample is in Figure 39
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Figure 39 - This is a galaxy plot extracted from a FITS file.

The images were saved to separate folders for each category, this later became the input
folders for the different datasets and working folders parameters.

6.2 Creating RGB from FITS filter images

This Python file opens the filter images from SDSS based on their “G” band and then
combines the R and B bands along with the G band to make a single image which is then
saved as a PNG to the working directory. This provided a second image format for training
and testing by the ANN and the process is in Figure 40 with a sample output in Figure 41
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H# —*- coding: utf-8 -*-

#import numpy as np

#import pandas as pd
#from array import *
#import numpy as np

import cv2

import glob, os

#from matplotlib import pypleot as plt
#from PIL import Image

os.chdir('d:\\project\\vZ\\galaxy')

# open input file to process it line by line.

# for each "u" band image open the correcponding

# other filter images to make an RBG image

i=20

Hfor file in glob.glob("gframe-u-*.png"”, recursive = True):
# remove the .png

file = file[:-4]

# remove the first 9 charecters from name

#print (file)

file start = file[:7]

file end = file[8:]

r channel = cvZ.imread(file start + "r" + file end + ".png
g_channel cvZ.imread(file start + "g" + file end + ".r
b channel = cvZ.imread(file start + "u" + file end + ".r

# print (r_channel, g channel, b channel)

file name = "RGBE"+ file end + ".png”

print(file name)

img = cvZ.merge((b_channel, g channel, r channel))
cvZ.imwrite(file name, img)

i = i+l

print (i)

Figure 40 : Code to Combine RBG filters to a single file

The directory used here is for “v2” which refers to the RGB Images from SDSS. Other
directories were used referring to the filters and jpg images from the data sources — see
section 8.3 later in this document for more details.
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Figure 41 : Sample Star image below is a combination of RGB B&W filters as be the script above.

6.3 Extracting RGB images directly form SDSS

Details of how to extract cut-out jpg images form the FITS images produced is documented
at http://skyserver.sdss.org/dri6/en/help/docs/api.aspx#imgcutout

This was built using the same output from SQL CAS request excel file and a concatenation
function to generate the URL’s which were extracted using a wget command. As per Figure
42 with a sample of the output in Figure 43 - Sample of a Quasar JPG from SDSS Archive
Servers

CONCATENATEIAFSAGS, Sdec=" AN Al

X ¥ I M M A A K K& MO O4N A K AL A
famer- 108 1100 fitshd |http'ﬁskyseruer‘sdss‘orydrlﬁ,’SkyServerWSﬂmgCutoutfgetjpeg?ra:49.62748512&dec:-1.[)41?6915&sua|e=U‘4&width:m&heighI:Zri[)&opt:g | ity fsky 496275 104177 Bscale<0 48uwicth=2408 height=2408 opt=g
fromes- 109 1 30 fitshed hitp:fskyserver sdss.orgfdrySkyServerWS/ImgCutout/getipeg?ra=40.27210504kdec=-0 6415102568 scale=0 Awicth=08height=0Ropt=g hitp:ffsky 402721 0.64251 Bscale=D ABwidth=2408height=24080pt=g
famer- 108 b 39 fitshed bt skyserver.sdss org/drl6/SkyServerWSImgCutout/getipeghra=40.582032348 dec=0. 134770091 Biscale=0 dGwidth=2408 height=2408 apt=g itoy/fsky 40582 0.13477 Bscale<0 48uwicth=2408 height=2408 opt=g
frame- 109 4 150 fitshed hitp:fskyserver sdss.org/drffSkyServerWS/ImgCutout/getjpeg?ra=57.2815150 fdec=0. 01876788 scale={ Jauwidth=2408height=240Gapt=g fitteffsky 572816 0.01877 scale=0 A&width=2408height=24080pt=g
famer- 109 4 153 fitshed et skyserver.sdss.org/drl6/SkyServerWSImgCutout/getipeghra=57.51210371 Rdec=0.084886619Rscale=0 dGwidth=D408 height=1408 opt=g hitto:/fsky 575121 008489 Bscale=0 48uwiath=2408height-2408opt=g
frame- 109 4 153 fitshed  hitp:fskyserver sdss.org/drfSkyServerWS/ImgCutout/getjpeg?ra=S1.60537538 dec<l 02727511 2scale={ dauwidth=2408height=240Gapt=g fitte:ffsky 57.6054 0.02728 Bscale=0 AGwidth=2408height=24080pt=g
famer- 109 b 155 fitshed et fskyserver.sdss.org/drl6/SkyServerW/ImgCutout/getipeghra=57. 943457808 dec=0.0506 77764 Biscale=0 AGwidth=D408 height=2408 opt=g ity fsky 579435 00598 Bscale=0 48uwicth=2408height-2408opt=g
famer- 108 b 198 fitshed et fskyserver.sdss.org/drl6/SkyServerWImgCutout/getipeghra=58 304023538 dec=0.01381 36528 scale=0 dwidth=2408 height=2408 opt=g ittoy/fsky 58304 001381 Bscale<0 48uwicth=2408 height=2408opt=g
fromes- 109 4 158 fitshed - hitp:fskyserver sdss.orgdr1SkySenverWS/ImgCutout getjpeg?ra=58 39573625 dec=0.20076591 scale={ AGmidth=408 height=240Ropt=g. hitp:ffsky 583957 0.20077 Bscale=0 ABwidth=2408height=24080pt=g
famer- 108 § 13 fitshed et skyserver.sdss org/drl6/SkyServerWSImgCutout/getipeghra=36.653674118dec=0.63110252 78 scale=0 dGwidth=2408 height=2408 opt=g ity fsky 366537 06311 Bscele<0 48uicth=2408 height=2408 opt=g
. “ T, TP S I ST RSV euey S NPT SN RIV TR TEPTY e oo o o
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Figure 42 : Concatenation function to generate SDSS RGB Image


http://skyserver.sdss.org/dr16/en/help/docs/api.aspx#imgcutout

Figure 43 - Sample of a Quasar JPG from SDSS Archive Servers

7 STScl Images

Most of the code used below is provided by the STScl support team to allow for the
extraction of jpg images from the site is outlined in Figure 44 : Code to extract JPG from
STScl site - part 1Figure 44 and Figure 45
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#from _ future  import print_function
import matplotlib

import numpy

from astropy.table import Table
import requests

from PIL import Image

from ic import BytesIO

import pylab

import cvZ

import csv

impert numpy as np

import os

os.chdir ('« \project

# wk dir = 'd:\\project
idef getimages (ra,dec,size=240,filters="grizy")
service

= url = ("

1My format(**locals())

table = Ta.ble.read(url, fomat— ")
- return table
idef geturl(ra, dec, size=240, output_size=None, filters="grizy", format="jpg", color=False):

raise ValueError (
if format not in ("Jr
- raise ValueError( one of jpg, png, fits")
table = getimages (ra,dec,size=size,filters=filters)
url = t

E if color and format ==

if output_size:

- url = url + "& out size={}".format (output size)
# sort filters fram red to blue
flist = ["y - .find(x) for x in table['filter']]
table = table[numpy argsort (flist)]

H if color:

g if len(table) > 3:

# pick 3 filters
- table = table[ [0, len(table)//Z len(table)—']]
- for i, param in enumerate([ red" ~en" ,"b 1):

url = url + "&{}={1}" format(param table[
-] else:
urlbase = url + "
url = []
B for filename in table['file
E url.append(urlbase+filename)
return url

Figure 44 : Code to extract JPG from STScl site - part 1
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Edef getcolorim(ra, dec, size=240, output size=None, filters="grizy", format="jpg"):

- if format not in ("ipg","
E raise ValueError("f

et be Inag or ona”
RE P9 O PIC

r = requests.get (url)
im = Image.open (BytesIO(r.content))

im.save (Class + str(i)+".jpg")
. return im
input = 'd:\\project\\V2\quasar.tzt'
i=10

file = open(input,'r')

reader = csv.reader(file, delimiter="\t')
[-Ifor row in reader:
ra = row[0]

dec = row[l]
Class = row[-1]
getcolorim(ra, dec)
# img = np.asarray (im)
i cv2.imwrite(Class 4 str(i)+".ipg", im)
i=i+l
L print (i)
print ("EoF Encountered")
file.close()

url = geturl(ra,dec,size=size,filters¥filteré,éutput_size=output_size,format=format,color=True)

Figure 45 : Code to extract JPG from STScl site - part 2

By changing the code to recursivally go through an input file the code was modified to take
an input and extract, download all required images in one process. The input fiole tool the
format as per Figure 46 : Input to GetimagesfromKepler.py. The data for these images was
also taken form the excel file “Skysaver SQL4 6 2020 1_3-+47 PM (version4).xls which is
submitted as part if the ICT solution pack. These fields refer to the RA and DEC and

classifiation of the object in question.
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132.1085388 53.20049113 QSO
132.1960337 53.17556786 GALAXY
132.3151955 53.07444632 STAR
132.354367 53.09479769 GALAXY
132.29600078 53.14695407 GALAXY
132.322154 53.29881358 QSO
132.3247765 53.2467918 GALAXY
132.3321314 53.29167705 GALAXY
132.3423819 53.23397582 GALAXY
132.455415 53.2577198 GALAXY
132.5234916 53.21036377 QSO
132.4113391 53.31478984 GALAXY
132.6239735 53.27014764 GALAXY
132.719565 53.33968201 GALAXY
132.732436 53.31753694 GALAXY
132.8019542 53.37078788 STAR
132.8496165 53.58139549 GALAXY
133.0020506 53.64085797 GALAXY
133.0206175 53.61730754 GALAXY
133.0355275 53.70006787 GALAXY
133.1291602 53.6505037 STAR
133.0895598 53.73079153 GALAXY
133.285901 53.90305126 GALAXY
133.408163 53.89774132 QSO

Figure 46 : Input to GetlmagesfromKepler.py

The images downloaded with no extension so a simple Python code was developed to rename
the files. All images started with “getjpeg” and this was used as key to find image files and
append a jpg to the filename. See Figure 47 for the code and Figure 48 for a sample of the
putput.
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H# —*- coding: utf-8 —*-

-
Created on Tue Mar 31 20:30:33 2020
@author: - Cillin O Foghlu
Student ID 18186751

_FI mia

import glob, os

os.chdir('d:\\project\\vd\\quasar')
i=20

Hfor file in glob.glob("getijpeg*.*", recursive = True):

print(file)

os.rename (file, file + '.jpg'")
i = i+l

print (i)

Figure 47 : code to rename STScl download images as JPG files

Figure 48 - Sample quasar from STScl Kepler servers

8 Models and Training Code

All models used for training the various datasets are included in the accompanying pack. The
models covered in this project utilised MobileNet, ResNet50, VGG16, and Xception. Each
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model followed the same format, however the trained weights from the model as it was
trained using Image Net images was downloaded on the initial run for each model — see
Figure 49.

ggle weights tf dim _ordering_tf kernels notop.hS
5408256/58889256 [======================5>....... ] - ETA: 1s

Figure 49 : example of weights being downloaded

The code used comes in 4 parts — the initial addition of required python libraries, the
inclusion of the ImageNet trained model, the importing of the dataset for training and testing,
followed by the training, testing and output of results. The results for all models will be
covered in Section 8.4

8.1 Inclusion of required Python Libraries and environmental variables
The same libraries were included in all models and the code is as per Figure 50:

import tensorflow as tf

import numpy as np

import os

import matplotlib.pyplot as plt
import datetime

import pathlib

#from tensorflow import keras

#from tensorflow.keras import preprocessing

#from tensorflow.keras.applications.resnet50 import ResNet50

#from tensorflow.keras.preprocessing import image

#from tensorflow.keras.applications.resnet50 import preprocess input, decode predictions
from tensorflow.keras.callbacks import TensorBoard

from tensorflow.keras.layers import Dense,GlobalAveragePooling2D

from tensorflow.keras.applications import MobileNet

#from tensorflow.keras.preprocessing import image

from tensorflow.keras.applications.mobilenet import preprocess input

#from tensorflow.keras.models import Model

#from tensorflow.keras.optimizers import Adam

#from tensorflow.keras.models import Sequential

#from tensorflow.keras.layers import Dense, Conv2D, Flatten, Dropout, MaxPooling2D
from tensorflow.keras.preprocessing.image import ImageDataGenerator

# GPU initialization/configuration options when using CUDA

from tensorflow.compat.vl import ConfigProto, InteractiwveSession
config = ConfigProto()

config.gpu options.allow growth = True

config.gpu options.per process_gpu memory fraction = 0.6

sess = InteractiveSession(config=config)

# set session variables
BATCH SIZE = 32

IMG HEIGHT = 224

IMG WIDTH = 224

EPOCHS = 10

# Print the wversion of Tensorflow installed
print(tf. version_ )

Figure 50 : standard Python libraries included in all CNN programs
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This also set the parameters to utilise the GPU to perform the training. Also, the version of
Tensorflow was printed to confirm that all models were run using the same version.

The number of Epochs was set to 10 which was increased to 50 for the best performing
models.

The working directory and the input folders were also set at this stage. The folders path was
changed to correspond to each dataset., see Figure 51 With the following order:

1 — SDSS Fits Plots

2 — RGB from FITS Filters
3 —STScl JPG Images

4 — SDSS Jpg Images

# Set parameters for training later

os.chdir('d:\\project\\vZ")

train path='d:\\project\\vZ\\images\\tralin' #path
test path='d:\\projecti\\vZ\\images\\test' #path

|

Figure 51 : set working directory and path to test / train images

By changing the os.chdir, train_path and test_path variables, it is easy to repoint the models
at new datasets and ensure that the model processed the required images.

8.2 Base Model and modification to it

Each model was imported using the following code — the name of each model was changes
and by changing the variable “model name” to the relevant model name. This was used to
output the models name as part of the final trained model with weights.

The base model was imported, the final layer was not. The models were then set to
untraonable to locl the already trained layers — these could already extract features from
images. 5 additional layers were added to the models and set to be trainable. As per Figure
51
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model_name = "Mc
model socurce =
4 select base model w1*hou: the output layer
# include the IKmageNet weights

base_model=MobileNet (weights='"imagenet', include_top=False)

#imports the mobilenet model and discards the last 1000 neuron layer.
Hfor i,layer in enumerate(base model.layers):

print(i,layer.name)

# lock the model to leverage the tained filters and weights of base model
base model.trainable = False

# List our the new layers to be added
ADDl=GlobalAveragePooling2D ()
ADD2=Dense (1024 ,activation="relu')

#we add dense layers so that the model can learn more complex functions and classify for better results.
ADD3=Dense (1024 ,activation="relu') #dense layer 2

ADD4=Dense (512 ,activation="relu') #dense layer 3

prediction_layer=Dense(3,activation='softmax') #final layer with softmax activation

# create a new model with the base model and the addition of new layers
Hmodel = tf.keras.Sequential ([

base model,

ADD1,

ADD2,

ADD3,

ADD4,
- prediction layer

n

# confirm the new model structure
| |Ifor i,layer in enumerate (model.layers):
print (i,layer.name)

# Print he structure of the new model
print (" del structure ")
model summary()

Figure 52 : Import base models and add new layers.

The last layer of the pre-trained model was not imported and this version of the model was
set to be untrainable. This then allowed for the addition of 5 more layers to be added to the
model and these layers were allowed to be adjusted in line with the models loss function and
training later. The layers were displayed and the model summery was also displayed.

8.3 ldentification of Data for training and testing

The images were imported and split into training and testing data. The functions used
allowed the import based on the directory structure for each image set. An example of the
folder structure for one set of test images is below in .

This PC » DATA1 (D) » Project » V3 » images » test v O
Name Date modified
galaxy 26/06/2020 09:28
quasar 26/06/2020 09:34
star 26/06/2020 09:30

Figure 53 : Sample folder structure for all datasets

Using the following code, the images were imported, and the model compiled. All models
were compiled with the same optimiser function.
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train datagen=ImageDataGenerator (preprocessing function=preprocess_input) #included in our dependencies
test datagen=ImageDataGenerator (preprocessing function=preprocess_input) #included in our dependencies

ftrain generator=train datagen.flow from directory(train path,
target size=(IMG_HEIGHT, IMG WIDTH),

color_mode='rgb',
batch_size=BATCH_SIZE,
class_mode='categorical'

'
seed=None,

shuffle=True)

fval_generator=train_datagen.flow_from directory(test_path,

target size=(IMG_HEIGHT, IMG_WIDTH),
color mode='rghb',
batch size=BATCH SIZE,
class mode='cate 1
seed=None,
shuffle=True)

orical"',

# Details of the Classes Found for training
data dir = pathlib.Path(train path)

image count = len(list(data dir.glob('*/*.png')))
image count
CLASS_NAMES = np.array([item.name for item in data_dir.glob('*') if item.name '= "LICENSE.tzL"])

CLASS_NAMES

# Compile model

model.compile (optimizer='Adam',loss="'categorical
# Adam optimizer

# loss function will be categorical cross entropy
# evaluation metric will be accuracy

crossentropy' ,metrics=["'accuracy'])

Figure 54 : code to select images and compile models

The models were run, using the model.fit() function

tensorboard callback = tf.keras.callbacks.TensorBoard(log dir=LOG_DIR)

step size train=train generator.n//train generator.batch size
print (datetime.datetime.now() .strftime ("3YV5msd-5H:5M"))

# ensure that the training is pushed to the GPU
# this improves performance using specialised hardware
# and the processing power ofthe GPU
with tf.device('/gpu:0"):
history = model.fit(
train generator,
steps per epoch=step size train,
epochs=EPOCHS,
validation data=val generator,
callbacks=[tensorboard callback]
)

print (datetime.datetime.now() .strftime ("FY3msc
InteractiveSession.clozse(sess)

Figure 55 : code to make use of GPU for running models

Once the models had completed their training and testing the model plotted out its results and
also saved the model to disk as per Figure 56:

38



# Print the Training and Validation Accuracy

acc = history.history['acc

val acc = history.history[
loss=history.history['loss']

val loss=history.history['val loss']

epochs range = range (EPOCHS)

plt.fiqure(figsize=(4, 7))

plt.subplot(l, 2, 1)

plt.plot(epochs range, acc, label='Training Accurac
plt.plot (epochs range, val acc, label='Validation Accuracy
plt.legend(loc='lower right')

plt.title('Training and Validation Accuracy

# Plot the Traning and Validation Loss

plt.subplot(l, 2, 2)

plt.plot (epochs range, loss, label='Training Loss
plt.plot (epochs range, val loss, label='Validation Loss
plt.legend(loc="upper right')

plt.title('Training and Validation Loss

plt.show()

# serialize welghts to HDF5 and save
model.save (model name + " " 4 model source + " mocel "+ datetime.datetime.now() strftime("3Y3n3d-5H") +".h3")
print("Saved model to disk")

Figure 56 : code to save results and plots as well as resulting models

8.4 Results

The following are the detailed results which were not put in the Project Report. Each model
was run, and the model’s accuracy was used as a measure of its performance.

8.5 MobileNet Models Results

STScl JPG Images Training Epoch Results - | Validation Epochs Results -
Accuracy Accuracy
Epoch #1 0.8365 0.8801
Epoch #2 0.8657 0.8798
Epoch #3 0.8798 0.8830
Epoch #4 0.8750 0.8827
Epoch #5 0.8826 0.8829
Epoch #6 0.8874 0.8864
Epoch #7 0.8918 0.8873
Epoch #8 0.8955 0.8874
Epoch #9 0.8980 0.8863
Epoch #10 0.9002 0.8715
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SDSS JPG Images Training Epoch Results - | Validation Epochs Results -
Accuracy Accuracy
Epoch #1 0.8055 0.8437
Epoch #2 0.8311 0.8197
Epoch #3 0.8397 0.8440
Epoch #4 0.8417 0.8380
Epoch #5 0.8466 0.8583
Epoch #6 0.8455 0.8641
Epoch #7 0.8471 0.8382
Epoch #8 0.8507 0.8206
Epoch #9 0.8505 0.8549
Epoch #10 0.8527 0.8607
SDSS Filters Images Training Epoch Results - | Validation Epochs Results -
Accuracy Accuracy
Epoch #1 0.4281 0.3272
Epoch #2 0.4437 0.3496
Epoch #3 0.4512 0.3347
Epoch #4 0.4562 0.3502
Epoch #5 0.4575 0.3497
Epoch #6 0.4588 0.3430
Epoch #7 0.4621 0.3582
Epoch #8 0.4635 0.3483
Epoch #9 0.4658 0.3248
Epoch #10 0.4712 0.3223
SDSS RBG Images Training Epoch Results - | Validation Epochs Results -
Accuracy Accuracy
Epoch #1 0.4184 0.4675
Epoch #2 0.4499 0.4892
Epoch #3 0.4532 0.4572
Epoch #4 0.4647 0.4631
Epoch #5 0.4680 0.4825
Epoch #6 0.4691 0.4630
Epoch #7 0.4703 0.5020
Epoch #8 0.4765 0.4914
Epoch #9 0.4818 0.5099
Epoch #10 0.4806 0.4822
8.6 Resnet50 Models Results
STScl JPG Images Training Epoch Results - | Validation Epochs Results -
Accuracy Accuracy
Epoch #1 0.3703 0.3650
Epoch #2 0.3769 0.3650
Epoch #3 0.3769 0.3650
Epoch #4 0.3769 0.3650
Epoch #5 0.3769 0.3650
Epoch #6 0.3769 0.3650
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Epoch #7 0.3769 0.3650
Epoch #8 0.3769 0.3650
Epoch #9 0.3769 0.3650
Epoch #10 0.3769 0.3650

Obvious that learning stopped very early in this model and no further improvements were
made from epoch 2 onwards.

SDSS JPG Images Training Epoch Results - | Validation Epochs Results -
Accuracy Accuracy
Epoch #1 0.7490 0.8460
Epoch #2 0.8258 0.8642
Epoch #3 0.8459 0.8644
Epoch #4 0.8566 0.8628
Epoch #5 0.8650 0.8774
Epoch #6 0.8745 0.8700
Epoch #7 0.8783 0.9015
Epoch #8 0.8802 0.9067
Epoch #9 0.8847 0.8751
Epoch #10 0.8838 0.8906
SDSS Filters Images Training Epoch Results - | Validation Epochs Results -
Accuracy Accuracy
Epoch #1 0.3959 0.3540
Epoch #2 0.3970 0.3514
Epoch #3 0.4023 0.3583
Epoch #4 0.4067 0.3577
Epoch #5 0.4240 0.3702
Epoch #6 0.4343 0.3497
Epoch #7 0.4448 0.3242
Epoch #8 0.4479 0.3594
Epoch #9 0.4508 0.3443
Epoch #10 0.4511 0.3579
SDSS RGB Images Training Epoch Results - | Validation Epochs Results -
Accuracy Accuracy
Epoch #1 0.3703 0.3650
Epoch #2 0.3769 0.3650
Epoch #3 0.3769 0.3650
Epoch #4 0.3769 0.3650
Epoch #5 0.3769 0.3650
Epoch #6 0.3769 0.3650
Epoch #7 0.3769 0.3650
Epoch #8 0.3769 0.3650
Epoch #9 0.3769 0.3650
Epoch #10 0.3769 0.3650
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8.7 VGG16 Model Results

STScl JPG Images Training Epoch Results - | Validation Epochs Results -
Accuracy Accuracy
Epoch #1 0.7389 0.7605
Epoch #2 0.8095 0.8046
Epoch #3 0.8189 0.8483
Epoch #4 0.8249 0.7390
Epoch #5 0.8307 0.8492
Epoch #6 0.8351 0.8536
Epoch #7 0.8337 0.8593
Epoch #8 0.8366 0.8579
Epoch #9 0.8416 0.8630
Epoch #10 0.8453 0.8393
SDSS JPG Images Training Epoch Results - | Validation Epochs Results -
Accuracy Accuracy
Epoch #1 0.68771 0.7516
Epoch #2 0.74634 0.7665
Epoch #3 0.76061 0.7358
Epoch #4 0.76901 0.7781
Epoch #5 0.78214 0.7391
Epoch #6 0.78006 0.7807
Epoch #7 0.78214 0.7795
Epoch #8 0.78506 0.7893
Epoch #9 0.78616 0.7863
Epoch #10 0.78933 0.7951
SDSS Filter Images Training Epoch Results - | Validation Epochs Results -
Accuracy Accuracy
Epoch #1 0.4155 0.3219
Epoch #2 0.4336 0.3169
Epoch #3 0.4403 0.3343
Epoch #4 0.4381 0.3343
Epoch #5 0.4458 0.3516
Epoch #6 0.4458 0.3570
Epoch #7 0.4469 0.3584
Epoch #8 0.4481 0.3520
Epoch #9 0.4495 0.3575
Epoch #10 0.4503 0.3520
SDSS RGB Images Training Epoch Results - | Validation Epochs Results -
Accuracy Accuracy
Epoch #1 0.4052 0.4389
Epoch #2 0.4497 0.4577
Epoch #3 0.4500 0.4577
Epoch #4 0.4526 0.4730
Epoch #5 0.4503 0.5106
Epoch #6 0.4527 0.4965
Epoch #7 0.4569 0.5093
Epoch #8 0.4583 0.4679
Epoch #9 0.4562 0.5161
Epoch #10 0.4604 0.5235
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8.8 Xception Model Results

STScl JPG Images Training Epoch Results - | Validation Epochs Results -
Accuracy Accuracy
Epoch #1 0.7614 0.8227
Epoch #2 0.7961 0.8204
Epoch #3 0.8038 0.8184
Epoch #4 0.8104 0.8267
Epoch #5 0.8177 0.8418
Epoch #6 0.8215 0.8097
Epoch #7 0.8254 0.8461
Epoch #8 0.8289 0.8406
Epoch #9 0.8302 0.8434
Epoch #10 0.8316 0.8380
SDSS JPG Images Training Epoch Results - | Validation Epochs Results -
Accuracy Accuracy
Epoch #1 0.7732 0.7982
Epoch #2 0.8046 0.8140
Epoch #3 0.8154 0.8184
Epoch #4 0.8237 0.8145
Epoch #5 0.8285 0.8062
Epoch #6 0.8347 0.8247
Epoch #7 0.8391 0.8029
Epoch #8 0.8448 0.8072
Epoch #9 0.8474 0.8113
Epoch #10 0.8520 0.8222
SDSS Filter Images Training Epoch Results - | Validation Epochs Results -
Accuracy Accuracy
Epoch #1 0.4091 0.3823
Epoch #2 0.4277 0.4608
Epoch #3 0.4329 0.3996
Epoch #4 0.4369 0.4307
Epoch #5 0.4381 0.4077
Epoch #6 0.4396 0.4701
Epoch #7 0.4438 0.4588
Epoch #8 0.4465 0.4807
Epoch #9 0.4523 0.4560
Epoch #10 0.4532 0.4545
SDSS RGB Images Training Epoch Results - | Validation Epochs Results -
Accuracy Accuracy
Epoch #1 0.40928 0.4549
Epoch #2 0.42760 0.4656
Epoch #3 0.43486 0.4576
Epoch #4 0.43968 0.4151
Epoch #5 0.43834 0.4031
Epoch #6 0.44124 0.4556
Epoch #7 0.44552 0.4596
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Epoch #8 0.44249 0.4598

Epoch #9 0.44806 0.4791

Epoch #10 0.45114 0.4656

8.9 MobileNet 50 Epoch with SDSS Jpg Images

Training and Validation Accuracy Training and Validation Loss
- Training Loss
Validation Loss

0.88 1 0.45 -
0.86 - 0.40 -
Do 0.35 1
0.82 - ‘

j 0.30 -

- Training Accuracy
Validation Accuracy
0 10 220 30 4 5 0 10 20 30 40 50

Epoch 1/50
1874/1874 [============ ===] - 1866s 996ms/step - loss: 0.4744 -
accuracy: 0.8050 - val_loss: 0.3848 - val_accuracy: 0.8527
Epoch 2/50
1874/1874 [============ ===] - 175s 94ms/step - loss: 0.4111 -
accuracy: 0.8325 - val_loss: 0.3907 - val_accuracy: 0.8459
Epoch 3/50
1874/1874 [============ ===] - 176s 94ms/step - loss: 0.3975 -
accuracy: 0.8386 - val_loss: 0.4456 - val_accuracy: 0.8160
Epoch 4/50
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1874/1874 [::::::::::::::::::::::::::::::] - 175s ggmslstep -
accuracy: 0.8425 - val_loss: 0.3707 - val_accuracy: 0.8547

Epoch 5/50

1874/1874 [::::::::::::::::::::::::::::::] - 173s 92m3/5tep -
accuracy: 0.8453 - val_loss: 0.3494 - val_accuracy: 0.8609

Epoch 6/50

1874/1874 [::::::::::::::::::::::::::::::] - 173s 92m3/5tep -
accuracy: 0.8460 - val_loss: 0.4373 - val_accuracy: 0.8055

Epoch 7/50

1874/1874 [::::::::::::::::::::::::::::::] - 173s 92m3/5tep -
accuracy: 0.8482 - val_loss: 0.3556 - val_accuracy: 0.8603

Epoch 8/50

1874/1874 [::::::::::::::::::::::::::::::] - 172s 92m5/3tep -
accuracy: 0.8497 - val_loss: 0.3544 - val_accuracy: 0.8597

Epoch 9/50

1874/1874 [::::::::::::::::::::::::::::::] - 411s 219m3/5tep -
accuracy: 0.8521 - val_loss: 0.3832 - val_accuracy: 0.8442

Epoch 10/50

1874/1874 [::::::::::::::::::::::::::::::] - 265s 141m3/step -
accuracy: 0.8547 - val_loss: 0.3574 - val_accuracy: 0.8555

Epoch 11/50

1874/1874 [::::::::::::::::::::::::::::::] - 174s 93m5/3tep -
accuracy: 0.8542 - val_loss: 0.3466 - val_accuracy: 0.8656

Epoch 12/50

1874/1874 [::::::::::::::::::::::::::::::] - 178s 95m5/3tep -
accuracy: 0.8565 - val_loss: 0.3713 - val_accuracy: 0.8533

Epoch 13/50

1874/1874 [::::::::::::::::::::::::::::::] - 173s 92m5/3tep -
accuracy: 0.8586 - val_loss: 0.4091 - val_accuracy: 0.8323

Epoch 14/50

1874/1874 [::::::::::::::::::::::::::::::] - 174s 93m5/3tep -
accuracy: 0.8608 - val_loss: 0.3440 - val_accuracy: 0.8671

Epoch 15/50

1874/1874 [::::::::::::::::::::::::::::::] - 173s 92m5/3tep -
accuracy: 0.8620 - val_loss: 0.3660 - val_accuracy: 0.8603

Epoch 16/50

1874/1874 [==============================| - 172s 92ms/step -
accuracy: 0.8647 - val_loss: 0.3883 - val_accuracy: 0.8493

Epoch 17/50

1874/1874 [==============================| - 176S 94ms/step -
accuracy: 0.8660 - val_loss: 0.3695 - val_accuracy: 0.8593

Epoch 18/50

1874/1874 [==============================| - 176S 94ms/step -
accuracy: 0.8649 - val_loss: 0.4274 - val_accuracy: 0.8369

Epoch 19/50

1874/1874 [==============================| - 173s 92ms/step -
accuracy: 0.8700 - val_loss: 0.3387 - val_accuracy: 0.8704

Epoch 20/50

1874/1874 [==============================| - 174s 93ms/step -

accuracy: 0.8690 - val_loss:

Epoch 21/50
45

0.3798 - val_accuracy:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

0.3886

0.3811

0.3773

0.3708

0.3670

0.3625

0.3561

0.3557

0.3506

0.3453

0.3426

0.3378

0.3344

0.3314

0.3302

0.3262

0.3231



1874/1874 [::::::::::::::::::::::::::::::] - 172s
accuracy: 0.8707 - val_loss: 0.3571 - val_accuracy: 0.8651
Epoch 22/50

1874/1874 [::::::::::::::::::::::::::::::] - 172s
accuracy: 0.8709 - val_loss: 0.3487 - val_accuracy: 0.8643
Epoch 23/50

1874/1874 [::::::::::::::::::::::::::::::] - 172s
accuracy: 0.8724 - val_loss: 0.3658 - val_accuracy: 0.8593
Epoch 24/50

1874/1874 [::::::::::::::::::::::::::::::] - 172s
accuracy: 0.8717 - val_loss: 0.3569 - val_accuracy: 0.8643
Epoch 25/50

1874/1874 [::::::::::::::::::::::::::::::] - 172s
accuracy: 0.8738 - val_loss: 0.3868 - val_accuracy: 0.8597
Epoch 26/50

1874/1874 [::::::::::::::::::::::::::::::] - 172s
accuracy: 0.8749 - val_loss: 0.3679 - val_accuracy: 0.8634
Epoch 27/50

1874/1874 [::::::::::::::::::::::::::::::] - 172s
accuracy: 0.8751 - val_loss: 0.3583 - val_accuracy: 0.8621
Epoch 28/50

1874/1874 [:::::::::::: == == ] - 174s
accuracy: 0.8734 - val_loss: 0.3858 - val_accuracy: 0.8545
Epoch 29/50

1874/1874 [::::::::::::::::::::::::::::::] - 173s
accuracy: 0.8760 - val_loss: 0.3936 - val_accuracy: 0.8619
Epoch 30/50

1874/1874 [::::::::::::::::::::::::::::::] - 173s
accuracy: 0.8774 - val_loss: 0.3592 - val_accuracy: 0.8723
Epoch 31/50

1874/1874 [::::::::::::::::::::::::::::::] - 174s
accuracy: 0.8781 - val_loss: 0.3633 - val_accuracy: 0.8711
Epoch 32/50

1874/1874 [::::::::::::::::::::::::::::::] - 175s
accuracy: 0.8788 - val_loss: 0.3720 - val_accuracy: 0.8671
Epoch 33/50

1874/1874 [::::::::::::::::::::::::::::::] - 173s
accuracy: 0.8788 - val_loss: 0.4058 - val_accuracy: 0.8492
Epoch 34/50

1874/1874 [::::::::::::::::::::::::::::::] - 174s
accuracy: 0.8791 - val_loss: 0.4165 - val_accuracy: 0.8563
Epoch 35/50

1874/1874 [::::::::::::::::::::::::::::::] - 174s
accuracy: 0.8817 - val_loss: 0.3857 - val_accuracy: 0.8576
Epoch 36/50

1874/1874 [::::::::::::::::::::::::::::::] - 173s
accuracy: 0.8829 - val_loss: 0.3862 - val_accuracy: 0.8619
Epoch 37/50

1874/1874 [::::::::::::::::::::::::::::::] - 173s

accuracy: 0.8824 - val_loss:

Epoch 38/50
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0.4008 - val_accuracy:

92ms/step

92ms/step

92ms/step

92ms/step

92ms/step

92ms/step

92ms/step

93ms/step

93ms/step

92ms/step

93ms/step

93ms/step

92ms/step

93ms/step

93ms/step

92ms/step

93ms/step

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

0.3207

0.3175

0.3169

0.3142

0.3130

0.3086

0.3088

0.3080

0.3034

0.3033

0.2994

0.2980

0.2964

0.2969

0.2932

0.2913

0.2884



1874/1874 [::::::::::::::::::::::::::::::] - 173s
accuracy: 0.8830 - val_loss: 0.3981 - val_accuracy: 0.8632
Epoch 39/50

1874/1874 [::::::::::::::::::::::::::::::] - 173s
accuracy: 0.8838 - val_loss: 0.3854 - val_accuracy: 0.8663
Epoch 40/50

1874/1874 [::::::::::::::: == == ] - 173s
accuracy: 0.8841 - val_loss: 0.3913 - val_accuracy: 0.8630
Epoch 41/50

1874/1874 [::::::::::::::::::::::::::::::] - 172s
accuracy: 0.8843 - val_loss: 0.3861 - val_accuracy: 0.8636
Epoch 42/50

1874/1874 [::::::::::::::::::::::::::::::] - 173s
accuracy: 0.8844 - val_loss: 0.4546 - val_accuracy: 0.8402
Epoch 43/50

1874/1874 [::::::::::::::::::::::::::::::] - 173s
accuracy: 0.8863 - val_loss: 0.4266 - val_accuracy: 0.8485
Epoch 44/50

1874/1874 [::::::::::::::::::::::::::::::] - 172s
accuracy: 0.8867 - val_loss: 0.4292 - val_accuracy: 0.8541
Epoch 45/50

1874/1874 [::::::::::::::::::::::::::::::] - 173s
accuracy: 0.8870 - val_loss: 0.4267 - val_accuracy: 0.8657
Epoch 46/50

1874/1874 [::::::::::::::::::::::::::::::] - 172s
accuracy: 0.8875 - val_loss: 0.4183 - val_accuracy: 0.8659
Epoch 47/50

1874/1874 [::::::::::::::::::::::::::::::] - 173s
accuracy: 0.8877 - val_loss: 0.4065 - val_accuracy: 0.8697
Epoch 48/50

1874/1874 [::::::::::::::::::::::::::::::] - 172s
accuracy: 0.8891 - val_loss: 0.4392 - val_accuracy: 0.8347
Epoch 49/50

1874/1874 [::::::::::::::::::::::::::::::] - 175s
accuracy: 0.8890 - val_loss: 0.4514 - val_accuracy: 0.8617
Epoch 50/50

1874/1874 [::::::::::::::::::::::::::::::] - 176s

accuracy: 0.8903 - val_loss: 0.4567 - val_accuracy: 0.8605

8.10 MobileNet SDSS JPG Images - 50 Epochs
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93ms/step

92ms/step

92ms/step

92ms/step

92ms/step

92ms/step

92ms/step

92ms/step

92ms/step

92ms/step

92ms/step

94ms/step

94ms/step

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

0.2871

0.2866

0.2850

0.2840

0.2833

0.2789

0.2798

0.2780

0.2751

0.2741

0.2729

0.2720

0.2694



Training and Validation Accuracy Training and Validation Loss

- Training Loss
0.96 - 0.8 1 Validation Loss
/|
|
0.94 - s |
| '
0.6 4 \ /
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0.5 4
0.90 -
0.4 4
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03 4
0.86 -
0.2 1
0.84 —— Training Accuracy
Validation Accuracy 0.1
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Total params: 5,854,403
Trainable params: 2,625,539
Non-trainable params: 3,228,864
Found 60000 images belonging to 3 classes.
Found 15000 images belonging to 3 classes.
20200703-12:35
Epoch 1/50
1875/1875 [m============= =] - 1998s 1s/step - loss: 0.4280 -
accuracy: 0.8350 - val_loss: 0.3429 - val_accuracy: 0.8741
Epoch 2/50
1875/1875 [m=========== ===] - 197s 105ms/step - loss: 0.3537 -
accuracy: 0.8656 - val_loss: 0.3361 - val_accuracy: 0.8758
Epoch 3/50
1875/1875 [============ ===] - 190s 101ms/step - loss: 0.3331 -
accuracy: 0.8746 - val_loss: 0.3498 - val_accuracy: 0.8649
Epoch 4/50
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1875/1875 [::::::::::::::::::::::::::::::]
accuracy: 0.8803 - val_loss:

Epoch 5/50

1875/1875 [:::::::::::
accuracy: 0.8847 - val_loss:

Epoch 6/50

1875/1875 [::::::::::::::::::::::::::::::
accuracy: 0.8881 - val_loss:

Epoch 7/50

1875/1875 [::::::::::::::::::::::::::::::
accuracy: 0.8924 - val_loss:

Epoch 8/50

1875/1875 [::::::::::::::::::::::::::::::
accuracy: 0.8955 - val_loss:

Epoch 9/50

1875/1875 [::::::::::::::::::::::::::::::
accuracy: 0.8968 - val_loss:

Epoch 10/50

1875/1875 [::::::::::::::::::::::::::::::
accuracy: 0.8988 - val_loss:

Epoch 11/50

===] - 183s 98ms/step - loss:

: 0.8860

:0.8780

: 0.8846

: 0.8855

:0.8842

:0.8891

accuracy: 0.9026 - val_loss:

Epoch 12/50

accuracy: 0.9055 - val_loss:

Epoch 13/50

accuracy: 0.9063 - val_loss:

Epoch 14/50

accuracy: 0.9073 - val_loss:

Epoch 15/50

accuracy: 0.9119 - val_loss:

Epoch 16/50

accuracy: 0.9146 - val_loss:

Epoch 17/50

accuracy: 0.9165 - val_loss:

Epoch 18/50

accuracy: 0.9184 - val_loss:

Epoch 19/50

1875/1875 [::::::::::::::::::::::::::::::] - 192s
accuracy: 0.9202 - val_loss: 0.3301 - val_accuracy: 0.8906
Epoch 20/50

1875/1875 [==============================| - 1955

accuracy: 0.9227 - val_loss:

Epoch 21/50
49

0.3949 - val_accuracy

: 0.8863

100ms/step - loss:

101ms/step - loss:

101ms/step - loss:

103ms/step - loss:

102ms/step - loss:

102ms/step

102ms/step

103ms/step

102ms/step

103ms/step

104ms/step

] - 184s 98ms/step - loss:

] - 184s 98ms/step - loss:

] - 184s 98ms/step - loss:

] - 184s 98ms/step - loss:

] - 184s 98ms/step - loss:

loss:

loss:

loss:

loss:

loss:

loss:

0.3199

0.3063

0.2975

0.2880

0.2828

0.2741

0.2683

0.2602

0.2531

0.2498

0.2441

0.2371

0.2316

0.2248

0.2182

0.2142

0.2077



1875/1875 [::::::::::::::::::::::::::::::] - 196s
accuracy: 0.9243 - val_loss: 0.3630 - val_accuracy: 0.8857
Epoch 22/50

1875/1875 [:::::::::::: == === ] - 190s
accuracy: 0.9270 - val_loss: 0.3981 - val_accuracy: 0.8783
Epoch 23/50

1875/1875 [::::::::::::::::::::::::::::::] - 193s
accuracy: 0.9267 - val_loss: 0.3710 - val_accuracy: 0.8867
Epoch 24/50

1875/1875 [::::::::::::::::::::::::::::::] - 194s
accuracy: 0.9291 - val_loss: 0.4065 - val_accuracy: 0.8764
Epoch 25/50

1875/1875 [::::::::::::::::::::::::::::::] - 194s
accuracy: 0.9319 - val_loss: 0.3975 - val_accuracy: 0.8827
Epoch 26/50

1875/1875 [::::::::::::::::::::::::::::::] - 194s
accuracy: 0.9348 - val_loss: 0.3904 - val_accuracy: 0.8819
Epoch 27/50

1875/1875 [::::::::::::::::::::::::::::::] - 193s
accuracy: 0.9349 - val_loss: 0.4152 - val_accuracy: 0.8848
Epoch 28/50

1875/1875 [::::::::::::::::::::::::::::::] - 194s
accuracy: 0.9371 - val_loss: 0.4369 - val_accuracy: 0.8839
Epoch 29/50

1875/1875 [:::::::::::: == == ===] - 194s
accuracy: 0.9369 - val_loss: 0.4656 - val_accuracy: 0.8753
Epoch 30/50

1875/1875 [::::::::::::::::::::::::::::::] - 195s
accuracy: 0.9397 - val_loss: 0.4868 - val_accuracy: 0.8801
Epoch 31/50

1875/1875 [::::::::::::::::::::::::::::::] - 194s
accuracy: 0.9428 - val_loss: 0.4699 - val_accuracy: 0.8771
Epoch 32/50

1875/1875 [::::::::::::::::::::::::::::::] - 192s
accuracy: 0.9437 - val_loss: 0.4728 - val_accuracy: 0.8862
Epoch 33/50

1875/1875 [==============================| - 1915
accuracy: 0.9450 - val_loss: 0.4823 - val_accuracy: 0.8785
Epoch 34/50

1875/1875 [============ == == ] - 193s
accuracy: 0.9446 - val_loss: 0.4790 - val_accuracy: 0.8827
Epoch 35/50

1875/1875 [==============================| - 1935
accuracy: 0.9480 - val_loss: 0.4969 - val_accuracy: 0.8764
Epoch 36/50

1875/1875 [==============================| - 196s
accuracy: 0.9483 - val_loss: 0.4924 - val_accuracy: 0.8807
Epoch 37/50

1875/1875 [==============================| - 1975
accuracy: 0.9486 - val_loss: 0.5504 - val_accuracy: 0.8778

Epoch 38/50
50
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101ms/step -

103ms/step -

104ms/step -

103ms/step -

103ms/step -

103ms/step -

104ms/step -

104ms/step -

104ms/step -

103ms/step -

102ms/step

102ms/step

103ms/step

103ms/step

105ms/step

105ms/step

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

0.2026

0.1962

0.1946

0.1900

0.1817

0.1775

0.1746

0.1676

0.1664

0.1602

0.1534
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0.1484

0.1443

0.1391

0.1379

0.1339



1875/1875 [::::::::::::::::::::::::::::::] - 198s 106ms/step - loss:

accuracy: 0.9528 - val_loss: 0.5283 - val_accuracy: 0.8788

Epoch 39/50

1875/1875 [::::::::::::::::::::::::::::::] - 197s 105ms/3tep - loss
accuracy: 0.9518 - val_loss: 0.5447 - val_accuracy: 0.8771

Epoch 40/50

1875/1875 [::::::::::::::::::::::::::::::] - 196s 105m3/5tep - loss
accuracy: 0.9544 - val_loss: 0.6066 - val_accuracy: 0.8754

Epoch 41/50

1875/1875 [::::::::::::::::::::::::::::::] - 187s 100mS/Step - loss
accuracy: 0.9540 - val_loss: 0.5701 - val_accuracy: 0.8777

Epoch 42/50

1875/1875 [::::::::::::::::::::::::::::::] - 190s 101m3/step - loss
accuracy: 0.9566 - val_loss: 0.5961 - val_accuracy: 0.8744

Epoch 43/50

1875/1875 [::::::::::::::::::::::::::::::] - 186s 99m5/3tep - loss:
accuracy: 0.9569 - val_loss: 0.6159 - val_accuracy: 0.8771

Epoch 44/50

1875/1875 [::::::::::::::::::::::::::::::] - 187s 100m3/step - loss
accuracy: 0.9589 - val_loss: 0.6672 - val_accuracy: 0.8711

Epoch 45/50

1875/1875 [::::::::::::::::::::::::::::::] - 186s 99m5/3tep - loss:
accuracy: 0.9600 - val_loss: 0.7415 - val_accuracy: 0.8649

Epoch 46/50

1875/1875 [::::::::::::::::::::::::::::::] - 190s 101m3/step - loss
accuracy: 0.9599 - val_loss: 0.6303 - val_accuracy: 0.8791

Epoch 47/50

1875/1875 [::::::::::::::::::::::::::::::] - 192s 103m3/step - loss
accuracy: 0.9617 - val_loss: 0.6955 - val_accuracy: 0.8789

Epoch 48/50

1875/1875 [::::::::::::::::::::::::::::::] - 192s 103m3/step - loss
accuracy: 0.9620 - val_loss: 0.7429 - val_accuracy: 0.8701

Epoch 49/50

1875/1875 [::::::::::::::::::::::::::::::] - 188s 100m3/step - loss
accuracy: 0.9628 - val_loss: 0.8140 - val_accuracy: 0.8695

Epoch 50/50

1875/1875 [==============================| - 187s 100ms/step - loss

accuracy: 0.9630 - val_loss:

20200703-15:45
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0.7039 - val_accuracy

:0.8707

0.1267

: 0.1266

: 0.1212

: 0.1217

: 0.1131

0.1136

: 0.1090

0.1058

: 0.1067

: 0.0998

: 0.1014

: 0.0973

: 0.0981



9 ICT Files and purpose
This section lists the files which were submitted along with the configuration manual and
which are required to run the application. The purpose and manes of all files are below.

To process downloaded images FITS Images the following files are required:
ProcessGalaxiesFITS.py
ProcessquasarsFITS.py
ProcessStartFITS.py
These files use the working directory as set in the parameters section and crawl down
the folders as per the parameters set.

To download images from STScl use the following file

GetlmagesfromKepler.py

This file takes an input.txt file which lists all the images required in the tab delimited
file with the format of RA DEC Classification, one per line.

To rename files from STScl after downloading
RemaneFilesG.py  for Galaxy folder
RemaneFilesQ.py  for the Quasar folder
RemaneFilesS.py for the Star folder

To combine files to make RGB files
RGBImages.py

Training for models - set working directory first
Training_for_MobileNet.py
Training_for_ResNet.py
Training_for_ VG16.py
Training_for_Xception.py

Images Catalogue and URL are found in
Skysaver SQL4 6 2020 1 30 47 PM (version4).xls
From this file take the required URL’s and put in txt file.

For SDSS use “wget -l input.txt” syntax to get FITS files from site, where input.txt is a test
file with the url for the FITS files to be downloaded. FITS files range in size from 2.5MB to
3.5MB.
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