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Abstract 
Throughout the ages people have gazed into the nights sky and wondered. This research looked at 

the use of modern computer image recognition algorithms and reviewed some of the best 

performing against each other to see how they adapted to deep space object imagery.  Images from 

both the Slone Deep Space Survey and the Space Telescope Science Institute Kepler images were 

used as training input to deep learning models – ResNet50, VGG16, Xception and MobileNet. The 

model’s performance is validated against unseen images and the level of accuracy used to ascertain 

their performance. Using pre-trained models as a base then project shows that these models can be 

trained to leant new features and classify deep space objects with accuracy of 80% plus.  This will 

allow astronomers to focus their limited telescope time on the objects of greatest interest. The 

resents of review literature and identified gaps are also presented.   

 
Keywords: CNN, Slone Deep Space Survey, STScI, Image Classification, Astronomy 

 

1 Introduction 
In many fields of data analysis, the biggest limitation is the availability of new data to analyse. 

Many researchers spend months, if not years, gathering sufficient data to meet their analytic 

needs. In the field of astronomy, the problem is the reverse. People has looked up at the stars 

for centuries and in the last 50 years we have used more and more powerful telescopes to 

capture data on what we saw. The field of Astroinformatics is where data analytics and 

Astronomy meet, by expert knowledge, statistical analysis, machine learning methodologies, 

and deep learning to assist astronomers to mine existing datasets and learn more about the 

universe. Advancements in machine learning and especially deep learning allow this to be 

completed at speeds which were impossible only a relatively few years ago.  

1.1 Motivation and Background 

In 2007 astrophysicist Kevin Schawinski from Oxford University had over 900,000 images of 

galaxies from the Sloan Digital Sky Survey to review, when he decided that there had be a 

better way to complete the work.  He along with a fellow at Oxford college, Chris Lintott 

looked to armatures to assist in the work and Galaxy Zoo was the result. The work which had 

been expected to take years to complete was completed in just 6 months. In 2000 the Slone 

Deep Space Survey telescope was commissioned and since then has being completing surveys 

of the night sky. Data releases 16 of the Slone survey was announced in 2019 (Ahumada et al. 

2020) and detailed the additions to existing released data. Up to 2018 it was estimated that 

SDSS had imaged about one-third of the night sky across five broad bands (ugriz), accounting 

for almost half a billion unique objects. The Dark Energy Spectroscopic Instrument (US 

Department of Energy Office of Science, 2018), started its commissioning process in April 

2019 and when in production, will gather data on tens of millions of galaxies and quasars to 

construct a 3D map of the universe out to 100 billion light years. The LSST (Large Synoptic 
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Survey Telescope, 2020) is expected to be commissioned in the 2020’s and the initial 10-year 

project will collect more a 500-petabyte dataset of images, Figure 1, shows the expected growth 

per night in the volumes of data for existing and future telescopes - Very Large Telescope 

(VLT), Sloan Digital Sky Survey (SDSS), Visible and Infrared Telescope for Astronomy 

(VISTA), Large Synoptic Survey Telescope. 

 

 

Figure 1: Increasing data volumes of existing and upcoming telescopes 

 

Deep Space imagery provided one of the largest freely available data assets for data scientists 

to explore. It provides the vast amounts of imagery and associated classifications, as well as a 

growing need for new methodologies and tools to process the data in support of a real-world 

need. By classifying objects in space, data scientists can assist astronomers better identify 

objects which can be investigated using their limited resources. As an amateur photographer 

who has dabbled in astrophotography from time to time, I was drawn to this field, both out of 

curiosity and from a technical / image classification point of view. The projects goal is to give 

everyone a way to be part of the exploration in much the same way that SETI is in the search 

of extra-terrestrial life,  

1.2 Research Question and Objectives 

Telescope time is a costly and finite resource. It is further limited by adverse weather and 

sometimes atmospheric conditions. The problem addressed here was how best to maximize the 

output from deep space imagery through more selective approach in subject selection. This will 

assist astronomers to gain greater understanding of our universe. This research addresses the 

problem faced by astronomers currently, namely, how to deal with the growing amount of data 

being captured today and to identify tools to allow future new telescopes, improvements in 

astronomical imagery and process increasing volumes of data, while also ensuring that objects 

of astronomical interest are thoroughly investigated using the finite resources at their disposal. 

 

RQ: ““To what extent can the current best practices in deep learning and image 

classification (ResNet50, VGG16, Xception and MobileNet) be trained to 

classify deep space imagery to support astronomer to learn more about deep 

space objects?” In addition, an assessment of current images from deep space 

telescopes was conducted with a view to their suitability as input to deep learning 

classification models. 

 

The objectives and what each delivered is outlined in Table 1. This covers the main 

objectives as well as several minor objectives. 
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Table 1 : Research Objectives 

Objectives Description Evaluation Methods 

Objective 1 A review of the machine learning 

algorithms used currently to assist in 

imagery classification 

 

Objective 2 Data extraction and pre-processing   

Objective 3 Identification of new image recognition 

development in computer vision 

analysis 

 

Objective 4 Implementation of deep learning and 

image classification models for 

astronomical deep space imagery 

 

          Objective 

4 a 

Acquire data for training and testing of 

the chosen design 

 

         Objective 

4 b 

Assessing and tuning the classification 

model 

 

 

        Objective 

4 c 

Build and evaluate using MobileNet 

model 

 

Accuracy 

        Objective 

4 d 

Build and evaluate using ResNet50 

model 

        Objective 

4 e 

Build and evaluate using VGC16 model 

       Objective 4 

f 

Build and evaluate using Xception 

model 

Objective 5  Comparison of model’s performance 

 Objective 6 Comparison of models’ performance 

against industry state of the art models 

1.3 Contributions to the body of knowledge 

The research question was investigated through the use computer vision tools to recognise 

images from the Slone Deep Space Survey and Space Telescope Science Institute (STScI) 

images of Galaxies, Quasars and Stars. Images were PNG and JPEG formats. The images 

extracted from FITS files were from the SDSS archives which came from the Data Release 12 

(DR12) servers, which contained all observations up to July 2014 - as well as jpeg images from 

the later DR16 servers – which were released in 2019 and contained observations up to August 

2018.  The STScI contain NASA images from both Hubble and Kepler space telescope. The 

work carried out here processed these images to allow their input into several artificial neural 

networks and based on training datasets to teach these models to classify the objects in the 

images.  The models were then assessed to state-of-the-art results which were achieved against 

the ImageNet dataset, to assess their performance.  

The rest of the report is structured as follows: Section 2 is a critical review of relevant research 

completed to date and identifies the rationale behind the identification of the gaps identified by 

this research. Section3 describes how this project followed a well-established scientific 

methodology. Section 4 presents the design, pre-processing. Section 5 the implementation steps 

are described. Section 0 details the comparison and evaluation of the model chosen, Section 7 
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concludes the project and identifies future work which could be completed as a result of this 

project. Section 8 acknowledges the support this work received. 

 

2 Literature Review into the field of Astronomical Imagery 

Classification 
A cornerstone to scientific research is context and this is best done by reviewing the existing 

work in the field to identify gaps or opportunities to advance the field of research. To look 

deeper into space is to look back in time and man continues to peer deeper and deeper into an 

unending universe. 

2.1 Introduction 

Research into the field of astronomy dates back many centuries and it is considered the oldest 

of the natural sciences. While there is no definition as to when modern astronomy started, it is 

commonly accepted that it was with Nicolaus Copernicus and his model of the solar system 

and the  work by Johannes Kepler, in the 17th century, who described the details of the motion 

of the planets around the sun  for our solar system. The invention of the reflecting telescope by 

Sir Isaac Newton which led to a catalogue of over 3000 stars (Flemsteed, 1725) being 

published, the First Astronomer Royal. The birth of radio astronomy was in 1931 when Karl 

Guthe Jansky discovered “Cosmic Static” being emitted by the Milky Way (Jansky 1958)  In 

1937 when the first purpose build radio telescope was constructed by Grote Reber in Wheaton, 

Illinois and he described his findings “Radio-frequency investigations of astronomical interest” 

(Reber & Greenstein, 1947). 

2.2 Deep Space Imagery 

Currently deep space image surveys capture data in one of two forms, spectroscopic or 

photometric. Spectroscopic measures the wavelengths of photons across thousands of 

wavelengths, thus allowing for the identification of chemical compounds, such the presence of 

water.  Photometry uses a Charge-Coupled Device, CCD, to measure only a handful of broad-

band filters, resulting in less detailed data than photometry. As always, there is a trade-off 

between the sensitivity of spectroscopic, not being able to measure faint or distant objects, and 

cost in only being able to measure a smaller number of objects in a single image.  Fainter 

objects are further away, letting astronomers look further back in time.  This allows them to 

peer into the early universe and understand the fundamentals of life and our existence. Much 

of the resulting images still require manual manipulation and classification, generally due to 

several artefacts and other distortions which make it difficult for machine learning to process 

currently. These can include, digital noise due to the nature of long exposures, merging galaxies 

or galaxies along the same line of sight or even space dust.  

2.3 Critical Review of methods used to classify astronomical objects 

There were two categories which the classification of the data fell into, it was either traditional 

methods, using experts or large number of amateurs and requiring multiple positive results to 

determine high probability of accuracy or machine learning algorithms, which is relatively new 

to this subject area.   

2.4 Non-Machine Learning Methods 

Traditionally the interpertation and classification of astronomical imagery required an expert 

with a deep understanding of the subject.  This was a slow process and open to human error.  

The result was that there was a backlog in inages which needed to be reviewed and interperated.  



 

 

5     

 

This problem was partially overcome in the early part of the 21st centruary with the Galaxy 

Zoo proect. 

Galazy Zoo (Lintott et al. 2008) has helped astomnomers and obtained more than 4 × 107 

individual classifications made by ∼105 participants classifications of galaxy morphologies 

through direct visual inspection of images.  Participants classified the shape of a galaxy and 

how dense it was, see Figure 2  The same images were presented to a number of different 

participants and this allowed the probability of the classification being correct to be increased.  

It is estimated that the human eye classification used here actieved a 94.5% accuracy when 

using 2 classes of galaxies but lewered to 65.2% when 11 classes were presented. 

 

 

Figure 2: Sample of Image from Galazy Zoo Tutorial 

Redshift, is a key feature used to determain the distance of a galaxy from Earth and research 

into the distribution of galaxies using statistical methods (Wray and Gunn 2008) gave a “rms z 

of 0.025 for red galaxies and 0.030 for blue galaxies (all with z < 0:25)”.  The research review 

how supervised neural networks had bene used to compute a photo-z’s from a range of 

iparameters from Petrosian radii, cnecentration index, surface brightness and axial ratios.  The 

paper looked at using surface brightness and the Sérsic index (measure of radial light profile) 

as well as five-band photometry (u,g,r,i,z) which range from near ultra-violet to near infrared..  

The data used as a subsection of the SDSS catelogue containing 55,405 galaxies.  The statistical 

analysis used was acknowledged as being of great importance as it was all based on emperical 

data, it acknowledged the scale of the problems, which in 2008, that astronomers  faced with 

very large data sets.  The work completed was deemed as impractable for large data sets. 

2.4.1 Machine Learning Methods 

In their paper on Big Universe, Big Data (Kremer et al. 2017) identified that the Sloan Digital 

Sky Survey generated 200Gb every night and the volumns of data being produced every night 

amount to what would have taken a decate in the past.  While the paper also looked at some of 

the algorythms being used, it also identified one issue which most machine learning, ML, 

alogrythms need to be very careful when classifying objects, nanely bias within the data. In 

order to allow for the bias importance-weighting was used – giving more weight to samples 

which are under represented and lesser weights to samples with higher representation.  KNN 

models were used but proved to be computationally expensive – details on the hardware used 
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is not provided in the paper – when spatial data structure were used as is the case with KNN 

and the unsuitabile for GPU’s to process as this model was identified as not parallisable.  The 

team then moved onto developing a new tree structure to run across numerour GPU’s thus 

reducing the bottleneck. This model runs across multiple devices and there is only soutable to 

universities or institutions. This goal of this project is to find a way for non-accidemics to 

participate in the classification and ideinification of objects in deep space surveys there the 

model from Kremer et al was deemed as not appicable and further research was required. Using 

the ZsoltFrei Catalogue from the department of Astrophysical Sciences at Princeton University, 

which contained 113 different galaxies (Abd Elfattah et al. 2014) explored empirical 

decompossition to extract features and neural networks as a classifier for galaxies morphology.  

The types of neural networks used were multi-layer perceptron neural network based classifier, 

Generalized feed-forward networks, Recurrent networks. In order to assess the performance of 

the models used, Mean-Square Error (MSE); Normalized Mean Square Error (NMSE); 

Correlation Coefficient (R); and Error Percentage were used as measures.  26 images were 

selected for training and the remaining for testing.  It was not surprising to note that this model 

returned a 99% accuracy given the small number of images and that the data used was of 

extreme high quality.  It was also concluded that only a small number of features were required 

to successfully classify the images.  While the paper did give a good foundation on the use of 

neural networks potential in classification of images, the conclusions were deemed to be based 

on too small a dataset and no details on the feature set was included in the paper.  

A more comprehensive data set was used (Barchi et al. 2020), the SDSS Data Release 7  

(Eisenstein, et al., 2011) and the Galaxy Zoo catalogues (Lintott, et al., 2008)  used 1 million 

galaxies were used, with 80% for training and the balance for testing. The work provided a 

catalogue of 670,560 galaxies with morphological metrics and classifications. The results show 

that both deep and traditional ML gave a 94.5% accuracy with two classes of galaxies and 82% 

when using 3 classes. The work is a comprehensive review of the state of ML and image 

classification in the field of astronomy. The techniques used include Convolutional Neural 

Networks and what they referred to as Traditional ML and Deep Learning which looked at the 

impact of parameters on the Traditional ML  One point made in this report is that Deep ML 

models require a large amount of data and can be difficult to train and tune. This difficulty in 

training and tuning still leaves a place for traditional machine learning.  Algorithms used in 

this paper covered CyMorph - a non-parametric galaxy morphology system which determines 

Concentration (C), Asymmetry (A), Smoothness (S), Entropy (H) and Gradient Pattern 

Analysis (GPA) metrics. For machine learning Decision Trees, Support Vector Machines and 

Multilayer Perceptron models were used in Python. For their Deep Learning, Residual 

Networks (ResNet) (He, et al., 2016) ) and GoogleNet (Szegedy, et al., 2015)  were deployed.  

Different models returned overall accuracy as detailed below in Table 2 below, where a 

parameter K as the area of the galaxy’s Petrosian ellipse divided by the area of the Full Width 

at Half Maximum (FWHM). 
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Table 2 : P.H. Barchi et al . Results 

 
 

SkyNet was publicly released (Graff et al. 2014) as a tool to assist astronomers to train feed-

forward NN in both supervised and unsupervised methods and allowed for regression, 

classification, density estimation, clustering and dimensionality reduction.  The authors 

identified that while neural networks had been in use for over 20 years, their difficulty in 

training, use of backpropagation and complexity limited their deployment.  Key points made 

in this research was that the number of layers in a NN was dependant on the number of input 

data points and there was a difficulty in choosing the correct number – too few led to the model 

not being able to learn properly and too many meant that the model would over-fit the training 

data and slow down the training.  Table 3 below details the RMSE on ellipticity predictions for 

networks with different architectures, evaluated on the 60,000 image pairs of the MDM 

Challenge. All networks have two outputs: the galaxy ellipticities e1 and e2. 

Table 3 : SkyNet Neural Network Performance 

 
 

Another paper using the SDSS imagery was presented by  (du Buisson, et al., 2015) looked at 

supernova and the identification of artefacts in the images. They noted that the initial work was 

still done by humans – the removal is noise and unwanted artefacts from the images. Using 
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features trained from eigen image analysis (principal component analysis, PCA) of single-

epoch g, r and i difference images, a recall of 96% was achieved. The results also showed that 

random forests performed best, followed by the k-nearest neighbour and the SkyNet (Graff et 

al. 2014) artificial neural network (ANN) algorithms, compared to naive Bayes and kernel 

SVM’s. This research showed that PCA based ML could match humans for accuracy and that 

where a multi epoch approach was used that ML could outperform the humans especially at 

low signal-to-noise. While accuracy was the measure here, it is also clearly identified that 

human scanning of future imagery from LSST, and more advanced telescopes in the future, 

would not be feasible but to the number of images being produced every night.  

Research by National Astronomical Observatories (Zhao and Zhang 2008) reviewed the 

effectiveness of a number of decision tree formats - REPTree, Random Tree, Decision Stump, 
Random Forest, J48, NBTree, AdTree using the WEKA package. They found that “applied in 
discriminating active objects (quasars, BL Lac objects and active galaxies) from non-active objects 
(stars and galaxies), ADTree is the best only in terms of accuracy, Decision Stump is the best only 
considering speed, J48 is the optimal choice considering both accuracy and speed”.  Again, the 

requirement for large amounts of data required to train neural networks was highlighted.  This 

is not a problem in the field of astronomy; however, it is the requirement to also have large 

labelled catalogues to go with the data which is the issue. This is becoming more available as 

professionals continue to process and release catalogues. The underlining assumption is that 

the classification of the objects used to train the networks is accurate and sufficiently diverse 

in categories to be of value. 

The use of CNN’s (Pasquet-Itam & Pasquet, 2018) to detect quasars and to predict photometric 

redshifts of quasars on data from the SDSS found that their CNN was able to give a precision 

of 0.988 for a recall of 0.90 compared with a recall of 0.97 for  a random forest.   Moreover, 

the research identified 175 new quasar candidates to be investigated. The design CNN used in 

this model was 4 layers deep, however the library used is not identified. It is also not clear if 

architecture was 4 hidden layers or 4 layers in total.  It seems unusual in the number of layers 

given the number of parameters identified - 1 802 032 in the convolution layers and 11 468 80 

in the fully connected layers. It would therefore be impossible to reproduce the findings or to 

build upon this research and tune the network further. It was assumed the reason for the high 

number of parameters was due to flattening the images. 

Using over 477,000 objects from SDSS spectroscopic data and decision trees, (Ball, et al., 

2006) classified 143 million nonrepeat photometric objects from the SDSS Data Release 3 and 

was the first public release of object classification of the entire SDSS dataset.  Supervised ML 

was used to manage the decision tree on the Xeon Linus Cluster Tungsten at NCSA.  This 

supercomputer had 1280 nodes each with 2GB or RAM and a peak double-precision 

performance of 6.4 Gflops. Over 7000 decision trees were analysed, and a probability was 

given to each result, with the highest being assigned as the classification. The best classification 

error achieved was noted as being 3:07% ± 0:08%.  Currently SDSS is up to Release 16, which 

is a cumulative release up to August 2018 and was made public in December 2019. 

With the SDSS Release 12 (Kheirdastan & Bazarghan, 2016) explored Probabilistic Neural 

Network (PNN), Support Vector Machine (SVM) and k-means clustering to automate the 

classification of stellar spectral clusters. They found that PNN’s, a mathematical tool to 

emphasize variation and bring out strong patterns to reduce the dimensionality of data set, 

outperformed SVM and K-means.  The algorithms varied in results, depending on the size of 

the datasets input, however overall, the team reported an 80% correct classification  

SDSS, Galaxy Zoo and private datasets from Next Generation Virgo (NGVS) and Fornax 

(NGFS) surveys were used (González, et al., 2018) who used the DARKNET deep learning 

framework and YOLO (You only look once) for real-time detection to process an image in near 

real time – less than 3 seconds.  One of the benefits of this research was that all data had been 
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uploaded to Github so others could recreate and take advantage of it.  This was the first 

identified paper where this was noted. They used industry standard FITS files with 3 colour 

channel images for 38,732 galaxies. 5 training sets, each with a different filter to compare 

against, a maximum accuracy rate of 90.23% was achieved.  The design of the CNN was 

provided, 23 convolution layers and 5 maxpool layers, this helped in the tuning of the CNN 

used by this project.   

2.4.2 Image Recognition and Machine Learning 

In 2017 a paper published by Toronto University titled ImageNet Classification with Deep 

Convolutional Networks (Krizhevsky, Sutskever, and Hinton 2017) changed computer image 

recognition into high gear. It reduced the error rate in the classification of ImageNet dataset by 

50% and proposed that deep Convolutional Neural Networks were the solution to image 

classification. The architecture presented was called AlexNet, Figure 3, consisted of ReLu 

layers for non-linearity activation functions, data augmentation, dropout to reduce over-fitting 

and successive convolutional layers with pooling followed by fully connected layers.   

 

 

Figure 3 : AlexNet Architecture 

A paper presented (Nkwentsha, et al., 2020) at the 2020 International SAUPEC/ RobMech / 

PRASA Conference in which they outlined how CNN, using weights from InceptionV3, were 

used as automate the classification of X-ray imaged.  Like with astronomy, they had converted 

the greyscale images into 3 colour channels and achieved an accuracy of 66.7% and were able 

to up this using padding to 71.34%.  Padding is the process where extra pixels are added to 

images to give the CNN the opportunity to take the first and last columns of images into account 

when processing in groups of 3 or more pixels when filtering to identify significant attributes 

of an image. The research used existing database of images to find a similarity to new images 

and therefore classify the new image. The use of support vector machines as an existing method 

to classify images was identified into 6 classes as used by (Zare, et al., 2013) and that KNN 

performed extremely week in x-ray classifications (Pelka O, 2018). 

At the 2nd ICETC conference (Barik & Mondal, 2010) proposed using image segmentation to 

aid in computer image recognition.  They used manual methods to segment the images – this 

is in line with using expert astronomers in this projects case – and used the histogram to find 

edges of the objects. They processed to use Maximum Ownership Labelling to mark the edges 

of the objects within the images followed by a Graph based approach to segmentation.  The 

number of images used was small – only 4 are identified as being the training set and the 

average number of background clutter objects varied from 100 to 1000. They found that the 

computer vision methods were able to achieve from 79 – 95.77 where more than 100 objects 

were in the background and humans over 95 %, however there was only 30-50 objects in the 

background. It appeared that this research needed much more analysis and larger training sets 
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to show realistic results.  It is also possible that the method used is not conjunctive to larger 

training sets as used with CNN’s generally. 

As the IEEE Canadian Conference on Electrical and Computer Engineering (Azhar, et al., 

2016) showed how Naïve Bays could be used to classify potholes with a 90% accuracy.  As 

before the images were grayscale and 200x200 in size, which were divided into 8x8 cells and 

further into 4x4 blocks for processing. Training was completed using 50 images with 70 for 

testing.  The image count is low as this suites Naïve Bays, however, would not necessarily 

scale to the volumes and subtility of imagery classification for astronomical imagery where 

more factors would need to be considered to classify an object. 

Computer vision was looked at from an evolutionary perspective and a comparison with human 

vision by (Li & Shi, 2018).  They listed out 4 steps for pattern recognition systems - 1 data 

collection, 2 Pre-treatment, 3 Feature Selection and extraction, 4 Classification and decision.   

This process follows the KDD methodology in how to move through the phased to a large 

extent. The over findings of this research do not articulate findings in relation to the topic in a 

clear manner.  The research does find a match in how vision evolved for humans and computers 

– to some degree – however the conclusions are unclear at best and difficult to relate to the 

topic. 

In recent years TensorFlow tens (Abadi et al., 2016) has been used, as a common library within 

Python and other platforms, to process deep learning and image recognition.  (Mattmann & 

Zhang, 2019) proposed how it could be used for data classification. In the research TensorFlow 

was used on 2,620,000 celebrity images which were 244.244 in size.  This was to recreate the 

work completed using the IMDB database where only 2,622 celebrity images were used , along 

with super computers to achieve a 97% accuracy rate, however it also loaded the MatLab’s 

ConvNet (Vedaldi and Lenc 2016) weights and did not follow a full TensorFlow training 

pattern. The key points taken form the research was that TensorFlow was a good aid in the 

creation of CNN’s and allowed easier paths to splitting the training and testing data over other 

methods. It also highlighted that there were tuning options within this toolset which were of 

advantage. 

2.5 Conclusion and Identified Gaps 

The amount of data which is and will be generated by telescopes is growing faster that humans 

can process using traditional manual ways.  Traditional methods of catalogue objects, like 

decision trees, have a place, but will not be able to keep up with the volumns of data or 

additional complexity as new data becomes available with every new itteration of deep space 

survey technology. While the use of neural networks is nothing new, be it that is is a relativly 

recent addition to the toolkits available to astronamers, the complexity of building models and 

categorised data required to train a model is only recently become available digitally.  The 

availability of newer libraries for computer vision and image recognition is making the area of 

nearual networks a more enticing prospect to process large datasets with high degree on 

accuracy.  

TensorFlow was developed by the Google Brain team (Abadi et al., 2016) as an open-source 

machine learning library to assist developers in the building and deployment of AI models 

covering image recognition, machine vision and natural language processing.  Version 2.1 was 

released in January 2020 which added improved support for GPU’s and improvements, bug 

fixes in the design.  It is being worked on and improved upon currently with nightly updates 

being made available.  TensorFlow also supports Keras, another open-source library for neural 

networks written to support Python, which is designed to support fast experimentation of deep 

neural networks by making adding layers to the network a simple process. Since TensorFlow 

was a purposely designed ANN API which has been written to deal with image and computer 

vision recognition, also since the version of TensorFlow upgraded in 2020, a clear opportunity 
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was identified to utilise this new version and the newest SDSS catalogue to build a model to 

classify astronomical imagery.   

 

3 Research Methodology, Exploratory Analysis and Data 

Preparation 
The purpose of research is defined as to “increase the knowledge of humans” (Clark-Carter, 

2010), or the “objective of research is to find out questions through the application of a 

systematic and scientific way” (Bhattacharyya, 2006).  By following a structured methodology, 

researchers show that they have “followed similar standards to scholarly journals”  (Murray, 

2006) thus ensuring that a rigerous methodology and criteria were implemented to support the 

research findings. 

Several data analysis methodologies were reviewed for this project as outlined in (Shafique 

and Qaiser 2014), including  KDD (Usama, et al., 1996), CRISP-DM  and SEMMA (Azevedo, 

2008).  After consideration it was decided to follow the KDD methodology as the candidate 

was familiar with it.  Also, KDD focuses on the extraction of knowledge from data in the 

context of large databases, which is shown in this paper to be appropriate to the problems being 

addressed.    KDD was modified to deep space  

3.1 Deep Space Methodology 

Following the Deep Space Methodology, the project completed the research in a scientific 

manner. Each of the subsections below discuss how the project implemented each of the steps 

within this methodology, as described in described in Figure 4 and how each was adapted to 

this projects research needs. The initial step was to gain an understanding of the domain in 

question, evaluate prior knowledge and identify the goals of the end-user. This is covered in 

Chapter 2 where prior research was critically evaluated and the end-users goal identified in the 

research question. 

 

 

Figure 4 : Modified KDD Process for Deep Space Object Classification 

 

3.1.1 Data Selection 

The common format for astronomical files to be saved in is called a FITS format.  FITS is an 

acronym for Flexible Image Transport System and usually contains both data and image data.  
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Standard images are taken in 3 colours – Red Green Blue, however, astronomical imagery is 

taken in greyscale in with differing filters in place to pick up different spectrum which can later 

be combined to make the full spectrum image of the object.  The SDSS camera, see Figure 5, 

takes images in 5 filters which the camera takes, u (ultraviolet), g (green), r (red), i and z (both 

infrared). 

 

 

Figure 5 : Image if the SDSS Camera with filters1 

In this case a CAS job was run on the SDSS Catalogue Archive Server, using an SQL online 

query. The results provided a list of objects along with their Right Ascension (RA) and the 

Declination (DEC) along with the class of the object, being either a star, galaxy or a quasar and 

other details of the imagery in the archive which provided the basis for all further data selection 

for this work.  

3.1.2 Data Pre-Processing and Exploratory Analysis 

The objects were also filtered into the 3 classifications using excel and the same number of each 

classification was queried from SDSS. Data selection was all based on the results of the CAS 

output. For data pulled from the SDSS severs, the first 25,000 returned objects were used from 

each category. For the fits files this was 5 filters to make up a single full image resulting on over 

130k images. Splitting of images into training and testing datasets was completed randomly, for 

the FITS images, this meant that a contiguous block from each band was selected in order to 

ensure that all filters could be used for an image.  

Through an API call to the SD16 JPEG web service it was possible to extract jpegs which were 

“cut-outs” of larger FITS files and download them locally. These images were centred on the 

object of interest. Again 25,000 images for all 3 categories were extracted. For images extracted 

from the Kepler repository on Space Telescope Science Institute (STScI) servers, jpeg images 

were downloaded directly also based on the RA, DEC and CLASS from the SDSS’s CAS  

3.1.3 Data Transformation 

The fits files were opened in Python and the images for each filter along with the object 

classification were extracted and saved as jpg files for later processing. SDSS jpeg files in groups 

ordered by classification, the array was shuffled prior to being split into an 80/20 for training 

and testing. required the addition of a “.jpg” suffix to their names to allow the windows PC to 

recognise them as image files. TensorFlow processing software only support a small number of 

image types, of which both PNG and JPEG are supported. The STScI jpeg images required no 

additional processing prior to loading into the models. As the data was initially downloaded in 

 

 
1 airandspace.si.edu 
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groups ordered by classification, the array was shuffled prior to being split into an 80/20 for training 

and testing. 

3.2 Data Mining and Learning Approach 

Data mining is the process used to extract usable data from a larger set of raw data.  In this case 

the process used was to identify the desired objects by classification from available catalogue 

files and to extract this data into usable formats which were later fed into the models.  If 

generally covers the analysis of the data to identify the required patterns, the collection of this 

data and sometimes the processing of the required data into data warehousing applications.   

In this project Convolutional Neural Networks were used to mine the data and to extract the 

features which allowed the models classify dep space objects.  The models used were 

MobileNet, ResNet50, VGG16 and Xception networks. The learning approach taken was to 

load the trained weights for the models which had been trained on the ImageNet dataset, to 

remove the final layer and add new layers to allow the models adapt to the new classes of 

images. 

3.3 Data Interpretation and Evaluation 

The images were structured into subdirectories locally by source, into training / validation and 

by classification.  This allowed the TensorFlow function to “crawl” the directory structure and 

identify classification based on directory names.  This was only possible using new functions 

which were in pre-release from TensorFlow master bench on GitHub. 

For the purposes of this project it was decided that accuracy of the trained model would be 

tested against the validation dataset, which was the remaining 20% of the overall data.  The 

accuracy of the model’s performance on new data would provide the measure against which 

the model was evaluated.   

The goal of this project was to evaluate, in a scientific method, that computer vision and 

classification models could be used to assist in the identification and classification of deep 

space imagery.  A proven and well accepted methodology was laid out and followed in the 

pursuit of this goal and the results are detailed below in Chapter 4 along with design 

specifications.  Full tracking of the progress of the models and the results were included in the 

associated Configuration Manel, which was submitted along with this pager and other 

supporting documentation. 

 

4 Design Process Flow 
Computer vision has evolved rapidly over the past two decades however the ability to scale 

well due to complicated architecture and the number of connected weights required (Sun, et 

al., 2020) has been an issues outside a cloud and mainframe environments.  With the advent of 

deep learning and convolutional neural networks this has changed.  Their research covered a 

review of the performance of 22 models widely used in image classification and found that 

convolutional neural networks performed best, for image classification.  As a result, the 

research here focused on modifying existing trained models and adopted these models to 

answer the research question proposed.  The architecture of the solution is described in Figure 

6 below. 
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Figure 6 : Design Process Flow 

4.1 Convolutional Neural Networks 

Convolutional Neural Networks are primarily used in image classification.  They work by 

taking input, implementing filters which extract features, see Figure 7 on the convolutional 

layers and using dense fully connected layers “learn” through the adjustment of weights and 

biases of nodes as both forward and back propagations are performed.  The output layer then 

provided a classification, sometimes the softmax() function is used to force the output to pick 

the “most likely” classification. 

 

 

Figure 7 : Generalized structure of a CNN 

4.2 Keras and TensorFlow 

TensorFlow is an opensource free software platform, developed by Google’s Brain Team, for 

machine learning.  It has a community of developers and resources, both from the TensorFlow 

community and Google, which can make deploying a machine learning tool possible for most 

users who do not have a deep understanding of the mathematics behind the workings of a ANN.  

Its framework provided levels of abstraction to allow users focus on their implementation over 

the coding behind the functions.  It offers API’s for many different programming languages, 

e.g. Python in this case. 
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Keras is an open source neural network library written in Python which runs on top of 

TensorFlow.  It “has the low-level flexibility to implement arbitrary research ideas while 

offering optional high-level convenience features to speed up experimentation cycles 2.” 

4.3 Design for Data Acquisition 

The design for the solution was in two parts, the initial stages are described below, Figure 8. 

Tasks completed on the internet are highlighted in green, while tasks completed locally are 

highlighted in blue and detail the flow of the process from start to acquiring the “fits” files.  

Initial stage was to query the catalogue servers of SDSS via an on-line SQL interface which 

returned a csv file giving details of the deep space objects in its archives.  This file was then 

taken into excel to build up the required URL’s of the FITS files. From initial query to final 

query the data re-run had changed, so an update to the concatenation command in excel was 

required.   

 

 

Figure 8 - Steps in preparing and acquiring 
FITS files form SDS 

 

Figure 9 - Steps in processing the data to 

completion following data acquisition 

4.4 Design for Processing and Modelling of Data 

Fits files were processed using Python script to extract the plot images and to save them as 

PNG files, one per filter. These are later, again using python scripts, combined into 3 filter 

RGB files to provide a second type of input, see Figure 9. SDSS jpg files were directly extracted 

from the SDSS DR16 data servers and saved locally. Kepler jpg images were extracted using 

a modified script provided as an API to that sites data servers. All models were run using 

Python and imported libraries are described in the Configuration Manual 

4.5 Data Presentation 

Once the models had completed, their results were output to screen as both graphs and numeric 

output. The model’s performance was measured for accuracy during training as well as 

 

 
2 https://keras.io/ 
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validation, also measured was the model’s loss function for both training and validation.  This 

showed if a model had become “stuck” and ceased to learn during the process. 

 

5 Implementation of Deep Space Classification Models 
The following section outlined how the KDD methodology was modified and implemented in 

this project.   

5.1 Data Source Selection 

An SQL query was run on the SDSS Catalogue Archive Server, CAS, which returned output 

in csv format.  This listed all fields which were later used to identify the required FITS files, 

the JPEG from both SDSS and STScI servers. A sample of the output is included in the 

Configuration Manual along with the methods used to combine the results of the CAS query 

into URL’s which allowed image selection and download. 

5.2 Data Pre-Processing 

Using the output from, 5.1 above, the excel file was filtered by classification.  Using the 

concatenation function within excel the URL for the files were generated to extract the required 

images and fits files. The full catalogue, of over 11 million objects, was deemed to be too large 

to work with on a home PC. Table 4 lists the number of files by type and source used in this 

research. 

Table 4 : File volumns by Institute download 

Institute File Format Star Quasar Galaxy Total 

SDSS FITS Filters 44,055 44,177 44.020 132,252 

JPEG 25,000 25,000 25,000 75,000 

RGB 10,454 9,011 8,447 27,912 

STScI JPEG 25,000 25,000 25,000 75,000 

 

Using the “wget -i download.txt”, where the URL of the requested image was a line in 

the test tile, format the required FITS images were downloaded from SDSS.  All image files 

were given a suffix of the first letter of their classification to allow for ease of identification 

later.  Once the fits files were downloaded then the URL’s were stripped off the path and only 

the file remained, this was done to make them easier to handle in the future.   

This process was repeated with a different format used to make the URL combination for the 

jpg files from the same site, but this time it was the DR16 servers.  The process to extract the 

Kepler images required a text file which was used as input to a python script made available 

by the STScI support teams to allow direct download of jpg images from their site.   

5.3 Data Transformation 

A Python script was written to extract image plots from the FITS files and these were placed 

in folders corresponding to their classification. Another Python script was written to combine 

3 of the fits filters plots into a single RGB image. This was completed by identifying a “g” 

frame and from that merging the red and blue filters to produce a 3 filter RGB image in PNG 

format. The Kepler files required a renaming to “.jpg” for TensorFlow to accept them as image 

files. This was required as the files downloaded without extensions. A Python script was 

created to rename all files by adding the extension to them and making them usable for future 

work. No other transformation was carried out of the jpg images, as they were already in the 

required formats. In order to prepare the data to be used as input to each data set was split into  
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a test and train folder structure which was subsequently subdivided. This resulted in 4 top level 

folders, one for each dataset, and each with 2 subfolders for Test and Train data within which 

each had a folder for each classification. Images were split 80% for Training and 20% for 

Testing. Details on folder structure are included in the Configuration Manual. 

5.4 Data Mining   

CNN models mine data through a process of feature extraction followed, generally, a flattening 

layer then a varying number of Rectified Linear Unit (ReLU) layers and finally a softmax layer.  

The exact number of each of the Convolutional and ReLu layers is more an art than a scientific 

process (Ma, Dang, and Li 2014).  The conclusions for Ma’s research was that the number of 

hidden layers used for image recognition tended to be a more trial and error approach than a 

hard-scientific approach.  However, in their book Deep Learning, Adaptive Computation and 

Machine Learning series, (Goodfellow, et al., 2016) identify that “Empirically, greater depth 

does seem to result in better generalization for a wide variety of tasks”.  There was also the 

concern that too deep a network could lead to stalled learning and unduly lengthy training. 

There are several deep learning models which are packaged with Keras as standard.  They all 

provided model performance against the ImageNet validation dataset (Table 5) with the top-1 

and top-5 accuracy refers to the model’s performance against that dataset. 

 

Table 5 - Keras Applications Performance against ImagNet 

3 

 

Using some of the above models as a basis the top layer, which gave the classification if used 

against the ImageNet dataset, was removed, the weights for ImageNet were imported and the 

models were frozen, which meant that the initial models parameters were untrainable.  This 

gave a model which already was trained to extract filters from images.  This model was then 

extended to have additional layers concatenated to it which allowed the model to adapt to the 

new images and refine its “learning” to cover deep space objects. 

 

  

 

 
3 https://keras.io/api/applications/ 
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6 Evaluation, Results and Discussion 
This section covers the performance of all models which were evaluated, reviews their 

performance against the imagery from SDSS and STScI and compares their performance to 

ImageNet performance, which is considered as “state of the art” baseline by which CNN’s 

model performance are assessed. 

6.1 MobileNet Model 

MobileNet (Howard, et al., 2017) model developed at Google and designed for embedded 

application on mobile devices.   Its architecture was developed in a streamlined fashion to use 

dept-wise separable convolutions when building a light weight deep neural learning network.  

As was shown in Table 5 it is relatively small compared to the other models used in this project.   

This was the smallest and quickest to train of the models, with only 5.8M parameters.  It 

performed comparatively well to all other models against the STScI jpg images in both 

accuracy and validation.  The ease to work with this model and its small size make it an ideal 

model for standard home computers to utilise, and this is further enhanced using later versions 

of TensorFlow which support GPU processing.  

This model reached the best accuracy score at 90% after 10 epochs on the new jpeg images 

from SDSS.  Figure 10 shows that the training dataset/s learning curve was on an upward 

trajectory still and that a higher accuracy was feasible.  There was also a sharp decent in the 

loss trajectory which indicated that the rate of learning was slowing, however it had not 

bottomed out.  The SDSS jpeg images results reached 85% given the same number of epochs. 

However, it would have taken many more epochs to bring the SDSS filter images to the same 

level of accuracy which could only have been achieved with many more images to compensate 

for potential overfitting.  RGB files did produce better results than the filters, however not 

significant enough to use as they only returned accuracy of 50%. 

The results are on par with the results from this models training using ImageNet, see Table 5 

Table 5 - Keras Applications Performance against ImagNetand the results of the Galaxy Zoo 

results of 90.23% as identified in Section Image Recognition and Machine Learning. 

 

 
STSci JPG Images 

 
SDSS JPG Images 
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SDSS Filter Images

4 

 

 
SDSS RGB Images

5 

Figure 10 - Performance of the MobileNet models 

This addressed Objective 4b of the projects goals and completed the action giving the required 

results. 

6.2 The ResNet50 Model 

The ResNet506 , (He, et al., 2016) which has layers divided into blocks, and over 23 million 

trainable parameters. ResNet50 is credited with overcoming some of the issues identified with 

very deep learning, that of degradation problem and vanishing/exploding gradient problem.   

The model also performed on-par with other models when processing jpg files. While it had an 

additional 1,000,000 parameters which were tuneable as part of the training, this did not make 

a significant improvement in the results.  Figure 11 shows the performance of the model against 

images from both sources and for both jpeg and filter datasets.  All models showed signs of 

plateauing at 85% - 89% on jpeg images. The SDSS Filter images also plateaued 45%. While 

this model did perform best for validation accuracy, at 89%, it did not show the same potential 

as MobileNet to continue to refine its learning and improve its accuracy. Again, the RGB 

images only performed at a 50% accuracy, below the jpg formatted files. 

 

 
STSci JPG Images 

 
SDSS JPG Images 

 

 
4 Note different scale for this plot 
5 Note different scale for thi splot 
6 http://ethereon.github.io/netscope/#/gist/db945b393d40bfa26006 
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SDSS Filter Images

7 

 
SDSS RGB Images 

Figure 11 - Performance of the ResNet50 models 

The model stalled on the second epoch using the RGB images and made no progress in the 

accuracy of the training or validation output. Therefore, it was shown that these images were 

not suitable to use for deep learning using this model. This addressed Objective 4c of the 

projects goals and completed the action giving the required results.  

6.3 VGG16 Model 

This model was developed as a solution to the ImageNet challenge (Simonyan & Zisserman, 

2014) to research how CNN’s accuracy on large image datasets.  Their research looked at how 

the increase of the weighted layers, using small convolutional filters (3x3) could improve the 

accuracy of the CNN.  Their models also generalised well with other datasets. Results in Figure 

12 show the performance of the VGG models on the datasets.   

The models performed on par with the results from the ImageNet baseline, Table 5, on the new 

images presented and even showed potential for further refinement with more epochs as the 

loss rate was on a good downwards trajectory and the accuracy was improving.  There was a 

loss in validation accuracy towards the end of the 10 epochs which could be investigated in 

future research.  Based on the results provided the RGB files are better then the filter images 

for classification, but again did not meet the same bar as the jpg files. 

 

 
STScI JPG Images 

 
SDSS JPG Images 

 

 
7 Note different scale for this plot 
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SDSS Filter Images

8
 

 

 
SDSS RGB Images 

Figure 12  - Performance of the VGG16 models 

This addressed Objective 4d of the projects goals and completed the action giving the required 

results. 

6.4 Xception Model 

Developed by (Chollet, 2016) as an improvement of the Inception V3 model.  The new model 

outperformed IncpetionV3 on a classification dataset of 350 million images and while it used 

the same number of parameters this was accounted for by the greater efficient use of the 

model’s parameters.  The model was described as “depthwise separable convolution can be 

understood as an Inception module with a maximally large number of towers”. 

Figure 13 shows the performance of this model against the 3 different datasets.  It reached 83% 

and 85% accuracy in classifications for jpg images and only 45% for the filters, however the 

processing on the jpg images showed a good upwards trend on the accuracy and the model has 

not reached a 0 loss, therefore there was further potential to improve this result with further 

training identified.  The model shows potential to continue to learn with more epochs and is a 

candidate for further research and achieve greater accuracy.  While the RGB images did not 

provide the performance of the jpg images, they did provide a slow upwards trend in accuracy 

and the potential for greater accuracy with more images and epochs being used. 

 

 
STScI JPG Images 

 
SDSS JPG Images 

 

 
8 Note different scale for this plot 
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SDSS Filters

9
 

 

 
SDSS RGB Images 

Figure 13 - Performance of the Xception models 

This addressed Objective 4e of the projects goals and completed the action giving the required 

results. 

6.5 General Review of Models Performance 

All models had the same changes made to them, as in the final output layer which would have 

been used to show the results of the classification with the ImageNet images was removed and 

the same number of additional layers were inserted. This allows for a like-for-like comparison 

on the models’ performance.  With this training, size does matter when it came to processing 

time. On a standard CPU models took up to 5 days to train with little more than 35-40% 

accuracy. The need for large volumes of images when training models from scratch was 

evident. 

Models performance on jpg images is on par with the results of the ImageNet league table. 

MobileNet and ResNet50 performed the best out of the models used, though Xception seemed 

to show better potential to improve accuracy over ResNet50. What the research did show is 

that the models trained on the ImageNet dataset can generalise extremely well and can be easily 

adapted to new problems and new sources of images. The performance of all models showed 

that Keras and TensorFlow have great potential to assist in image classification, which has 

raised ethical concerns in the adaption of this technology in the use of facial recognition.   While 

it was not a concern for this research, the ability to train CNN’s on images to make 

classifications has and will continue to be an ethical question.  Nvidia already as developers to 

agree with its ethical guidelines when using their products – NVIDIA CUDA® and “NVIDIA 
CUDA® Deep Neural Network library” (CuDNN) both of which are required to allow for 

GPU processing with TensorFlow on a Windows machine. 

Each model was trained for 10 epochs, this was to give all models the same baseline 

performance. While it was identified that further training would have improved the models 

performance, there was also the risk that further training with the same images could have led 

to overfitting. While the standard process to avoid this is to augment the data by rotating it, it 

was felt that to do so for these images would not create sufficient variety as to make this a 

valuable exercise. Stars and quasars are already round objects and rotating them would have 

added little to no value to the learning process. Galaxies already were rotated in all planes 

therefore to do so again was deemed unnecessary. Perhaps with a larger dataset this might have 

added value, or with wider fields of view where more objects were in the image.  However, the 

 

 
9 Note different scale for this plot 
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addition of additional objects could have impacted the accuracy as was seen in the processing 

of the filter images. 

6.6 Comparison of Developed Models 

The models used for this experiment were previously trained with the ImageNet dataset. This 

is a dataset of 14 million images and just over 21,000 classes. The datasets used in this research 

is in 3 classes and training/validation loads of between 15,000 and 75,000 were presented to 

the models. All pre-trained models were loaded “as is” without the weights to support 

ImageNet classifications.   

The results of each models training and validation with the inclusion of an additional 5 

layers is laid out in Table 6. The top results are highlighted in bold. 

 

Table 6 :  Model Paranaters and Results of Training 

Model  MobileNet ResNet50 VGC16 Xception 

Layers  85 + 5 added 173+ 5 added 18+ 5 added 131+ 5 added 

Trainable params 2,625,539 3,674,115 2,101,251 3,674,115 

Non-trainable params 3,228,864 23,587,712 14,714,688 20,861,480 

Total params 5,854,403 27,261,827 16,815,939 24,535,595 

Models Performance after 10 Epochs with the addition of 5 new layers 

STScI - jpg 

   Accuracy 0.8548 0.8559 0.8453 0.8316 

   Val accuracy 0.8608 0.8675 0.8393 0.8380 

SDSS – jpg 

   Accuracy 0.9004 0.8838 0.7893 0.8520 

   Val accuracy 0.8896 0.8906 0.7951 0.8222 

SDSS - filters 

   Accuracy 0.4712 0.4511 0.4503 0.4458 

   Val accuracy 0.3223 0.3579 0.3529 0.3307 

SDSS - RGB 

   Accuracy 0.4806 0.3769 0.4604 0.4511 

   Val accuracy 0.5133 0.3650 0.5235 0.4657 

 

All model was loaded with the pre-trained weights from the ImageNet dataset training. This 

meant that the model already “knew” how to extract features from images to assist in 

classification.  

MobileNet, as the best model after 10 epochs, was trained for 50 Epochs, see Table 7, to 

validate that additional training would provide an improved accuracy in object identification 

and this was proven to correct. 
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Table 7 : Results after 50 Epochs for ModileNet and jpg files 

Data Source/type Training Accuracy Validation Accuracy 

SDSS Jpeg 96.30% 87.07% 

STScI Jpeg 89.03% 86.05% 

  

These results are comparable to the results from ImageNet’s training as in Table 5.  In both 

cases around 20 epochs seemed to be the ideal number as while training accuracy continued to 

improve, validation accuracy on unseen data did not improve with more training. The 

performance of all models against what is considered industry benchmark is detailed below in  

Table 8 which completed objective 6 as described in Section 1.2 of the project report 

 

Table 8 : Models Performance against State of Art Models 

Model  Best performance  Image Type  Performance against ImageNet  

MobileNet  0.9004  SDSS jpg  0.901  

ResNet50  0.8906  SDSS jPg  0.921  

VGC16  0.4712  SDSS filters  .0901  

Xception  0.8520  SDSS jpg  0.945  

 
All the objectives (chapter 1, section 1.2) have been implemented and the results presented has 

solved the research question (Chapter 1, section 1,2) as proposed. 

 

7 Conclusion and Future Work 
The goal of this project was to investigate the ability of a ANN to utilise the existing imagery 

and to show if it could be trained to provide a meaningful addition to the astronomers toolset 

in the identification and classification of deep space objects.  

Using development versions of TensorFlow made it possible to move processing to the GPU 

and this did cut training times down. Leveraging the existing models with their already pre-

trained filters made processing on a home PC possible. All models were trained for 10 epochs 

and a standard baseline for the models’ performance was established. This can be used as the 

basis for further training and for new objects to be added to the dataset once a catalogue of 

same is made available.  

One of the main limiting factors currently, in the field of ANN’s is the requirements for pre-

labelled data. The models require large volumes of prelabelled images to train on and new 

labelled images to validate against. The ability to identify exceptions from the norm would 

allow ANN’s to make a leap forward in image recognition in fields like medicine or even to 

identify a new deep space object which is not a star, galaxy or quasar.  

Based on the models used in this project, the conclusion is that FITS files from SDSS cover 

too wide an arc of space and that there are too many objects in them for an ANN to properly 

identify which objects are of importance or not. It may be possible to do so with many more 

thousands of examples, but given that using 120k files across multiple spectrum gave little 

better than a one in 3 change of selecting the correct classification out of 3 possible 

classifications, it would seem that this is not a usable solution. Using TensorFlow to capture 

the images from a monitor it may be possible to so real-time identification of objects. It would 

also be possible to expand the research if access to the galaxy morphology which was carried 
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out by Galaxy Zoo, which was the inspiration for this research in the first place, were made 

available, which project classified  

galaxies based on their morphology. 
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