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The Identification of Foot-Strike Patterns and
Prediction of Running Related Injuries

Shane Gore
x18174175

Abstract

It is suggested that how the foot strikes the ground while running may be an
important injury risk factor. Despite growing interest in foot-strike pattern and
injury, only a limited number of studies have examined this relationship, with in-
consistent findings. One source of this inconsistency may be how foot-strike pattern
is defined. Indeed, current definitions are generally based on the arbitrary division
of the foot into three equal parts. The aim of this project was twofold; 1) to
identify foot-strike groupings using a clustering approach and to assess their rela-
tionship with injury and 2) to determine if any of the running biomechanics could
predict injury classification. 3D biomechanical running data, collected prospect-
ively, from 282 participants and 47,423 foot-strikes was explored along with injury
occurrence. Six clustering algorithms were implemented and assessed with boot-
strapped resamples of the Adjusted Rand Index (ARI). Mean ARI scores ranged
from 0-0.007 indicating almost random assignment to the injury class. Six classific-
ation algorithms were then implemented and assessed with bootstrapped resamples
of accuracy, sensitivity and specificity. The Random Forest model demonstrated
the best performance (accuracy: 71%, specificity: 65%, sensitivity: 74%) and was
significantly different than predicting the majority class (p<0.01). The final model
contained ten features, of which, foot mechanics were not included. Collectively,
these results suggest that foot-strike pattern is not important with respect to injury
risk and the final features utilised by the Random Forest model likely represent the
best targets for the prevention of running related injury.

1 Introduction

Running is a popular form of exercise with substantial physical, social and mental be-
nefits (Rothschild, 2012). Indeed, it has been estimated that over 50 million people
participate in running in Europe alone (Scheerder et al., 2015). Despite the popularity
of this activity, up to 79% of recreational runners become injured every year (Van Gent
et al., 2007), and the biomechanical risk factors for running related injuries (RRI) remain
poorly understood (Bahr, 2016). While the cause of RRI is likely to be multifactorial,
it has been suggested that foot-strike technique may represent an important modifiable
risk factor (Pizzuto et al., 2016). This is because injuries are caused by excessive loading
relative to tissue strength and modifying foot-strike technique has been shown to alter the
characteristics of loading while running (Almeida et al., 2015). To date however, there
have been a limited number of studies that have appropriately examined this concept
and their findings have not been consistent. On the one hand some authors have iden-
tified an association between certain foot-strike patterns and injury (Goss and Gross,
2012, Daoud et al., 2012, Futrell et al., 2018) while others have found no relationship



(Warr et al., 2015, Paquette et al., 2017, Dudley et al., 2017, Donoghue et al., 2008,
Kuhman et al., 2016, Messier et al., 2018). A methodological consideration that may,
at least in part, explain these contrasting findings is the way foot-strike pattern is defined.

While running, it has been suggested that humans can utilise one of three foot-strike
patterns; forefoot, midfoot and rearfoot, defined respectively based on which part of the
foot contacts the ground first (Cavanagh and Lafortune, 1980) or using the angle of the
foot at ground contact as a surrogate measure (Altman and Davis, 2012). However, there
are at least two main challenges with this classification definition. Firstly, representing
foot-strike pattern as a single instance in time may result in discarding potentially im-
portant information pertinent to injury risk. While it is common in biomechanics to
represent a movement pattern using a single discrete point, this may misrepresent the
movement pattern being examined (Pataky, 2012). A more informative approach would
be to utilise the data contained in the whole movement pattern from the moment of initial
contact to toe off at the end of the stance phase. Secondly, and perhaps most importantly,
current classification approaches are based on the seminal work by Cavanagh and Lafor-
tune (1980) who arbitrarily divided the foot into three equal parts. A more appropriate
approach would leverage unsupervised clustering to identify groupings within the wave-
form data. To date however, to the best of the candidate’s knowledge, no research has
explictly investigated foot-strike patterns using unsupervised clustering methodologies.

Finally, while a number of studies have investigated the relationship between foot-strike
pattern and injury, there remains a dearth of prospective research that have investig-
ated foot-strike pattern and injury using a multivariate approach. This is important as
the movement of the foot may only become relevant to injury risk, when considered in
conjunction with the movement of other segments/joints of the body.

1.1 Research Question and Hypothesis

The primary aim of this project was to identify the presence of foot-strike groupings
using unsupervised clustering approaches and determine their association with injury.
The secondary research aim was to determine if any of the movement biomechanics from
the lower limbs and trunk could predict those who would go on to be injured, and if the
foot would be included in the final predictive models.

It was hypothesised that the association between injury class and the identified clusters
would be significantly and substantially different than random assignment, and that the
final classification models would include the foot in their prediction of injury class.

RQ: 7Can the use of unsupervised clustering (K-Means, Hierarchical, Mean Shift, OP-
TICS, HDBSCAN and Spectral clustering) enhance the identification of foot-strike pat-
terns related to running injuries to inform best clinical practice?”

Sub RQ: “Can whole body movement biomechanics predict running injury classification
using supervised learning (Naive Bayes, Elastic Net Logistic Regression, Bagged SVM,
Random Forest, AdaBoost and a weighted Stacked Ensemble) to identify targets for injury
prevention and if so, will the movement of the foot be included in the best performing
model?” This is important, as the movement of the foot may only become informative
with respect to injury risk when considered in conjunction with the biomechanics of the

whole body.



1.2 Research Objectives and Contributions

Research Objectives The research questions were investigated through a series of ob-
jectives as outlined below.

1. Critically evaluate the literature pertaining to foot-strike and injury, and clustering
in the biomechanics domain.

2. Implement event detection and dynamic time warping via landmark registration to
enable feature extraction from the stance phase of a running cycle.

3. Extract relevant features using the concept of Analysis of Characterising Phases
and using the TSFresh Python package.

4. Select relevant foot features for clustering using spectral feature selection.

5. Implement six clustering models (K-Means, Hierarchical, Mean Shift, OPTICS,
HDBSCAN and Spectral clustering).

6. Evaluate and compare the six clustering models (K-Means, Hierarchical, Mean
Shift, OPTICS, HDBSCAN and Spectral clustering).

7. Select relevant features for classification using a genetic search algorithm and tune
the models using Bayesian optimisation.

8. Implement six predictive classification models (Naive Bayes, Elastic Net Logistic
Regression, Bagged SVM, Random Forest, AdaBoost and a weighted Stacked En-
semble).

9. Evaluate and compare the six predictive classification models (Naive Bayes, Elastic
Net Logistic Regression, Bagged SVM, Random Forest, AdaBoost and a weighted
Stacked Ensemble).

Contributions The major contribution of this project was the identification of nat-
urally occurring foot-strike patterns using unsupervised learning and determining their
association with injury. To date, to the best of the candidate’s knowledge, no research
had utilised clustering to identify foot-strike patterns. Rather, previous research relied
on the arbitrary division of the foot into three equal parts. As such, this current project
can be seen as state of the art in this domain. Additionally, with respect to the sec-
ondary aim and sub research question, this current project extended upon the literature
by utilising best analytical practices not utilised in the prospective research investigat-
ing running injuries. These included the use of continuous rather than discrete point
analytics, the use of multiple machine learning models which had not been utilised in
the literature, advanced feature engineering and feature selection techniques, and the use
of out of sample testing to ensure generalizability of the findings. Finally, the overall
findings from this research project would suggest that the movement of the foot in the
sagittal plane is not important with respect to running related injury. This finding will
influence best clinical practice for the prevention and rehabilitation of running injuries.
Rather than focusing on foot-strike pattern, clinicians can be advised to target the final
features utilised in the random forest model to predict injury classification. Furthermore,
the results of this project will have implications for manufacturers who produce products
based on the concept of foot-strike pattern.

The remaining document is structured as follows: Section 2 presents a literature re-
view on foot-strike classification as well as the use of clustering within the biomechanics
domain. Section 3 will present the scientific methodology implemented in this project.
Section 4 will illustrate the three tier design specification used in this project. Section 5
will detail the implementation undertaken in this project including the clustering and



classification approaches. Section 6 will present the evaluations findings from the exper-
iments in this project along with a detailed discussion of the results. Finally, section 7
will summarize the take home messages from this project and propose future research.

2 Related Work
2.1 Foot-strike Pattern and Injury

Recently there has been a growing interest in the association between RRI and foot-
strike pattern as a potentially modifiable risk factor. Despite this, a quasi-systematic
review of the literature between January 1960 and January 2020 identified only nine
studies that have explicitly explored the relationship between foot-strike pattern and in-
jury (Goss and Gross, 2012, Daoud et al., 2012, Warr et al., 2015, Futrell et al., 2018,
Paquette et al., 2017, Dudley et al., 2017, Donoghue et al., 2008, Kuhman et al., 2016,
Messier et al., 2018) with conflicting findings. Full results and study characteristics are
presented in table 1. For further details on the systematic review approach taken, please
see section 6.1.1 of the configuration manual.

Table 1: Relationship between Foot-strike pattern and injury

Author Design Subjects Survalience Time Footstrikes Test Surface Relationship to injury.

(Goss and Gross, 2012) | Retro | n =881 12 months N/A N/A RFS >MFS >FFS

(Daoud et al. , 2012) Retro n =52 5 seasons * N/R Treadmill RFS >FFS

(Warr et al. , 2015) Retro n = 341 60 months 2 Overground -

(Futrell et al. , 2018) Retro n=125 N/R 10 Treadmill RFS >FFS **
(Paquette et al. , 2017) | Retro n =44 12 months 10 Treadmill -

(Dudley et al. , 2017) Prosp n =31 14 weeks 5 Overground
(Donoghue et al. , 2008) | Retro n=22 12 months 5 Treadmill

(Kuhman et al. , 2006) Prosp n=19 3 months 5 Overground

(Messier et al. , 2018) Prosp n = 300 24 months 3 Overground

Retro = retrospective, Prop = prospective, RFS = Rearfoot-strike, MFS = Midfoot-strike, FF'S = Forefoot-strike, N/R
= not reported,* = 5 collegiate cross-country seasons, ** = not statistically examined, - = No significant difference

The majority of studies found no statistically significant difference in the number of in-
juries sustained between runners utilising different foot-strike patterns (Warr et al., 2015,
Paquette et al., 2017, Dudley et al., 2017, Donoghue et al., 2008, Kuhman et al., 2016,
Messier et al., 2018). However, the most consistent association was that runners utilising
a RFS pattern have an increased prevalence of running related injuries (Goss and Gross,
2012, Daoud et al., 2012, Futrell et al., 2018). Interestingly, all three studies which identi-
fied an association between RF'S and injury utilised a categorical definition of foot-strike
pattern. While the reason for this trend is unclear, it may be related to non-linear rela-
tionship between foot-strike angle and loading (Stiffler-Joachim et al., 2019). Only three
of the nine studies were prospective in nature (Messier et al., 2018, Dudley et al., 2017,
Kuhman et al., 2016) and all three found no significant relationship between foot-strike
pattern and injury. While generally speaking, prospective research offers a higher level of
evidence in comparison to retrospective research, two of these studies had small sample
sizes with relatively short surveillance periods (Dudley et al., 2017, Kuhman et al., 2016)
which somewhat limits the weight of this evidence.

When exploring the remaining characteristics of the studies, the large heterogeneity
in study design makes identifying clear trends challenging. Study sample sizes ranged
from 19 participants to 881 participants [(median: 52 participants (interquartile range:
26.5 — 320. 5 participants)] and included an analysis of 2-10 foot-strikes per participant
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[median: 5 foot- strikes (interquartile range: 3 — 7.5 foot-strikes)]. With respect to injury
surveillance, the timeframe for participant tracking ranged between 3 months and 5 years
[(median: 12.3 months (interquartile range: 8.3 - 20. 5 months)|. Foot-strike technique
was explored via over ground running (Messier et al., 2018, Dudley et al., 2017, Kuhman
et al., 2016, Warr et al., 2015), on a treadmill (Futrell et al., 2018, Paquette et al., 2017,
Donoghue et al., 2008) and even via a self-reported questionnaire (Goss and Gross, 2012).
However, it is perhaps worth noting, that one study explored foot-strike pattern on both
a treadmill and over ground and obtained identical classification in both surfaces (Daoud
et al., 2012), suggesting that for experimental assessments of foot-strike, the surface does
not matter. While it is unclear why inconsistences exist in the literature, it may be
related to methodological variations in the studies. In particular, considerable variation
exists in how foot-strike pattern is defined. The following section will review foot-strike
definitions utilised within the literature.

2.2 Definitions of Foot-strike Technique and Identified Gaps

While both continuous and categorical representations of foot-strike technique have been
used in the literature, the general consensus is that while running, humans tend to use
one of three foot-strike techniques. These can be broadly defined as a forefoot-strike
when the anterior aspect of the foot contacts the ground first, a rearfoot-strike when the
heel contacts the ground first and a midfoot-strike when the foot contacts the ground
in a flat position (Forrester and Townend, 2015). Foot-strike technique was first as-
sessed using the concept of strike index (Cavanagh and Lafortune, 1980). This approach
utilises the centre of pressure location along the foot at initial contact, as a percentage
of total foot length, to group foot-strike patterns. Using strike index, a forefoot-strike
would be defined when the strike index was >69%, a rearfoot-strike would be defined
with a strike index <33% and a midfoot-strike would be defined if the strike index
was between these two thresholds (Cavanagh and Lafortune, 1980). However, a lim-
itation of this approach is the need for a force plate which may not be feasible as in
the case of running on a conventional treadmill or in an outdoor environment. As a
result, authors have proposed kinematic based methods as a surrogate measure for strike
index.

The first proposed surrogate measure was strike angle (Altman and Davis, 2012), which
utilises the sagittal plane angle of the foot with respect to the ground at initial contact.
In comparison to the strike index method, the authors identified a strong and significant
correlation between the two approaches (r = 0.86, p <0.01). The authors subsequently
devised a classification by firstly isolating foot-strikes identified as midfoot by the strike
index (Cavanagh and Lafortune, 1980), and creating upper and lower thresholds for
midfoot-strike based on the mean angle of those in the midfoot-strike group +/- 3 *
standard errors of the mean. Using this threshold, a forefoot-strike would be defined
when the foot angle was <- 1.6°, a rearfoot-strike would be defined with a foot angle of
>8°and a mid-foot-strike is defined when the foot angle is between - 1.6°and 8°(Altman
and Davis, 2012). While these thresholds defined by Altman and Davis (2012) are most
commonly utilised in the literature, others have suggested that midfoot-strike should be
represented by a foot-angle of 0°, with forefoot-strikes and rearfoot-strikes represented
by positive and negative angles respectively (Lieberman et al., 2010). Similarly, others
have utilised ankle angle rather than foot angle and proposed that a neutral ankle angle
should reflect a midfoot-strike, while a forefoot and rearfoot-strike are represented by a
positive and negative ankle angle respectively (Donoghue et al., 2008).



While the above quantitative approaches of defining foot-strike technique are an im-
provement on qualitative methods, they are subject to two main challenges. Firstly,
current definitions of foot-strike patterns (continuous or categorical) are defined based on
a single instance in time, that is, initial contact. However, it is plausible that foot move-
ment following initial contact is also important for injury risk and/or the classification
of foot-strike pattern. Indeed previous research has highlighted the value in consider-
ing the action of distal joints/segments which can influence joint stiffness (Farley and
Morgenroth, 1999), energy absorption (Yeow et al., 2011) and general running mechanics
(Almeida et al., 2015). While representing a movement pattern using a discrete time
point is typical within the biomechanics literature, this approach has been criticized as it
may not accurately characterise the movement pattern being analysed (Marshall et al.,
2015, Pataky, 2010, Richter et al., 2014c). A potential solution to limitation, is to ex-
amine the data contained in whole foot time series from initial contact to toe off. In
comparison to examining a discrete point in time, the benefit of exploring the inform-
ation contained in whole movement pattern has been illustrated in several applications
including distinguishing between healthy and injured subjects (Donoghue et al., 2008),
improved explanation of jump height (Richter et al., 2014a) and enhanced ability to de-
tect movement asymmetries in a variety of exercises (Marshall et al., 2015). To date
however, to the best of the candidate’s knowledge, no research has used the information
from the full stance phase to identify foot-strike patterns or determine its relationship
with injury.

The second limitation that is applicable to methods involving the classification of foot-
strike technique, is that there is no justification for the three groupings reported in the
literature (rearfoot, midfoot, forefoot). Rather, these three classifications are based on
the seminal work by Cavanagh and Lafortune (1980), who arbitrarily divided the foot into
three equal parts. A more robust approach would be to leverage unsupervised methods to
cluster the data and identify foot-strike patterns in foot movement during the stance phase
of running. To date however, to the best of the candidate’s knowledge, no studies have
explicitly utilised unsupervised clustering to identify foot-strike patterns. The following
section will review the use of clustering within the biomechanics domain.

2.3 Cluster Analysis in Biomechanics and Identified Gaps

Within biomechanics it is common to investigate the risk factors for an injury using a
single group design. However, this approach risks masking potentially important injury
risk factors should the single group’s movement not be suitably homogeneous. While
often authors will delimit a study based on known cofounding factors, this is not always
possible and/or the cofounding factors may be unknown. An alternative to relying on
a-priori knowledge of cofounding factors, is to utilise an unsupervised machine learning
technique known as clustering. Clustering is a prominent methodology which is used to
group unlabelled data into clusters sharing similar qualities, typically based on a distance
or similarity metric (Xu and Tian, 2015). Within biomechanics, unsupervised clustering
has been utilised successfully for a number of applications, from recognising pathological
walking gaits (Chau, 2001, Roche et al., 2014) to identifying performance determining
factors during jumping (Richter et al., 2014b).

For example, in the clinical setting, Franklyn-Miller et al. (2017) examined over 300
patients with Athletic Groin Pain during a side stepping task and identified three sub-



groups that were independent of anatomical pain location. The authors concluded that
rehabilitation should target the possible propagative biomechanics identified in the form
of the movement clusters. While in contrast, Richter et al. (2014a), compared the use of
Hierarchical clustering, K-means and the Expectation—-Maximization algorithms to help
explain jump height. The authors determined that Hierarchical clustering performed
best and extended the ability of a stepwise regression analysis to predict jump height in
comparison to a single group design by 7%.

Within the literature exploring running biomechanics, cluster analysis has been reported
for non-injured runners (Phinyomark et al., 2015) and injured runners alike (Dingenen
et al., 2020, Jauhiainen et al., 2020, Watari et al., 2018). For example, Phinyomark et al.
(2015) applied Hierarchical cluster analysis to 121 healthy runners and identified two
running pattern clusters which were independent of participant demographics or running
velocity. When exploring the risk factors for patellofemoral pain syndrome, the com-
parison with the healthy clusters identified two independent biomechanical risk factors
which could be subsequently targeted with rehabilitation. Later, Watari et al. (2018) also
explored patellofemoral pain syndrome using Hierarchical clustering applied to pelvic ac-
celeration profiles. The authors identified two subgroups of runners, but later determined
that the variability observed in the running biomechanics occurred mainly due to known
sex-related factors. Similarly, Jauhiainen et al. (2020) identified a five clusters solution
using Hierarchical clustering in injured runners. Despite identifying well defined clusters,
the authors concluded that the homogeneous biomechanical patterns existed independent
of injury location suggesting the clusters were of little relevance to the injuries explored.

With respect to foot biomechanics and clustering, the primary application of cluster-
ing has been with regard to diabetic feet and pressure measures (Sawacha et al., 2010,
Deschamps et al., 2013, Bennetts et al., 2013). Using K-means clustering all three studies
attempted to identify plantar pressure distribution clusters during walking as a means to
determine mechanical interventions for the prevention and/or treatment of the diabetic
foot. To date, to the best of the candidate’s knowledge, only one study has explored clus-
tering with respect to foot-strike pattern (Forrester and Townend, 2015). However, rather
than exploring the presence of foot-strike patterns per se, the authors investigated how
the traditional foot-strike patterns (as defined by foot angle at initial contact) changed
with increasing velocity. Using a regression mixture model, the authors explored the
influence of increasing running velocities on foot angle in 102 runners. The authors iden-
tified three clusters describing the foot-strike angle vs running velocity behaviour of the
participants and suggested that the clusters could represent a novel and relevant means
of grouping athletes for further biomechanical running assessment. To date however, to
the best of the candidate’s knowledge, no research has explored if naturally occurring
clusters exist in terms of foot-strike pattern.

There are two major limitations in the current use of clustering within the biomechanics
domain. Firstly, a challenge with clustering algorithms is that they may identify well
defined clusters which have little practical implication with respect to the research ques-
tion being examined. This was well illustrated in the study by Jauhiainen et al. (2020)
and who identified that the clusters identified had no relevance to the injuries explored
and by Watari et al. (2018), who observed that the identified clusters simply reflected
known sex differences in running biomechanics. This is an important challenge with
respect to unsupervised learning, that is too often overlooked in biomechanics research



(Dingenen et al., 2020, De Cock et al., 2006). Future research that utilises clustering,
should explore means of assigning value to the identified clusters in addition to metrics
of separability and compactness. A second challenge with the literature reviewed in the
biomechanics domain, is that all but one study (Richter et al., 2014b) reported the use
of a single clustering algorithm. As per the no free lunch theorem (Wolpert, 1996), there
does not exist a single universally best performing machine learning algorithm, therefore
clustering research should explore a wider range of algorithms to determine the optimal
solution for the data being examined. The following section will review the prospective
studies that have investigated running related injuries.

2.4 Prospective Biomechanical Risks for Running Injuries

Within the biomechanics literature there has been considerable interest in the biomech-
anical risk factors for running related injuries (Pohl et al., 2008, Taunton et al., 2002).
However, the majority of this research has been retrospective in nature. An alternative
and more robust research design is to investigate the risk factors for running related injur-
ies prospectively. A recent systematic review of the biomechanical risk factors for running
related injuries identified 16 prospective studies (Ceyssens et al., 2019). Overall, in terms
of kinematics (movement), the movement of the foot and ankle were most commonly
identified as a risk factor for injury (Dudley et al., 2017, Kuhman et al., 2016, Hein et al.,
2014) followed by the knee (Hein et al., 2014, Messier et al., 2018). Despite this, there
was considerable inconsistencies in the research findings. While, it is unclear what the
source of these inconsistencies are, a primary review conducted of the methods within the
studies, revealed that there were considerable statistical limitations associated with the
research. These included not controlling for multiple comparisons, not conducting out of
sample testing and only statistically examining discrete time points within biomechanical
waveforms. For a more detailed review of this literature, please see section 6.1.2 of the
configuration manual.

To conclude, this review of related work identified several studies which have investigated
the association between foot-strike technique and injury. Despite the growing interest in
this area, there has been a lack of prospective research that has examined the relationship
between foot-strike technique and injury appropriately, and in general, the findings from
the literature have not been consistent. A methodological consideration which may in
part help explain this conflicting evidence, is how foot-strike technique is defined. Current
definitions of foot-strike technique utilised in the literature are based on a single instance
in time (initial contact) and are often based on the arbitrary division of the foot into three
equal parts. It was suggested that a more objective approach would leverage unsupervised
clustering to identify appropriate foot-strike patterns. While a review of the literature
would indicate that the use of clustering in the biomechanics domain is not uncommon,
to date no research has explored the use clustering to identify foot-strike patterns. When
exploring the prospective biomechanical risk factors for running related injuries, it would
appear that while the foot and ankle were most commonly identified as risk factors, there
was conflicting evidence in the literature. While the source of this conflicting evidence is
unclear, it may be related to the specific injuries being studied or the statistical limitations
identified. The following section will outline the methodology employed in this project to
explore the presence of foot-strike patterns and the prediction of running related injuries.



3 Foot-strike Methodology Approach

The methodology employed in this project, will follow a modified Knowledge Discovery
in Databases (KDD) approach (Fayyad et al., 1996) as illustrated in Figure 1.

Knowledge

S
Data Mining

Transformed Data f
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I
Preprocessed Data Clustering & classification models
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Target Data H : i Features transformed including;

Landmark registration, dimensionality

i '

i reduction and data scaling.
Raw Data ;}m g
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Relevantbiomechanical features selected

Figure 1: Foot-strike methodology approach

3.1 Data collection and Selection

The 3D motion of 47,423 foot-strikes, collected prospectively from 282 participants, was
explored along with 18 months of injury surveillance (see config manual section 6.2.2).
This data was captured in Dublin City University as part of the Running Injury Surveil-
lance Centre (RISC) study and ethical approval was granted (Ref: DCUREC/2017/186).

3.1.1 Data Capture Description

Prior to data capture, 32 reflective markers were placed on known anatomical landmarks
and participants where asked to run on a motorised treadmill (Flow Fitness, DTM3500i,
Netherlands) at 9 km/h for one minute. The 3D motion data was captured with sixteen
Vicon cameras (Vicon, UK) recording 200 HZ (Figure 2) and saved as C3d file format.

Figure 2: Data capture set up



3.2 Pre-processing

Pre-processing included filtering of the data and screening for inappropriate waveforms
which were corrected in an iterative process using a custom written application and mo-
tion capture software.

3.3 Transformation

Transformation included time warping of the biomechanical signals using landmark re-
gistration (Moudy et al., 2018) and generating features using the concept of Analysis
of Characterizing Phases (Richter et al., 2014a) and also the TSFresh python package.
The generated features were screened for outliers and imputed when appropriate (Christ
et al., 2018).

3.4 Data Mining

Data mining involved implementing the clustering and classification approaches utilized
within this project. For clustering this inlcuded; K-means, Hierarchical, Mean Shift, OP-
TICS, HDBSCAN and Spectural clustering. For the classification, this included Elastic
Net Logistic Regression, Naive Bayes, Random Forest, Bagged SVM, AdaBoost and a
weighted Stacked Ensemble.

3.5 Knowledge

Finally, the results of the data mining process are evaluated and visually inspected to
bring about knowledge. For the clustering approaches the primary evaluation metric
was the adjusted rand index. For the classification approaches it was a combination of
accuracy, specificity and sensitivity.

4 Design Specification

The following three-tier architecture diagram depicts the design process used in this
project for the identification of foot-strike patterns and prediction of injury classification
(Figure 3).

{ it 4\ matplitlib
4 . MATLAB [Seaborn

Data Analysis

.. Clustering
“ /. K-Means, Hierarchal, Mean Shift,
OPTICS, HDBSCAN, Spectral

Client Tier

Logic Tier

Predictive Classification

) Elastic Net, Naive Bayes, Random Forest,
Bagged SVM, AdaBoost, Stacked Ensemble |

|
|
C&D

= )
‘Em
Data extracted to C3d files Data stored as csv files

Figure 3: Three tier design specification for the foot-strike and running injury analysis

The process flow begins in the client tier where motion capture and visualisation are
conducted using Vicon Nexus software. Data is passed from the motion capture process
to the data (persistent) tier where the biomechanical data is extracted from the C3d files,
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pre-processed and stored as csv files. This pre-processed data is then passed to the logic
tier, where it is modelled using both unsupervised clustering and predictive classification
models to answer the primary and secondary research question of the project respectively.
The results are then passed to the client tier again where the findings are visualised using
MATLAB, and the Python packages; Seaborn and Matplotlib. The following section will
detail the implementation of this research design.

5 Implementation

This project is split into two main aims. Firstly, to identify the presence of foot-strike
groupings using unsupervised clustering approaches and determine their association with
injury and secondly, to identify the relationship between all the biomechanical features
and injury and determine if any foot was included in the final classification models. As
such, the implementation pipeline splits following feature engineering and will be detailed
separately (Figure 4).

General Implementation
1. Data Filtered with 4t order Butterworth filter at 15 6. Outliers detected using Isolated Forests & Local Outlier

Hz. Analysis.
2. Events detected and steps extracted. 7. Data imputed using MICE.
3. Waveforms time normalised to 101 points. 8. Near zero variance and highly correlated features
dropped.
4. Waveforms aligned using landmark registration. pp
. 9.  Datasplitinto train and test sets (70:30)
5.  Featuresgenerated using ACP and TSFresh.

Clustering %5 Predictive Classification

1. Datadelimited to Foot Features. Each step evaluated using 5 fold cross validation and area under
. . the ROC. Trainfolds rebalanced using SMOTE.
2. Trainingset rebalanced using SMOTE. L .
. i 1. Initialise model with all features.
3. FeaturesSelected using Spectral Feature Selection. Hyperparameter tune with random grid search.
4. Dataclustered. 2. Identify near optimal features using genetic algorithm.
3. Refineselected features using recursive feature
elimination.

4.  Fine tune model hyperparametersusing Bayesian
optimisation.

5. Select probability threshold using Youden’sJ statistic.

Figure 4: The key steps in implementation

ACP = Analysis of Characterizing Phases, MICE = Multivariate imputation by chained equations, SMOTE = Synthetic
minority oversampling technique. For further details, please see the text below.

5.1 General Implementation

This section involves the general pre-processing and feature engineering steps. It directly
relates to the implementation and achievement objectives 2 and 3 detailed in section 1.2.
5.1.1 Pre-processing

3D marker trajectories were initially tracked, cleaned and screened in Vicon Nexus
software. Data was then filtered using a 4th zero order Butterworth filter at 15Hz to
remove impact artefacts and joint/segment angles were modelled for the trunk and lower
limbs as per the Vicon Plug in Gait model (Vicon, UK). 15Hz was selected as the cut off
frequency following a residual analysis (Winter, 2009).

5.1.2 Data Transformation

Joint angular data as defined by the Plug in Gait model (Vicon, UK) was extracted
from the C3d files using the biomechanical toolkit and MATLAB 2018b (MathWorks,
USA) for each foot-strike, from initial contact to toe off. Initial foot contact was defined
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by firstly identifying a window in which the ankle marker was within 10cm of its local
minima and subsequently using the first peak negative horizontal velocity of the toe or
heel marker as the foot contact event. Toe off was then identified in the same window of
time, using the toe jerk maxima (3rd derivative of toe marker position) following peak
knee extension as a combination of two previously published algorithms (Handsaker et al.,
2016, Dingwell et al., 2001). The segmented data was then time normalised to 101 data
points using a cubic spline to represent 0 - 100% of stance.

Foot angle was manually calculated as the angle between the heel and toe markers as
previously proposed (Altman and Davis, 2012). Foot angular velocity and angular accel-
eration were then calculated as the 2nd and 3rd derivative of the foot angle data respect-
ively. The biomechanical waveform data from the whole body was then screened using
a custom written application developed with MATLAB 2018b (see configuration manual
section 3.3). In an iterative process, inappropriate waveforms were then re-screened and
corrected as appropriate. After screening for outliers using both statistical methods and
manual inspection of the biomechanical waveforms, and removing those individuals who
dropped out from the prospective arm of this project, the data set contained 43,184
foot-strikes and a matrix size of 1,813,728 x 101.

In order to remove unwanted temporal variation in the normalised kinematic signals,
a landmark registration algorithm as previously described (Moudy et al., 2018), was
employed using custom python code (Figure 5). This approach was taken, as it has been
shown to improve the predictive power of classification algorithms (Moudy et al., 2018).
In contrast to the algorithm described by Moudy et al. (2018), an Akima spline (Akima,
1970) was used rather than a cubic spline to reduce fitting errors and a divide and
conquer binary search algorithm was utilised to speed up convergence. In comparison
to the more traditional approach of dynamic time warping, using a global landmark
approach (Ramsay and Silverman, 2005) as employed in this current project, retains the
relationship between segments and joints which is important for the interpretation of
biomechanical data.

Original Data . Landmark Registered Data
T T T T T T T

Knee Angle (°)
Knee Angle (°)

% grounﬂ contact ' % grounﬂ contact

Figure 5: The effect of landmark registration

The left graph depicts the original data with considerable temporal variation as highlighted by the red star marking
peak knee flexion while the right graph depicts the same data post landmark registration
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5.1.3 Feature Engineering

In order to reduce the dimensionality of the data and extract key features, the concept
of ‘Analysis of Characterizing Phases’ (ACP) was used to generate participant scores
that represent the movement of each participant within key phases of variation using
VARIMAX rotated principal components (Richter et al., 2014a). This approach was
utilised as it has been demonstrated to outperform other popular continuous waveform
techniques such as functional principal component analysis (Richter et al., 2014c). Using
ACP, each score captures the samples movement for each identified phase (k) as the
summed difference between a participant’ s waveform (p) and the mean waveform (q) for
each time point (i) between the start (n) and end (m) of a phase. This was completed
for each biomechanical waveform (j) (Equation 1):

feature;, =Y " p (i) — q(i) (1)

To enhance the generalisability of this method, the above approach was conducted 100

times on a random 70% subsample. Only robust phases were then retained, defined

as being identified more than 80% of the time (Richter et al., 2019) (Figure 6). All

biomechanical waveforms depicting the ACP phases are presented in section 6.2.1 of the
configuration manual.
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(a) Foot Angle

60
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Foot Acceleration (°/52)
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% foot strike

(b) Foot Acceleration

Figure 6: Example biomechanical waveforms for foot angle and foot acceleration

Data segmented by injury status, identified robust ACP phases are shaded in grey

In addition to the features generated by ACP, basic statistical features were generated
from the time series data using the Python package, TSfresh (Christ et al., 2018). Outliers
in the generated features were detected using isolated forests and local outlier factor.

13



These outliers were explored for patterns, and when absent, were removed. Missing data
was then imputed using multivariate imputation by chained equations and a Bayesian
ridge regression approach, based on the twenty nearest features. After feature engineering
and dimensionality reduction, the final data set was of size 43,184 x 362. The data was
partitioned into two class labels: prospectively injured and prospectively uninjured. The
data was imbalanced with 66% becoming injured. A full list of the features and their
description is provided in section 6.3.1 of the config manual.

5.2 Clustering Implementation

This section relates to the implementation of the clustering models. It addresses the
implementation and achievement of objectives 4 and 5 as outlined in section 1.2.

5.2.1 Feature Selection

Given the aim of this section to identify naturally occurring foot-strike groups, the full
feature space was first delimited to foot related features. After removing features with
zero, or near zero variance (<98% variance) and randomly removing highly correlated
features (r >0.90), feature selection was conducted in an unsupervised manner using
the concept of Spectral Feature selection (SPEC) (Zhao and Liu, 2007). This approach
involves constructing a Laplacian matrix and evaluating the relevance of each feature by
its consistency with the structure of the graph induced from the similarities among objects
(Tang et al., 2014). While this approach is often used to select a predefined number of
features, within this current project, the feature scores were sorted and plotted (Figure 7).
The number of features to retain were then selected by identifying an elbow point in the
graph. The retained five features (maximum foot acceleration, mean foot acceleration
from 6-20% of the foot-strike, foot acceleration variation, maximum foot velocity and
median foot velocity) had a Hopkin’s statistic of 0.96 suggesting the dataset had high
clusterability.

Spectral Feature Selection
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Figure 7: The SPEC scores plotted in sorted order

5.2.2 Clustering Models

In line with the no free lunch theorem (Wolpert, 1996), a wide range of clustering
models were explored in this project in order to identify a suitable clustering solution
in the foot-strike patterns. In addition to the most commonly implemented models in
the biomechanics literature (K-means and Hierarchical clustering), four other cluster
models were explored (Mean Shift, OPTICS, HDBSCAN and Spectral clustering). All
clustering models were implemented using scikit-learn (Pedregosa et al., 2011), with the
exception of HDBSCAN which was implemented using the HDBSCAN Python package.
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Each clustering model was assessed with a variety of hyperparameters using a greedy grid
search. In total 51 cluster variations were assessed (see config manual section 6.4). The
evaluation and results of the clustering models will be detailed in section 6.1.

5.3 Classification Implementation

This section relates to the implementation of the predictive classification models. It
addresses the implementation and achievement of objectives 7 and 8 in section 1.2.

5.3.1 Feature Selection and Model Tuning

Given the aim of this section to identify if any of the biomechanical features could clas-
sify those who became injured, all features were included in this analysis. After removing
features with zero, or near zero variance (<98% variance) and randomly removing highly
correlated features (r >0.90), feature selection and model tuning was conducted over sev-
eral steps (Figure 4). Data was firstly split into training and testing datasets using a
70:30 ratio in a stratified manner. All training and tuning was conducted on the training
dataset. After identifying a suitable hyperparameter solution for each machine learning
model using a random search of the hyperparameter grid with all features, feature selec-
tion was conducted in two stages. Firstly, a genetic search algorithm was implemented
with five-fold cross validation to identify an optimal or near optimal solution to feature
selection. This was completed using the sklearn-genetic package (Calzolari, 2019). The
parameters chosen included a population of 50, cross over probability of 0.8, mutation
probability of 0.2 and a tournament size of 3. These values were chosen similar to the
defaults proposed by Kuhn and Johnson (2019), who suggest these work well in practice.
Finally 200 generations were tested to find the best solution, with a constraint of retaining
a maximum number of features less than the total number of features * 0.25. The second
step of feature selection was to implement five-fold cross validated recursive feature elim-
ination to identify the best subset of features from the delimited feature space following
the genetic search approach. This was implemented as genetic algorithms often tend to se-
lect larger feature subsets than other feature selection methods since there is little penalty
for keeping a feature that has no impact on predictive performance (Kuhn and Johnson,
2019). In order to enhance generalisability, a sparse model was encouraged by choosing
the smallest number of features within one standard error of the feature set which maxim-
ised the area under the receiver operating characteristic curve (James et al., 2013). The
model was then fine-tuned using a 3 x 2-fold nested cross validated Bayesian optimisation
approach via the scikit-optimize package which uses Bayes theorem to explore and exploit
the hyperparameter space. Finally, the probability classification threshold was selected
to balance sensitivity and specificity by using Youden’s J statistic (Figure 8).

5.3.2 Predictive Classification Models

Given that there is no such thing as a universally best machine learning model (Wolp-
ert, 1996), several models were assessed in this project. These included the Naive Bayes
model, Elastic Net Logistic Regression, Bootstrapped Aggregated (Bagged) SVMs, Ran-
dom Forest, AdaBoost and a weighted Stacked Ensemble of the aforementioned ap-
proaches. All classification models with the exception of the Stacked Ensemble were
implemented using scikit-learn (Pedregosa et al., 2011). Given that scikit-learn does not
directly support weighted stacking, a pragmatic equation was proposed which took into
account the base classifier’s class vote, it’s average performance and the confidence of
it’s class vote. Each model was tuned over an extensive range of hyperparameters using
Bayesian optimisation. For further details on the chosen models, the hyperparameter
grid space for each model and the equation for the weighted stacked ensemble, please
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Figure 8: Example ROC curve for the random forest model
The probability threshold was set using Youden’s J statistic indicated by the black dot

see the configuration manual (section 6.5). The evaluation and results of the predictive
classification models will be detailed in the following section (section 6.2).

6 Evaluation

6.1 Cluster Evaluation and Results

This section details the evaluation, comparison and results of the clustering models. It
addresses the implementation and achievement of objective 6 as outlined in section 1.2.

6.1.1 Evaluation Methods

Each clustering solution was initially assessed using three internal evaluation metrics.
Firstly, silhouette coefficient, which is a measurement of within to between cluster com-
pactness based on a distance measure. Secondly, to appropriately evaluate clustering
solutions based on density, the density based validity index, which is a measurement of
within to between cluster density was implemented (Moulavi et al., 2014). Finally, a cus-
tom function based on the cluster validity index was implemented, that has been shown
to be a generic cluster validation score, that outperforms other commonly utilised metrics
(Rodriguez et al., 2018). This cluster validity index validates the clustering solutions via
an ensemble of supervised classifiers. The idea of this approach, is that good cluster-
ing partition should induce the construction of a good classifier. Within this project,
a Logistic Regression, Random Forest, Gaussian Naive Bayes, Support Vector Machine
(SVM), K-Nearest Neighbour and a Linear Discrimination Analysis was implemented in
a stacked voting ensemble similar to the method described by Rodriguez et al. (2018).
Finally, once the best performing cluster solutions were identified using the above cri-
teria, the clusters were evaluated using the adjusted rand index (ARI) across 100 random
bootstrapped samples of the hold-out test set. Levene’s test for homogeneity of variance,
suggested unequal variances across the groups (p <0.01), so Welch’s ANOVA was conduc-
ted, which is robust to both unequal variances and non-normality (Delacre et al., 2019).
Similarly, post hoc comparisons when required, were conducted using Games-Howell tests
which like the Tukey HSD test, uses Tukey’s studentized range distribution but is based
on Welch’s degrees of freedom correction. Given the non-parametric nature of this test,
it is also robust to both unequal variances and non-normality (Ruxton and Beauchamp,
2008). For pair wise comparisons, standardised effect sizes were reported using Cohen’s
D as small (<0.5), medium (0.5 - 0.8) and large (>0.8) (Cohen, 1988). Alpha level was
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set at 0.05 for the statistical tests.
6.1.2 Results

Of the six clustering models assessed, both Mean Shift and HDBSCAN failed to con-
verge to a suitable solution and were not considered any further. As a metric, the recently
proposed cluster validity index (VIC) (Rodriguez et al., 2018) provided little discrimin-
ative information (results were either excellent or undefined). As such, the VIC was not
considered when delimiting the best clustering models. The best hyper parameter solu-
tion for the four retained clustering models are presented below (Figure 9). All of the
clustering models assessed are presented in section 6.6 of the configuration manual.

Kmeans (k = 3) Hierarchical (Linkage = average(k = 2))

ARI:0.002 VIC:Na SS:0.333 DBCV:-0.845 ARI:0.002 VIC:1.0 SS:0.641 DBCV:-0.566

PC2

OPTICS (min samples = 5) Spectral (k = 2, Assignment = discretize)

ARI:0.007 VIC:Na SS:-0.466 DBCV:0.093 8 ARI:0.002 VIC:1.0 SS:0.646 DBCV:-0.698

Figure 9: Visualisation of the cluster labels on a plot of the first two principle components

Each plot represents the best hyperparameter solution for the four retained clustering models; K-means, Hierarchical,
OPTICS and Spectral.

The one-way Welch’s ANOVA demonstrated a significant difference between the classi-
fication models for ARI scores, F (4,208.4) = 330, p <0.01 (Figure 10). A Games-Howell
post hoc test indicated that the only approachs that were not statistically significantly
different from another were the Spectral and Hierarchical clustering approaches (p = 0.35,
D = 0.26). All other pairwise comparisons were significantly different with Cohen’s effect
size ranging from medium to large (p <0.05, D = 0.42 — 4.17). Furthermore, multiple
one-sample welch t-tests with holm’s correction, indicated that all approaches, with the
expectation of the traditional approach, were significantly different than zero (p <0.05).
The best performing clustering approach was the OPTICS model. Despite this, the mean
ARI scores across all approaches were low (0 - 0.007) indicating almost random grouping
relative to the injury label. Footstrikes were classified as RFS, MFS and FFS 87%, 11%
and 2% of the time respectivly using the traditional classification approach. Full post
hoc comparisons are presented in the configuration manual (section 6.6.1).
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Figure 10: Bootstrappred Adjusted Rand Index scores

6.2 Classification Evaluation and Results

This section details the evaluation, comparison and results of the predictive classification
models. It addresses the implementation and achievement of objective 9 as outlined in
section 1.2.

6.2.1 Evaluation Methods

The final tuned classification models were evaluated using 100 random bootstrapped
permutations. Given the imbalanced nature of the class labels, the classification models
were assessed using a combination of accuracy, specificity and sensitivity. For all three
assessments, Levene’s test for homogeneity of variance suggested unequal variances across
the groups (p <0.01), so Welch’s ANOVA was conducted, which is robust to both un-
equal variances and non-normality (Delacre et al., 2019). Similarly, post hoc comparisons
when required, were conducted using Games-Howell tests which uses Tukey’s studentized
range distribution with Welch’s degrees of freedom correction. Given the non-parametric
nature of this test, it is also robust to both unequal variances and non-normality (Rux-
ton and Beauchamp, 2008). For pair wise comparisons, standardised effect sizes were
reported using Cohen’s D (Cohen, 1988). For the accuracy findings, multiple one sample
welch t-tests were also conducted with holm’s correction between the classification ap-
proaches and 50% (random assignment). Finally, once the best classification model was
identified, feature importance and relationship with the class label was determined using
a permutation approach and dependency plots respectively. Alpha level was set at 0.05
for the statistical tests.

6.2.2 Results

In terms of accuracy, the one-way Welch’s ANOVA demonstrated a significant difference
between the classification models, F (6,299.3) = 7924, p <0.01 (Figure 11). A Games-
Howell post hoc test indicated the only approaches that were not statistically significantly
different from another were AdaBoost vs Naive Majority comparison (p = 0.29, D = 0.31)
along with Random Forest vs Stacked Ensemble comparison (p = 0.89, D = 0.17). All
other pairwise comparisons were statistically different with large effect sizes (p <0.01, D
= 1.4 — 28) (see config manual section 6.7.1). All approaches were also statistically signi-
ficantly different from 50 (random assignment) as determined using holm corrected one
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sample welch t-tests (p <0.01), however only the Random Forest (p <0.01, D = 3.86) and
the Stacked Ensemble (p <0.01, D = 3.88) models were statistically significantly greater
than the Naive Majority classifier. Overall, the best performing model in terms of accur-
acy was the Random Forest model (mean accuracy = 0.71), while the worse performing
model was the Bagged SVM (mean accuracy = 0.51).
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Figure 11: Bootstrappred accuracry for the six models and the Naive Majority classifier

In terms specificity, the one-way Welch’s ANOVA demonstrated a significant difference
between the classification models F(5,252.6) = 3703, p <0.01 (Figure 12 [a]). Games-
Howell post hoc tests indicated that all methods were statistically significantly different
from one another (p <0.01), with the exception of the Random Forest model vs Stacked
Ensemble comparison (p = 0.71, D = 0.2) and the Naive Bayes vs Random Forest com-
parison (p = 0.32, D = 0.30). In terms of specificity, the best performing model was
the Elastic Net Logistic regression (mean specificity = 0.73), while the worst performing
model was the Bagged SVM (mean specificity = 0.47). Full post hoc comparisons from
the specificity bootstrapped comparisons, are presented in section 6.7.2 of the configura-
tion manual.

In terms sensitivity, the one-way Welch’s ANOVA demonstrated a significant difference
between the classification models F(5,244.2) = 618, p <0.01 (Figure 12 [b]). Games-
Howell post hoc tests indicated that all methods were statistically significantly different
from one another (p <0.01), with the exception of the Random Forest model vs Stacked
Ensemble comparison (p = 0.78, D = 0.20) and the Naive Bayes vs Adaboost comparison
(p=0.9, D =0.12). In terms of sensitivity, the best performing model was the Random
Forest Model (mean sensitivity = 0.74) while the worst performing model was the Elastic
Net regression model (mean specificity = 0.52). Full post hoc comparisons from the
sensitivity bootstrapped comparisons, are presented in section 6.7.3 of the configuration
manual.
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Figure 12: Bootstrappred sensitvity (a) and specificity (b) for the six classificaiton approachs

In terms of feature importance, while both the Stacked Ensemble and the Random Forest
models were deemed the best performing models in this project, given the non-significant
difference between the two models in terms of accuracy, specificity and sensitivity, only the
Random Forest model was considered in terms of feature importance. The final Random
Forest model contained ten features [Knee flexion Velocity (1-7%), Thorax frontal plane
angle (90-10%), Thorax ipsilateral tilt velocity (90-100%), Knee rotation velocity (90-
100%), Pelvis sagittal plane tilt (4 -24%), Hip extension acceleration (66-82%), Ankle
plantar flexion velocity (61-71%), Ankle frontal plane ROM, mean Hip sagittal plane
acceleration for the full stance phase, and mean Knee transverse plane acceleration for
the full stance phase] (Figure 13 [a]). When considering the partial dependency of the
four top features (Figure 13 [b]), with the exception of Pelvis sagittal plane tilt (4 -24%),
all feature demonstrated a generally positive partial dependency relationship with injury
classification.
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Figure 13: Feature Importance (a) Permutation Importance Test (b) Partial Dependency Plots
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6.3 Discussion

The primary aim and research question of this project was to identify the presence of
naturally occurring foot-strike groupings, using unsupervised clustering and to determine
their association with injury. To date, to the best of the candidate’s knowledge, this was
first application of clustering to identify foot-strike groupings. Rather, the traditional ap-
proaches of foot-strike classification are commonly based on the arbitrary division of the
foot into three equal parts (Cavanagh and Lafortune, 1980). Within this current project,
well defined clustering solutions were identified (e.g. Spectral clustering with a silhouette
score of 0.65), that compare favorably with other studies that have explored clustering
in general running biomechanics studies [e.g. silhouette score of 0.53 (Dingenen et al.,
2020)]. Despite these promising findings, and in contrast to the hypothesis of this pro-
ject, the bootstrapped analysis of the Adjusted Rand Index scores demonstrated almost
random assignment to injury class for the six clustering models explored in this project.
This is similar to the findings by Jauhiainen et al. (2020) who identified a five cluster
solution in general running biomechanics, but concluded the clusters had no relevance to
the injuries explored. Furthermore, and in agreement with the other prospective analysis
of foot-strike angle and injury (Messier et al., 2018, Dudley et al., 2017, Kuhman et al.,
2016), this project found no association between the traditional approach of classification
and injury. These results suggest that the movement of the foot by itself, contains little
information relevant to injury risk in runners. Unlike previous prospective research how-
ever, this current project explored a larger number of foot-strikes (>47,000 foot-strikes)
compared to what has been reported (155 —900), and as such adds substantial weight to
the body of evidence.

The secondary aim and sub research question of this project was to determine if any
of the biomechanical features captured could predict risk of injury, and to determine if
the best classification models contained any foot features. The justification for this ap-
proach was that the movement of the foot may only become important with respect to
injury when considered in conjunction with other biomechanical features. To answer this
second aim, six classification models were trained, and the performance of the models
were evaluated using bootstrapped resamples of accuracy, sensitivity and specificity. The
results from this experiment illustrated that the both the Random Forest model and the
Stacked Ensemble were useful classifiers, reporting a mean accuracy of 71% and 70%
respectively, both of which were statistically significantly different than classifying the
majority class (p <0.01). While direct comparison to the literature is difficult given the
different evaluation metrics utilised by previous research (e.g. Hazard Ratio, Pseudo R?),
in comparison to the 16 studies included in a recent systematic review of prospective risk
factors for running injury (Ceyssens et al., 2019), it would appear that this current project
is state of the art (see config manual, section 6.1.2 for a detailed review). For example,
all the studies in the systematic review which utilised multivariate models, failed to use
any form of out of sample testing and only explored a single model. This can lead to poor
generalisability of the studies’ findings, and as per the no free lunch theorem (Wolpert,
1996), runs the risk of utilising a non-optimal model for the data being examined.

Within this current project, the bagged SVM was the worst performing model with ac-
curacies little better than random guessing. While the reason for this poor performance
is unclear, it may be related to suboptimal bootstrap parameters. Indeed, the hyper-
parameter grid space for this model focused on the SVM base estimator rather than the
bootstrapping approach. Future research should further evaluate this process. Inter-
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estingly, the weighted Stacked Ensemble did not outperform the Random Forest in this
project in terms of accuracy. This may be due to two reasons. Firstly, as scikit learn does
not directly support weighted stacking, a pragmatic equation was proposed (see config
manual section 6.5) which may not have been optimal. Secondly, the Stacked Ensemble
was tuned on Youden’s J statistic and as such, rather than optimising for accuracy, it was
a slightly more balanced classifier in comparison to the Random Forest model. Despite
this, the differences between the two models were not significant and as such, the Random
Forest was considered in further detail.

In terms of sensitivity and specificity, the Random Forest model was able to correctly
classify 74.3% of those who went on to become injured and 65% of those who did not.
These are compelling findings when considering the simple binary classification of injury
and the fact that those who go on to become injured may do so due reasons other than
movement biomechanics. For example, age, genetics and previous injury are all known
risk factors for injury (Ceyssens et al., 2019), that were not considered within the scope
of this current project. In a similar light, it is possible that those who were misclassified
as injured have not yet encountered the cumulative threshold of load required to cause
an injury and/or due to genetic reasons have not become injured despite presenting with
injurious movement biomechanics. It is worth nothing however, that despite the high per-
formance reported by the Random Forest model on average, there was considerable vari-
ation in the findings. Future research should therefore explicitly explore the characteristic
of the subsamples that cause this variation. When considering the final features included
in the Random Forest model, it is of note, that the movement of the foot was not included.
This finding again suggests that foot-strike pattern is not amongst the most important
biomechanical features when trying to predict risk of injury. Rather, clinical practitioners
may be advised to target the final features utilised by the Random Forest model with par-
ticular emphasis on the features most related to an increased probability of being classified
as injured, as determined by the feature importance test and subsequent partial depend-
ency analysis. For example, just before toe-off, an increase in thorax ipsilateral velocity
is related to increased probability of being classified as injured. This can be explained as
during running, it is important to have a neutral trunk at the time take off to avoid lateral
projection of the body’s centre of mass. The injured group must readjust their trunk posi-
tion, as for the majority of stance, they are in a more contralaterally tilted position in com-
parison to the prospectively uninjured group (see config manual section 6.2.1). This, trunk
positioning is a compensatory pattern for weak hip abductors known as Trendelenburg’s
sign and is one of the most commonly cited risk factors for knee injury (Ferber et al., 2011).

6.3.1 Limitations

Within this current project, the participants ran at a standardized speed on the tread-
mill. While, this allowed direct comparison between participants, it is possible that a
self-selected training pace would provide a more ecologically valid representation of the
participant’s biomechanics. Furthermore, while at the time of writing this project, only
a binary classification of injury was available, it is likely that a breakdown of injury by
location and type would substantially improve the predictive performance of the models
explored. Similarly, within this project, for the research question related to classifica-
tion, the participants were assumed to be suitably homogeneous. Future research should
determine if there are any sub clusters in the full movement biomechanics, that could
improve the classification performance of the models explored. Finally, while the size of
the dataset prohibited the use of greedy search algorithm, the use of the genetic search
algorithm and the Bayesian optimization may not have resulted in the optimal solution.
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7 Conclusion and Future Work

As a result of this project, all objectives listed in section 1.2 have been implemented
and the research questions have been answered. The primary aim and research question
of this project was to identify the presence of naturally occurring foot-strike groupings,
using unsupervised clustering approaches and to determine their association with injury.
To date, to the best of the candidate’s knowledge, no research had utilised clustering
models to explicitly explore foot-strike patterns. Within this present project, six clus-
tering approaches were explored (K-means, Hierarchical, OPTICS, Mean Shift, Spectral
and HDBSCAN), of which, the four best were explored in further detail. In contrast to
the hypothesis of this project (see section 1.1), the distribution of the injury class across
clusters demonstrated almost random assignment. This finding suggests that neither the
identified clusters or the traditional approach to foot-strike classification were able to
distinguish between prospectively injured and uninjured subjects. The secondary aim
and sub research question of this project was to determine if any of the biomechanical
features captured could predict risk of injury and to determine if the best classifica-
tion model contained any foot features. After an extensive pipeline of feature selection
(genetic algorithms, recursive feature elimination) and hyperparameter optimisation, six
models (Elastic Net Logistic Regression, Naive Bayes, Bagged SVM, Random Forest,
AdaBoost and a weighted Stacked Ensemble model) were evaluated using bootstrapped
resampling on a hold out test set and the best performing model was chosen for further
investigation. A Random Forest model containing ten features achieved an accuracy of
71% which was statistically different than a majority classifier and was deemed the best
performing model. Interestingly, and again in contrast to the hypothesis of this project
(see section 1.1), the foot was not included in final Random Forest model, suggesting that
the movement of the foot is not amongst the most important features related to injury
classification. Clinicians should therefore be advised to target the final features utilised
by the Random Forest model rather than foot-strike pattern. These results also have
considerable implications for manufactures, who have developed products (e.g. footwear,
wearable sensors) around the concept of foot-strike pattern to reduce risk of injury and
may have to re-evaluate current designs.

In order to enhance the ability to predict running related injuries, future research should
provide a more detailed breakdown of injury type beyond a binary classification and con-
sider testing participants at a more ecologically valid, self-selected running pace. Fur-
thermore, research should also explore the use of unsupervised clustering to determine
if there are any subgroups in the whole-body biomechanics that could enhance the pre-
dictive ability of the classification models. Finally, future research should implement a
clinical intervention study aimed at targeting the most important biomechanical features
identified in this project. It is anticipated that the results from this project will lead to
more targeted injury prevention interventions which will reduce the incidence of running
related injury and ultimately improve the health of the population.
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