

Configuration Manual

Application of short text topic modelling
techniques to Greta Thunberg discussion on
Twitter

MSc Research Project
Masters in Data Analytics

Sean Dingemans
Student ID: x18199089

School of Computing
National College of Ireland

Supervisor: Dr Catherine Mulwa

National College of Ireland

MSc Project Submission Sheet

School of Computing

Student Name:

Sean Dingemans…….…………………………………………………………………………

Student ID:

x18199089…………………………………………………………………………………

Programme:

Masters in Data Analytics ………………………

Year:

2020……………………..

Module:

MSc Research Project………………………………………………………………….………

Lecturer:

Dr Catherine Mulwa…………………………………………………………………….………

Submission
Due Date:

17 August 2020…………………………………………………………………………….………

Project Title:

Application of short text topic modelling techniques to Greta Thunberg
discussion on Twitter………..………………………….………

Word Count:

…2297…………………… Page Count: …….…57…

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.
ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author's written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature:

……………………

Date:

17 August 2020……………………………………………………………………………

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple
copies)

□

Attach a Moodle submission receipt of the online project
submission, to each project (including multiple copies).

□

You must ensure that you retain a HARD COPY of the project, both
for your own reference and in case a project is lost or mislaid. It is not
sufficient to keep a copy on computer.

□

Assignments that are submitted to the Programme Coordinator Office must be placed into
the assignment box located outside the office.

Office Use Only
Signature:
Date:
Penalty Applied (if applicable):

1

Configuration Manual

Sean Dingemans
Student ID: x18199089

1 Environment Setup

An AWS account was setup with billing information then filled in. Afterwards a virtual
machine instance was setup through Amazon’s Elastic Cloud Compute (EC2) device. The
instance creation process begins with the selection of ‘Launch Instance’ as shown in Figure 1.

Figure 1: AWS creation of instance by launce instance

The first step of instance creation was to select an Amazon Machine Image (AMI). An AMI
was chosen for the ec2 instance that had much of the required preinstalled software, the Deep-
Learning Ubuntu AMI: pandas, numpy, python, jupyter notebook, java 1.8, Anaconda

2

Figure 2: AWS section of AWS AMI

An EC2 instance of the gpu family was chosen as these instances are optimised for
computationally heavy tasks in addition to their hardware specs. The p2x instance was selected
due to being affordable relative to other instances in the GPU family. Specs for the instance
can be seen in Figure 3.

Figure 3: AWS GPU Instance Hardware Type selection

3

Figure 4: AWS Brief overview of some of the instance hardware specs.

A standard VPC was created. This was this first step in allowing the instance to have an IP
address so that it could be accessed. The IPV4 CIDR block size provides 64000 different ip
addresses. (see figure 4).

Figure 5: AWS VPC creation part 1

4

Figure 6: AWS CIDR Block specification for VPC part 2

For the VPC to work, a subnet must be assigned. A subnet utilising 16 of the 64000 possible
Ip addresses was created. Only one IP address will be needed, however no additional costs are
accrued. The region of the instance is also set here. It is set to eu-west-1b. The region specified
is not critical, as there are not thousands of clients accessing the instance, and thus any lag is
negligible.

Figure 7: AWS Subnet creation for VPC

5

Figure 8: AWS Subnet Creation

This step was just done to initialise the instance with an ip address.

Figure 9: AWS IP address allocation for instance creation

6

Figure 10: AWS Auto-assign IP address

The Created VPC along with its subnet could now be allocated to the instance to be created.

Figure 11: AWS Allocation of sub-net and vpc to instance

7

In step 3 of launching the instance, a list of installation commands were added for the
environment. Installed software included nginx for the ability to run programs in the browser
through the instance’s associated Ip address, once the instance was running supervisor for
starting up nginx automatically when starting the instance after it is stopped naano text editor.

Figure 12: AWS Configuration Details

Figure 13: AWS Configure Instance details 2

8

In stage 4, storage was allocated to the instance. An additional 90GB was allocated to the
instance later on. All other settings were left default.

Figure 14: AWS Add storage

A security group had to be created to specify inbound rules to access Instance. Since Jupyter
notebooks were to be accessed from the browser, https and http protocols were specified (the
ubuntu shell by itself can’t be used for interaction with jupyter notebooks, a browser is needed
for this interactivity to be allowed). SSH was specified as well so that the ubuntu shell of the
instance could be accessed – many programmes were to be run from the shell.

Figure 15: AWS security group creation for protocol specifications

9

Rules I used for my own project, a port is allocated for ssh purposes, port used to ssh into the
instance

Figure 16: AWS protocols for inbound rules regarding access of Instance

Upon reviewing and launching the instance, a private key was allocated to the instance and
automatically downloaded. The instance was not accessed yet

Figure 17: Creation of private hash key used to ssh into instance

10

Once stopped, an IP address from the subnet was then set to be an elastic IP address and was
then allocated to the instance. Setting the ip address to static allowed for the instance to be
accessed with the same ip address after the instance is stopped and started again. Nginx and
supervisor programs (used for displaying the Jupyter notebook in the browser) would need to
be reconfigured if IP address was not static.

Figure 18: Elastic IP address association

11

In order to conveniently access the EC2 instance via SSH, it was decided to use the client SSH
software tool Bitvise as the tool also allowed for file transfer to the local computer. The host
address and port was specified and the client key downloaded from Amazon was added for
authentication purposes.

Figure 19: Using Bitvise to SSH into instance

12

Figure 20: Import PEM key into Bitvise

Figure 21: Key pair that was imported int Bitvise

13

Figure 22: Jupyter notebook configuration initialisation

A hashed password that was generated is put into the config file the notebook. The network of
the notebook is set to the ip address of the instance to prevent the unlikely sharing of resources
with other external sites

Figure 23: Generation of hashed password for notebook

14

Figure 24: Hashed key notebook password and localhost Port to access Notebook

Nginx is now configured to display Jupyter notebook in the browser via the public ip address
of the instance. The EC2 instance does not have visual rendering capabilities and thus First
the user must change directories to the sites-available under nginx directory.

Figure 25: Nginx directory

15

Figure 26: Configuration file created for nginx

Specify the listening ports of the ec2 instance to allow nginx to display on the localhost port
8888 what is being received on ec2 port 80. The Jupyter notebook (which was configured to
render visually on port 8888) can be rendered visually through the proxy server nginx on
localhost port 8888

Figure 27: Port specification for nginx Jupyter notebook rendering

16

Once the sites-available file has been saved, the file can be copies to the sites-enabled directory
and a symbolic link can be used to create a link between jupyter_app.conf in both sites-
available and sites-enabled directories.

Figure 28: Symbolic link creation between sites available and sites-enabled

Command used to reload and update nginx configuration settings to recognise the new site
configuration.

17

Figure 29: Updating of nginx sites available / sites enabled

Jupyter notebook can now be run on local host. However, we still need to ssh into the instance’s
ubuntu terminal and start jupyter notebook before accessing the notebook via localhost with
the browser. It is more convenient to configure the notebook to run in the background of the
instance. For this, supervisor will be needed.

Figure 30: Configuration moving to supervisor directory

18

Use sudo nano to create my_jupyter.conf

Figure 31: Use sudo nano to create my_jupyter.conf

Specify supervisor to run the jupyter notebook command upon starting up

Figure 32: Configure Jupiter notebook to run when instance is started

19

Figure 33: Create log file directory

Create log folder, for output as specified in my_jupyter.conf

Figure 34: Refresh systemctl daemon that uses supervisor daemon

process to re-initialise supervisor

20

Figure 35: Re-read configuration file for supervisor daemon

Figure 36: Refresh supervisor daemon

21

Figure 37: Running supervisor daemon

The notebook will now run upon starting the instance

Figure 38: Selection of Elastic IP addresses

22

Figure 39: List of generated Elastic IP addresses

Figure 40: IP address association to current instance

23

Figure 41: AWS Launch Instance

Figure 42: Private IP address

24

2 Data Collection and Processing

twint -s 'greta' --since 2019-09-20 --until 2019-09-30 -l en -d true -o Sep2030Greta3.json

Figure 43: Tmux for creating processes that can continue running

uninterrupted and be returned to later on

Twint was collected with the following command

Figure 44: TMUC process for collection of Twitter data with TWINT

Time plot of collected data

25

Figure 45: Initial exploration for the analysis of traffic

26

Figure 46: Examination of hashtag counts

27

Figure 47: Most popular hashtags discovered

28

Figure 48: No retweets were found for the 740000 collected tweets

Figure 49: Functions used to clean tweets of metadata

29

Figure 50: Central tweet processing method.

All numbers, punctuation and non-Latin characters are removed. Tweets are all converted to
lower case

Figure 51: After initial preprocessing and examination, smaller more specific functions were
run.

30

Figure 52: All unique tokens and their frequencies were examined.

29786 tokens had frequencies greater than 5

Figure 53: Tokens and their Frequencies

Figure 54: Method to only keep words in the corpus with frequencies greater than 5

31

Figure 55: Examination of average document length

Figure 56: Document length distribution

32

Figure 57: Create Token String Variable for Corpus format

Only keep documents with 3 or more tokens.

Figure 58: Corpus was examined for Duplicate Documents.

Despite no retweets, there were many long duplicated documents

Figure 59: Tweets with no duplicates tweets were saved to a new dataframe

Figure 60: Final Corpus Saved

33

Figure 61: Average document length after removal of duplicate tweets

34

3 Implementation of Topic Models

WNTM1:

Figure 62: Installation of WNTM. Code is unzipped and then Compiled with Java

Figure 63: WNTM directory

1 https://figshare.com/articles/Code_of_word_network_topic_model/5572591

35

Figure 64: Creation of Word nodes for LDA topic generation

Figure 65: Inference of theta from LDA with Word Node Corpus onto the documents
themselves

36

BTM2:

Figure 66: Unzipping and running BTM

2 https://github.com/xiaohuiyan/BTM/tree/master/src

37

Figure 67: Parameter Specification for BTM. Corpus location and output location are also
specified

LDA3:

Figure 68: Execution of LDA algorithm. Parameters and JVM memory allocation are
specified

3 https://github.com/datquocnguyen/jLDADMM

38

DMM4:

Figure 69: Execution of DMM algorithm. Parameters and JVM memory allocation are
specified

LF-DMM5:

Figure 70: Execution of LFDMM. Corpus, parameters and Trained word embedding are
specified

Figure 71: Libraries for word embedding generation and corpus for word embedding

4 https://github.com/datquocnguyen/jLDADMM
5 https://github.com/datquocnguyen/LFTM

39

Figure 72: Word Embedding Training for LFDMM

GPU-DMM6:

Figure 73: RatioGPUDMM parameters changed and code is recompiled

Figure 74: Specification of parameters for GPUDMM

6 https://github.com/WHUIR/GPUDMM

40

Figure 75: Corpus Format Preparation for GPUDMM

Figure 76: Word Embedding was converted to cosine similarities, as required by GPUDMM

Finding Top 20 weighted words per topic from phi matrix – the matrix was 29000 columns by
60 rows and had to be transformed to extract the words per topic:

41

Figure 77: Code to Invert word topic matrix to optimise file

Figure 78: Sort words and weights by topic for output of topic model

42

4 Evaluation of Topic Models

Figure 79: Awk Commands to find document counts per Topic

Figure 80: Joining assigned document labels to corpus

43

Figure 81: Addressing Class imbalance in WNTM dataset for SVC classification

Figure 82: Classification model training

44

Figure 83: Classification recall results per topic

45

Figure 84: Saving recall result to file

It was decided to set the coherence window to 15 upon examination of average document length
per topic. For all models, a few topics had average document length counts slightly above 15.
To accommodate these topics in the coherence windows, the size of the context window was
set to 15.

Figure 85: Loading of consecutive label allocation per topic model method

46

Figure 86: Average document length per topic for each method

Figure 87: Data preparation for coherence testing

47

Figure 88: Meta-weighted average coherence for WNTM topics

48

Figure 89: Recall based on Topic Proportions (extracted plot of documents < 7000)

Loading of saved coherence score distributions per topic model method into Lists for post-
hoc analysis

49

Figure 90: Post-hoc testing on coherence scores

Figure 91: Generation of distances amongst topics with their word weightings

50

Figure 92: Array flattening in preparation for Multi-dimensional Scaling

Figure 93: Distribution of distance similarities

51

Figure 94: Multidimensional Scaling specification

Figure 95: Multidimensional scaling plot projected onto two dimensions

52

Figure 96: Creation of Word Features to be used in Chi test

Figure 97: Word vector preparation for examination of significant words per topic according
to Chi2 test of independence

53

Figure 98: Chi-squared test and relevant significant words per topic

Figure 99: Time series plot of the topics modelled by LDA

54

Figure 100: Time series plot of the topics modelled by BTM

Figure 101: Time series plot of the topics modelled by WNTM

55

Figure 102: Recall based on Topic Proportions (extracted plot of documents < 7000)

Figure 103: Recall based on Word Vectors (extracted plot of documents < 7000)

0

1000

2000

3000

4000

5000

6000

7000

0 1000 2000 3000 4000 5000 6000 7000

Pr
ed

ic
te

d
D

oc
um

en
ts

 p
er

 T
op

ic

Total Documents per Topic

Recall - Topic Proportions (subset < 7000)

BTM

WNTM

DMM

LDA

LDFDMM

GPUDMM

LFLDA

0

1000

2000

3000

4000

5000

6000

7000

0 1000 2000 3000 4000 5000 6000 7000

Pr
ed

ic
te

d
 D

oc
um

en
ts

 p
er

 T
op

ic

Total Count of Documents per Topic

Recall - Word Vector features (subset <7000)

WNTM

BTM

LDA

LF-LDA

DMM

LF-DMM

GPU-DMM

