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Configuration Manual

Abnormal Foetuses Classification Based on
Cardiotocography Recordings Using
Machine and Deep Learning Algorithms

Jassem Alhaj Tamer

Student ID: X15021301

1 Introduction

This configuration manual explains detailed steps applied to accomplish the objectives of
classifying abnormal foetuses including hardware and software configuration, post-hoc
analysis, data pre-processing, exploratory analysis, applied machine learning and deep learning
algorithms along with the codes and results representation used to evaluate applied methods.

2 Environment Configuration

This section describes hardware and software configurations used as a platform to extract data
from source to the final stages of models’ evaluation.

2.1 Hardware Configuration

Regarding hardware configuration, the research project was performed on Apple Mac Book-
pro laptop with the following specifications (refer Figure 1 and Figure 2).

macOS Catalina

Version 10.15.4

MacBook Pro (Retina, 15-inch, Mid 2015)
Processor 2.2 GHz Quad-Core Intel Core i7
Memory 16 GB 1600 MHz DDR3

Graphics Intel Iris Pro 1536 MB

System Report... Software Update...

Figure 1: CPU and Memory Configurations
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. 351.7 GB available of 500.07 GB

500 GB
Flash Storage

Manage...

Figure 2: Hard Disk Configuration

2.2 Software Configuration

The Mac Book-pro laptop was equipped with Microsoft Office full package for Mac including
Word, Excel and PowerPoint. Additional software such as Statistical Package for the Social
Science "SPSS" version 23, the statistical and graphical computing tool "R" version 4.0.1, the
user-friendly environment "RStudio" version 1.3.959 and data visualization tool "Tableau"
version 2020.2.2 were installed to help in the classification of abnormal foetuses.

To perform the post-hoc test analysis incorporating Chi-square Goodness of Fit and
Multivariate Analysis of Variance "MANOVA" approaches, IMB SPSS was installed (refer
Figure 3 and Figure 4) from IBM official website!.

IBM SPSS Statistics 23

b Introduction Licensed Materials - Property of IBM Corp. (c) Copyright

> License Type IBM Corporation and its licensors 1989, 2015. IBM, IBM

o logo, ibm.com, and SPSS are trademarks or registered

[> License Server trademarks of International Business Machines Corp.,

[ Customer Information registered in many jurisdictions worldwide. A current list of

> Help Language IBM trademarks is available on the Web at
www.ibm.com/legal/copytrade.shtml. Other product and

[> Python Essentials service names might be trademarks of IBM or other

[> License Agreement companies. This Program is licensed under the terms of

] the license agreement accompanying the Program. This

[> Choose Install Folder license agreement may be either located in a Program

[> Pre-Installation Summary directory folder or library identified as 'License' or

B . 'Non_IBM_License', if applicable, or provided as a printed

> Installing... .
license agreement. Please read the agreement carefully

[> License before using the Program. By using the Program you agree

I> Install Complete to these terms

= Warning: This program is protected by copyright law and

intarnatinnal traatiac  |Inantharizad ranradiirtinn ar

Cancel Previous

Figure 3: IBM SPSS Installation Process

1 https://www.ibm.com/support/pages/spss-statistics-230-now-available-download/




SHOM -~ Bl A S8 BoE 00

10 Visible: 0 of 0 Variables.

° 1BM SPSS Statistics 23

IBM* SPSS” Statistics
Version 23

Ucensed Materials - Property of I8M Corp. © Copyright IBM Corporation and I lcensars 1989, 2015, 1BM, 18M g0, ibm.

3 program direct
ble, or prowided a5 3 printed icense agreament,

Data View  Variable View

IBM SPSS Statistics Processor is ready Unicode:ON

Figure 4: SPSS Installation Process Completed

The R Console for Mac was installed from Cran website! (refer Figure 5 and Figure 6).
Additionally, RStudio for Mac was installed from RStudio official website?.

[ JON ) R Console
QR GEHQ T 1S L0
Q

R version 4.0.1 (2020-06-06) -- "See Things Now"
Copyright (C) 2020 The R Foundation for Statistical Computing
Platform: x86_64-apple-darwinl?7.0 (64-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.

You are welcome to redistribute it under certain conditions.

Type 'license()' or 'licence()' for distribution details.
Natural language support but running in an English locale

R is a collaborative project with many contributors.

Type 'contributors()' for more information and

'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or

'help.start()' for an HTML browser interface to help.

Type 'q(Q' to quit R.

[R.app GUI 1.72 (7845) x86_64-apple-darwinl?7.Q]

[Workspace restored from /Users/jassemalhajtamer/.RData]
[History restored from /Users/jassemalhajtamer/.Rapp.history]

> |

Figure 5: R Console Used as a Platform for RStudio

1 https://cran.r-project.org/bin/macosx/

2 https://rstudio.com/products/rstudio/download/




The necessary R packages for exploratory analysis, data pre-processing and the developed

About RStudio

RStudio

Version 1.2.5033
© 2009-2019 RStudio, Inc.

"Orange Blossom" (330255dd, 2019-12-03)

Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_4) AppleWebKit/537.36 (KHTML, like Gecko)
QtWebEngine/5.12.1 Chrome/69.0.3497.128 Safari/537.36

Unless you have received this program directly from RStudio pursuant to the terms of a commercial
license agreement with RStudio, then this program is licensed to you under the terms of version 3
of the GNU Affero General Public License.

RStudio includes other open source software components. The following
is a list of these components (full copies of the license agreements
used by these components are included below):

Qt (LGPL v2.1)
QtSingleApplication
Ace (LGPL v2.1)
Stan Ace Mode (LGPL 2.1)
Boost

RapidXml

JSON Spirit

Google Web Toolkit
Guice

- GIN

- AOP Alliance

Figure 6: RStudio for R Codes Execution

machine learning and deep learning algorithms were installed as shown in Table 1.

Table 1: Required R Packages for Analysis and Graphs

Package Description Version
caret Classification and Regression Teaining 6.0-86
corrplot Visualization of a correlationMatrix 0.84
ggplot2 Create Elegant Data Visualixations 3.3.1
GGaly Extention to ggplot2 2.2.0
lattice Trellis Graphics for R 0.20-41
doParallel Foreach Parallel adaptor 1.0.15
tidyverse 1.3.0
ROSE Random Over-sampling Examples 0.0-3
randomForest 4.6-14
el071 1.7-3
C50 Decsion Tree and Rule-Based Models 0.1.3.1
pROC Analyse ROC Curves 1.16.2
mlbench Machine Learning Benchmark Problem 2.1-1
naivebayes 0.9.7
Matrix Sparse and Dense Matrix Classes 1.2-18
dplyr 1.0.0
magrittr A forward Pipe Operator 1.5
xgboost 1.0.0.2
keras 2.3.0.0
tensorflow 2.2.0
nnet Feed-Forward Neural Networks 7.3-14




To perform results visualization part, Tableau was installed from the official website! using
NCI student credentials for official registration (refer Figure 7 and Figure 8).

© ® O || Install Tableau Desktbp
lling Tableau Desktop
« Introduction
@ Licence
o) ination Select
O
- riting files...
°
-

Summary

Tableau _¢
Deskto

Go Back Continue

Figure 7: Tableau Installation Process

® OO0 About Tableau
2020.2.2 (20202.20.0614.2338) 64-bit

Tableau Desktop - ‘

Professional Edition

Patent - http://www.tableau.com/ip
© 2020 Tableau Software, LLC and its licensors.
All rights reserved.

Figure 8: Tableau Installation Process Completed

++
Y tableau

L hitps://www.tableau.com/en-gb/trial/tableau-mac




3 Data Extraction, Post-hoc Test Analysis, Data Pre-
processing and Exploratory Analysis

3.1 Data Extraction

Cardiotocography raw data was extracted from UCI Machine Learning Repository (Dua and
Graff, 2017), (refer Figure 9).

Cardiotocographic Raw data

2126 measurements and classifications of foetal heart rate (FHR) signals
Col Name Description

FileName of CTG examination
Date of the examination
start instant
end instant

Measurements baseline value (medical expert)

baseline value (SisPorto)
accelerations (SisPorto)
foetal movement (SisPorto)
uterine contractions (SisPorto)
percentage of time with abnormal short term variability (SisPorto)
mean value of short term variability (SisPorto)
percentage of time with abnomal long term variability (SisPorto)
mean value of long term variability (SisPorto)
light decelerations
severe decelerations
prolongued decelerations
repetitive decelerations
histogram width
low freq. of the histogram
high freq. of the histogram
number of histogram peaks
number of histogram zeros
histogram mode
histogram mean
histogram median

Variance histogram variance

Tendency histogram tendency: -1=left assymetric; 0=symmetric; 1=right assymetric

Classification calm sleep
REM sleep
calm vigilance
active vigilance
shift pattem (A or Susp with shifts)
accelerative/decelerative pattem (stress situation)
decelerative pattem (vagal stimulation)
largely decelerative pattem
flat-sinusoidal pattem (pathological state)
suspect pattem
Class code (1 to 10) for classes A to SUSP
Nomal=1; Suspect=2; Pathologic=3

Figure 9: Raw CTG Data

Raw Data was converted from Excel format ".xIs" to ".csv"!. In order to answer the research
question, the exam data features "FileName", "Date", "b" and "e" were removed for being
irrelevant to this study. Baseline value feature "LBE" recorded by medical expert was also
removed because of holding duplicate values of baseline feature "LB" recorded by SisPorto
cardiotocograph. Having the value of "0" for all entries, repetitive decelerations feature "DR"
was also dropped.

! https:/www.guru99.com/excel-vs-csv.html




The classification label "CLASS", which is a 10-class morphologic pattern recorded by
medical experts was removed as it could cause overfitting with the existence of "NSP" targeted
variable. As a such and in order to answer the research question, the measurement diagnostic
variables and the classification feature NSP (refer Figure 10) were considered as the final CTG
data to be tested by the post-hoc analysis to determine the power of this study.

Features Description

baseline value (SisPorto)
accelerations (SisPorto)
foetal movement (SisPorto)

uterine contractions (SisPorto)

percentage of time with abnormal short term variability (SisPorto)

mean value of short term variability (SisPorto)
percentage of time with abnormal long term variability (SisPorto)
mean value of long term variability (SisPorto)
light decelerations
severe decelerations
prolongued decelerations
histogram width
Min low freq. of the histogram
Max high freq. of the histogram
Nmax number of histogram peaks
Nzeros number of histogram zeros
Mode histogram mode
Mean histogram mean
Median histogram median
Variance histogram variance
Tendency histogram tendency: -1=left assymetric; 0=symmetric; 1=right assymetric
NSP Normal=1; Suspect=2; Pathologic=3

Figure 10: Final CTG Data

3.2 Post-hoc Analysis

The MANOVA was applied using "IBM SPSS". Since data points are not equal across different
groups of the dependent variable, "Scheffe" parameter was used (refer Figure 11).



Factor(s):
NSP

~Equal Variances Assumed

Multivariate: Post Hoc Multiple Comparisons for Observed Means

Post Hoc Tests for:

NSP

LSD S-N-K Waller-Duncan
Bonferroni Tukey Type |/Type Il Error Ratio: 100
Sidak Tukey's-b Dunnett
Scheffe Duncan Control Category: Last <
R-E-G-W-F Hochberg's GT2 | Test
R-E-G-W-Q Gabriel e 2-sided < Control > Control
Equal Variances Not Assumed
Tamhane's T2 Dunnett's T3 Games-Howell Dunnett's C
? Cancel (GRS

Figure 11: Post-hoc Test for Observed Means

The test analysis was performed at 0.05 significance level (refer Figure 12).

~Estimated Marginal Means

Multivariate: Options

Factor(s) and Factor Interactions:

Display Means for:

(OVERALL) NSP
NSP
+
Compare main effects
Confidence interval adjustment:
LSD(none) <
~Display

Descriptive statistics
Estimates of effect size
Observed power
Parameter estimates
SSCP matrices
Residual SSCP matrix

Transformation matrix
Homogeneity tests

Spread vs. level plot

Residual plot

Lack of fit

General estimable function

Significance level: .05

?

Confidence intervals are 95.0%

Cancel

Figure 12: Statistical Parameters and Significance Level




3.3 Data Pre-processing

Data was pre-processed using R. Initially, irrelevant features were removed from raw data.
Figure 13 shows the R codes used for this purpose. The source of R codes is from a previous
knowledge in R during level 8 and 9 in data analytics.

2 library(ggplot2)

3 library(GGally)

4 library(lattice)

5 Tlibrary(corrplot)

6 1library(caret)

7 library(doParallel)

8 library(tidyverse)

9 Tlibrary(ROSE)

10 1library(caret)

11 library(randomForest)
12 1library(el@71)

13 1library(C50)

14 library(pROC)

15 library(mlbench)

16 library(naivebayes)
17 ~ #####H#HH I Reading Data #

18

19 data <- read.csv("~/Desktop/RawCTG.csv", header = TRUE)

20

21

22~ #EHHHHIHE removing irrelevant features #####H##H#####

23

24 data[, c("FileName","Date", "SegFile", "b","e","LBE", "A","B","C","D","E","AD","DE","LD","FS",
25 "SUSP","DR","CLASS")] <- NULL

Figure 13: Reading Raw Data and Removing Irrelevant Features

The CTG data was checked for any missing values. Fortunately, no missing values were found
(refer Figure 14).

30 anyNA(data) # Checking null or missing values
31 # [1] FALSE

Figure 14: Checking for Missing Values
Response variable NSP has been transformed to binary classification where "Normal" class

was coded to "0" and "Abnormal = Suspect or Pathologic" class was coded to "1" (refer Figure
15).

33~ ##HH#HEH I data transformation to binary classification Problem #############H#
34

35 data$NSP[data$NSP == 1] <- 0

36 data$NSP[data$NSP == 2 | data$NSP == 3] <- 1 |

Figure 15: Coding Normal Class to 0 and Suspect or Pathologic Class to 1

Additionally, NSP variable was converted to factor type (refer Figure 16).



39~ #H###HH# converting response variable from numerical to factor #####H######
40
41 data$NSP <- as.factor(data$NSP)

Figure 16: Converting Response Variable to Factor Type

Data points distribution in each class of NSP variable was checked (refer Figure 17) where a
class imbalance problem clearly appeared shown in Figure 5 in the technical report.

44 ~ ###### Data points distribution for each class of NSP #########H#
45

46 barplot(prop.table(table(data$NSP)),

47 col = rainbow(3),

48 ylim = c(0Q, 0.8),

49 ylab = 'Proportion’,

50 xlab = "NSP',

51 cex.names = 1.5,

52 main = "Class Distribution: @ = Normal 1 = Suspect/Pathologic")

Figure 17: Data Points Distribution for Each Class of Response Variable

Referring to correlation matrix (Figure 6) in the technical report, no multicollinearity problem
has been found between independent variables which assures the suitability of independent
features. The following R code (refer Figure 18) shows no variable bears a correlation greater
than 95% to other counterparts.

56 - ##H#HHH#E Correlation matrix to depict multicolinearity: > Q.95 ########H#IH#IHIH
57

58 conf_matrix <- corrplot(cor(datal,-22]))

59 highCorAttrib <- findCorrelation(conf_matrix, cutoff=0.95)

60 print("Remove predictors with >95% correlation:")

61 print(sortChighCorAttrib, decreasing = TRUE))

62 # [1] "Remove predictors with >95% correlation: integer(@)

Figure 18: Correlation Matrix to Depict Multicollinearity Problem

In order to avoid misleading performance of developed classifiers, upper and lower outliers in
CTG dataset (refer Figure 19), were handled using a Winsorizing method in R (refer Figure
20).
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Figure 19: Boxplots for Upper and Lower Outliers
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64 ~ ##t##H## Boxplot to depict outliers ########
65

66 boxplot(data) # for all features

67 boxplot(data$LB) # for each variable

68

69 - #H####H#  Handling outliers by using Winsorizing method ##########
70

71 outlr <- quantile(data$AC, 0.75) + 1.5*IQR(data$AC)

72  data$AC[data$AC > outlr] <- outlr

73  outlr <- quantile(data$fM, 0.75) + 1.5 * IQR(data$FM)

74 data$FM[data$FM > outlr] <- outlr

75 outlr <- quantile(data$uC, 0.75) + 1.5 * IQR(data$uC)

76 data$UC[data$uC > outlr] <- outlr

77 outlr <- quantile(data$MSTV, 0.75) + 1.5 * IQR(data$MSTV)

78 data$MSTV[data$MSTV > outlr] <- outlr

79 outlr <- quantile(data$ALTV, 0.75) + 1.5 * IQR(data$ALTV)

80 data$ALTV[data$ALTV > outlr] <- outlr

81 outlr <- quantile(data$MLTV, 0.75) + 1.5 * IQR(data$MLTV)

82 data$MLTV[data$MLTV > outlr] <- outlr

83 outlr <- quantile(data$DL, ©.75) + 1.5 * IQR(data$DL)

84 data$DL[data$DL > outlr] <- outlr

85 outlr <- quantile(data$Max, ©0.75) + 1.5 * IQR(data$Max)

86 data$Max[data$Max > outlr] <- outlr

87 outlr <- quantile(data$Nmax, 0.75) + 1.5 * IQR(data$Nmax)

88 data$Nmax[data$Nmax > outlr] <- outlr

89 outlr <- quantile(data$Mode, 0.75) + 1.5 * IQR(data$Mode)

90 data$Mode[data$Mode > outlr] <- outlr

91 outlr <- quantile(data$Mode, ©.25) - 1.5 * IQR(data$Mode)

92 data$Mode[data$Mode < outlr] <- outlr

93 outlr <- quantile(data$Mean, ©0.75) + 1.5 * IQR(data$Mean)

94 data$Mean[data$Mean > outlr] <- outlr

95 outlr <- quantile(data$Mean, ©0.25) - 1.5 * IQR(data$Mean)

96 data$Mean[data$Mean < outlr] <- outlr

97 outlr <- quantile(data$Median, 0.75) + 1.5 * IQR(data$Median)
98 data$Median[data$Median > outlr] <- outlr

99 outlr <- quantile(data$Median, 0.25) - 1.5 * IQR(data$Median)
100 data$Median[data$Median < outlr] <- outlr

101 outlr <- quantile(data$Variance, 0.75) + 1.5 * IQR(data$Variance)
102 data$Variance[data$Variance > outlr] <- outlr

Figure 20: Winsorising Approach to Handle Outliers

To apply machine learning and deep learning models, data was partitioned to 70% as a
training dataset and 30% as a testing dataset (refer Figure 21).

146 ~ #itt##HA Data Partition (70% train and 30% test) ##t######t{HH#H##IH
147

148 set.seed(123)

149 ind <- sample(2, nrow(data), replace = TRUE, prob = c(0.7, 0.3))

150 train <- data[ind==1, ]

151 test <- data[ind==2,]

Figure 21: Data Partitioning to Train and Test Subsets

The above data partition resulted in an unbalanced training dataset due to the class imbalance
problem already existed. To address this problem, under-sampling majority "Normal" class
method was applied. To balance the two classes, "N" was given a value of 670 resulted from
data points for abnormal foetuses which is 355 records times 2 (refer Figure 22).
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155~ ####### Balancing training data points using Under-Sampling method#######
156

157 table(train$NSP) # to check total data points in each class.

158

159 # 0 1

160 # 1160 335

161

162 set.seed(1234)

163 new_train_data <- ovun.sample(NSP~., data=train, method = "under", N = 670)$data # N = 335* 2 = 670
164 table(new_train_data$NSP)

165

66 #0 1

167 # 335 335

Figure 22: Under-sampling Approach to Resolve Class Imbalance Problem

A cross-validation with 10-folds and 3 repeats is set up to be used when building classification
models shown in Figure 23.

174 ~ #H###HHH Setting 10-fold cross validation ######HH###IHE
175
176 cross_val <- trainControl(method = "repeatedcv", number = 10, repeats = 3)

Figure 23: 10-fold Cross-Validation Technique

3.4 Exploratory Analysis

Histograms that were used to explore the distribution of data points and for each independent
variable (refer Figure 8 in technical report), showed majority of variables tended to a bell-
shaped normal distribution. R codes used for this task are shown Figure 24.

110 par(mfrow = c(3,3))

111  hist(data$LB,xlab = "LB",col = "blue",main = "Distribution of LB")

112  hist(data$MSTV,xlab = "MSTV",col = "blue",main = "Distribution of MSTV")

113  hist(data$ASTV,xlab = "ASTV",col = "blue",main = "Distribution of ALTV")

114 hist(data$Width,xlab = "Width",col = "blue",main = "Distribution of Width")
115 hist(data$Min,xlab = "Min",col = "blue",main = "Distribution of Min")

116 hist(data$Max,xlab = "Max",col = "blue",main = "Distribution of Max")

117 hist(data$Mode,xlab = "Mode",col = "blue",main = "Distribution of Mode")

118 hist(data$Mean,xlab = "Mean",col = "blue",main = "Distribution of Mean")

119 hist(data$Median,xlab = "Median",col = "blue" ,main = "Distribution of Median™)

Figure 24: Histograms to Explore Data Points Distribution
The significant correlation between the response and other predictors was represented by

boxplots using "ggplot" package (refer Figure 10 in technical report). The R codes used for
visualisation are shown in Figure 25.
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130 ~ HHHHHHHHAE Boxplots  #H##H#HAHHHHHE#H#HH
131

132 data %>% ggplot(aes(x=NSP, y = UC, fill= NSP))+

133 geom_boxplot(alpha=0.3)+

134 ggtitle("Box Plot")

135

136 data %>% ggplot(aes(x=NSP, y = ALTV, fill= NSP))+

137 geom_boxplot(alpha=0.3)+

138 ggtitle("Box Plot")

Figure 25: Boxplots to Explore Significant Correlations

Additionally, a correlation between other independent variables was visualized as shown in
Figure 26 and 27. While a positive correlation between "LB" and "Median" features was seen,
the "Width" feature showed a negative correlation to "Min".

Width

Figure 26: Correlation Between Width and Min Features
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Median

120 140 160
LB

Figure 27: Correlation Between LB and Median Features

The R codes used for the above two visualizations are in Figure 28.

140
141
142
143
144
145
146
147
148

width_vs_min <- ggplot(data, aes(x = Width, y = Min, colour = NSP)) +
geom_point(size = 3) + scale_colour_brewer(palette = 11) +
theme(panel.background = element_rect(fill = "gray42"))

width_vs_min

1lb_vs_median <- ggplot(data, aes(x = LB, y = Median, colour = NSP)) +
geom_point(size = 3) + scale_colour_brewer(palette = 11) +
theme(panel.background = element_rect(fill = "gray42"))

1b_vs_median

Figure 28: R Codes to Depict Correlation Between Independent Variables

4 Implementation

A purpose-based machine learning and deep learning algorithms were developed using
"RStudio" with the necessary "R" packages and performance-effective tuning parameters that
were needed to run models properly.

4.1 Implementation of Random Forest Model

The random forest "RF" model was built along with some tuning parameters (refer Figure 29).
The "set.seed" function was used for repeatability.
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185 set.seed(111)
186 rf_model <- randomForest(NSP~., data = new_train_data, importance= TRUE, proximity= TRUE,
187 keep.forest=T, trControl= cross_val)

Figure 29: Random Forest Supervised Machine Learning Algorithm

When printing RF developed model (refer Figure 30), it tells the model was built with 500 trees
and the number of variables tried at each split "mtry = 4". Out of bag error estimate "OOB" is
5.97% which is quite good estimate. "OBB" data, which is not in bootstrap sample, was used
to estimate the classification error for each bootstrap iteration. Confusion matrix in Figure 30
showed RF classifying class "1" at a less error of 5.6% compared to an error of 6.2% for class
"0".

> print(rf_model)

Call:
randomForest(formula = NSP ~ ., data = new_train_data, importance = TRUE, proximity = TRUE, keep.forest = T, trControl = cross_val)
Type of random forest: classification
Number of trees: 500
No. of variables tried at each split: 4

00B estimate of error rate: 5.97%
Confusion matrix:
@ 1 class.error
0 314 21 0.06268657
1 19 316 0.05671642

Figure 30: RF Model OOB Estimate Error

To evaluate the RF classification model, accuracy, recall and specificity were considered as
main performance metrics. The confusion matrix based on test dataset returned RF model
performing well at classifying abnormal fetuses represented by class "1" at 94.12% compared
to 90.71% for normal fetuses represented by class "0" (refer Figure 31).

> confusionMatrix(predict(rf_model, test), test$NSP, positive = '1')
Confusion Matrix and Statistics

Reference
Prediction 0 1
0 449 8

1 46 128

Accuracy : 0.9144
95% CI : (@.8898, 0.9351)
No Information Rate : 0.7845
P-Value [Acc > NIR] : < 2.2e-16

Kappa : 0.7702

Mcnemar's Test P-Value : 4.777e-07
Sensitivity : 0.9412
Specificity : 0.9071

Pos Pred Value : 0.7356

Neg Pred Value : 0.9825

Prevalence : 0.2155

Detection Rate : 0.2029

Detection Prevalence : 0.2758

Balanced Accuracy : 0.9241
'Positive' Class : 1

Figure 31: RF Confusion Matrix and Statistics
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4.2 Implementation of C5.0 Decision Tree Model

The model was created as shown in Figure 32.

300 set.seed(222)
301 (5.0_model <- C5.Q(NSP ~., new_train_data , trControl=cross_val)

Figure 32: Building C5.0 Algorithm

A summary of C5.0 model (refer Figure 33) showed 21 decision trees are needed to classify
abnormal foetuses.

Evaluation on training data (670 cases):

Decision Tree

21 15C 2.2%) <<

@ b <-classified as
329 6 (a): class 0
9 3206 (b): class 1

Attribute usage:

100.00% AC
67.91% ASTV
63.43% DP
41.64% UC
35.22% Mode
23.88% Mean

8.21% Variance
7.31% ALTV
5.67% Nzeros
4.63% Tendency
3.13% Min
2.09% Width

Time: 0.0 secs

Figure 33: A Summary of C5.0 Algorithm

According to C5.0 algorithm, (AC) feature is the most important variable for the tree to be split
at (refer Figure 34).
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Figure 34: Visualisation of C5.0 Decision Tree Algorithm

The model performed better (refer Figure 35) at classifying abnormal foetuses at sensitivity
0f 94.12% compared to 91.11% specificity for classifying normal foetuses.

> pred <- predict(C5.0_model, test, type = 'class')
> confusionMatrix(pred, test$NSP, positive = '1")
Confusion Matrix and Statistics

Reference
Prediction 0 1
0 451 8

1 44 128

Accuracy : 0.9176
95% CI : (0.8933, 0.9378)
No Information Rate : 0.7845
P-Value [Acc > NIR] : < 2.2e-16
Kappa : 0.7776

Mcnemar's Test P-Value : 1.212e-06

Sensitivity : 0.9412
Specificity : 0.9111

Pos Pred Value : 0.7442

Neg Pred Value : 0.9826
Prevalence : 0.2155

Detection Rate : 0.2029
Detection Prevalence : 0.2726
Balanced Accuracy : 0.9261

'Positive’' (Class : 1

Figure 35: C5.0 Decision Tree confusion Matrix and Statistics
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4.3 Implementation of Naive Bayes Model

The NB model was built as shown in Figure 36.

634 set.seed(666)
635 nb_model <- naive_bayes(NSP ~., new_train_data , trControl= cross_val, usekernel = T)

Figure 36: Developing NB Model

Accuracy, recall and specificity were calculated from the resulted classification table (refer
Figure 37) showing NB classified abnormal foetuses at a recall of 92%.

> nb_model_tab <- table(Predicted = pred, Actual= test$NSP)
> nb_model_tab
Actual
Predicted 0 1
0 416 11
1 79 125
Figure 37: NB Confusion Matrix
Acc = (125 + 416) = 0.8573693
(125 + 416 + 11 +79)
125
Recall = m = 0.9191176
o 416
Specificity = m = 0.840404

4.4 Implementation of Support Vector Machine Model

To get the best Support Vector Machine (SVM) model with the best kernel and the best
parameter "epsilon" and "cost" values, a tuned SVM model was built with a sequence of
numbers, starting from 0 and goes up to 1 with an increment of 0.1 for "epsilon" parameter. To
avoid either overfitting or underfitting, then a large range of numbers was used to capture the
optimal value for "cost" parameter (refer Figure 38).

538 set.seed(555)
539 tuned_model <- tune(svm, NSP~., data = new_train_data, ranges = list(epsilon= seq(0,1,0.1), cost = 2/(2:7)))

Figure 38: Building Tuned SVM Model to Get the Best SVM Model

The tuned SVM model returned the value of "0" is the best "epsilon" parameter and the value
of "4" is the best for "cost" as shown in Figure 39.

18




> summary(tuned_model)

Parameter tuning of ‘svm’:

- sampling method: 10-fold cross validation
- best parameters:

epsilon cost
0 4

- best performance: 0.06567164
Figure 39: Summary of SVM Tuned Model

Then, the best SVM model was obtained from the tuned SVM one (refer Figure 40)

548 best_svm_model <- tuned_mode1$best.mode1\
Figure 40: The Best SVM Model

The best SVM model (refer Figure 41) with a best kernel "radial", "cost" = 4 and "epsilon" =
0 generated 197 support vectors, 94 vectors are for class 0 and 103 vectors for class 1.

> summary(best_svm_model)

Call:
best.tune(method = svm, train.x = NSP ~ ., data = new_train_data, ranges = list(epsilon = seq(@, 1, 0.1), cost = 2A(2:7)))

Parameters:
SWM-Type: C(-classification
SVM-Kernel: radial
cost: 4
Number of Support Vectors: 197

(94 103 )

Number of Classes: 2

Levels:
01

Figure 41: Summary of Best SVM Model

The confusion matrix returned the best SVM recorded a recall of 96.32% at classifying
abnormal foetuses (refer Figure 42).
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> pred <- predict(best_svm_model, test)
> confusionMatrix(pred, test$NSP, positive = '1")
Confusion Matrix and Statistics

Reference
Prediction © 1
Q@ 441 5

1 54 131

Accuracy : 0.9065
95% CI : (0.881, 0.9281)
No Information Rate : 0.7845
P-Value [Acc > NIR] : 2.627e-16

Kappa : 0.7554

Mcnemar's Test P-Value : 4.129%e-10
Sensitivity : 0.9632
Specificity : 0.8909

Pos Pred Value : 0.7081

Neg Pred Value : 0.9888
Prevalence : 0.2155

Detection Rate : 0.2076
Detection Prevalence : 0.2932
Balanced Accuracy : 0.9271

'Positive' Class : 1

Figure 42: Best SVM Model Confusion Matrix

4.5 Implementation of K-Nearest Neighbour

K-Nearest Neighbour (KNN) model was created (refer Figure 43) with performance-effective
tuning parameters. Since there are high and low data points, a normalization technique was

applied when building the model.

438
439
440
441
442
443
444

set.seed(444)
knn_model <- train(NSP ~ .,
data = new_train_data,
method = "knn',
tunelLength = 20,
trControl = cross_val,
preProc = c("center", "scale")) # for data normalization

Figure 43: Building KNN Algorithm

The model reverted the optimal value for "K" is 7 based on accuracy as a performance metric
(refer Figure 44).
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> knn_model
k-Nearest Neighbors

670 samples
21 predictor
2 classes: 'Q', '1'

Pre-processing: centered (21), scaled (21)

Resampling: Cross-Validated (10 fold, repeated 3 times)
Summary of sample sizes: 604, 603, 603, 603, 602, 604, ...
Resampling results across tuning parameters:

k  Accuracy Kappa

5 0.8890006 ©.7780720
7 0.8910501 ©.7820937
9 0.8890820 0.7781721
11 0.8845893 0.7691785
13 0.8850948 0.7702011
15 0.8850797 0.7701775
17 0.8900854 0.7802089
19 0.8866175 0.7732680
21 0.8855779 0.7711902
23 0.8830753 0.7661652
25 0.8835652 0.7671500
27 0.8840628 0.7681669
29 0.8825848 0.7651981
31 0.8821022 0.7642560
33 0.8815825 0.763189%6
35 0.8815900 0.7632014
37 0.8806094 0.7612485
39 0.8791094 0.7582382
41 0.8776093 0.7552181
43 0.8741411 0.7482886

Accuracy was used to select the optimal model using the largest value.
The final value used for the model was k = 7.

Figure 44: Optimal Value for K

The KNN confusion matrix (refer Figure 45) showed KNN well classified abnormal foetuses
at recall of 96% compared to classifying the opposite class at a specificity of 86%.

> confusionMatrix(pred, test$NSP, positive = '1')
Confusion Matrix and Statistics

Reference
Prediction @0 1
0 425 ©

1 70 130

Accuracy : 0.8796
95% CI : (0.8516, 0.9039)
No Information Rate : @.7845
P-Value [Acc > NIR] : 4.085e-10

Kappa : 0.6957

Mcnemar's Test P-Value : 4.953e-13
Sensitivity : 0.9559
Specificity : 0.8586

Pos Pred Value : 0.6500

Neg Pred Value : 0.9861
Prevalence : 0.2155

Detection Rate : 0.2060
Detection Prevalence : 0.3170
Balanced Accuracy : 0.9072

'Positive' Class : 1

Figure 45: KNN Confusion Matrix

21



4.6 Implementation of Generalized Linear Model

Generalized Linear Model (GLM) was built with "binomial" family as shown in the following
Figure 46.

397 glm_model <- glm(NSP ~., data = new_train_data, family = 'binomial')

398 summary(glm_model) # omitting variables with p-value > 0.05 for this model

399

400 set.seed(333)

401 glm_model2 <- glm(NSP ~.-LB -MSTV -MLTV -DL -DS -Max -Nmax -Nzeros -Median -Tendency, data = new_train_data, family = 'binomial')

Figure 46: Generalised Linear Model

A table matrix (refer Figure 47) was followed to evaluate the model’s performance where the
model returned less misclassification errors for abnormal foetuses compare to normal ones.

> p <- predict(glm_model2, test, type = "response")
> pred<- ifelse(p > 0.5, 1, 0)
> glm_tab <- table(Predicted = pred, Actual= test$NSP)
> glm_tab

Actual
Predicted 0 1

0 431 8

1 64 128

Figure 47: Generalised Linear Model Table Matrix
(128 + 431)
Acc = = (0.8858954

(128 + 431 + 8 + 64)

—————= 09411765
(128 + 8)
1

Specificity = 431

Recall = 128

——— = 0.8707071
(431 + 64)

4.7 Implementation of Extreme Gradient Boosting Model

As a preparing stage, train and test datasets were converted to a matrix form using one hot
encoding technique to build Extreme Gradient Boosting (XGBoost) algorithm (refer Figure
48). The R codes for XGBoost algorithm were taken from prof. Bharatendra Rai’s online
machine learning and deep learning tutorials' with some modifications made by me.

1 https://www.youtube.com/watch?v=woVTNwRrFHE&t=1058s
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69 # Create matrix - One-Hot Encoding

70 train_m <- sparse.model.matrix(NSP ~.-1, data = balanced_train)

71 train_label <- balanced_train[,"NSP"]

72 train_matrix <- xgb.DMatrix(data = as.matrix(train_m), label = train_label)
73

74  test_m <- sparse.model.matrix(NSP~.-1, data = test)

75 test_label <- test[,"NSP"]

76 test_matrix <- xgb.DMatrix(data = as.matrix(test_m), label = test_label)

Figure 48: One-Hot Encoding to Convert Train and Test Datasets to Matrix Form

Additionally, effectively selected parameters were applied to build the model and to support
the model’s performance (refer Figure 49). Parameter "num_class" is the number of classes in
response variable, which is 2 in this research case. The "max.depth" means the maximum tree
depth which takes a default value of 6. This parameter was changed to 5 for better abnormal
foetuses’ classification. Most importantly is the value of "eta", low values prevent the model’s
overfitting and vice versa. The last parameter is a 10-fold cross validation.

78 # Parameters
79 nc <- length(unique(train_label))

80 xgb_params <- list("objective" = "multi:softprob",

81 "eval_metric" = "mlogloss",

82 "num_class" = nc)

83 watchlist <- list(train = train_matrix, test = test_matrix)
84

85 # Extreme Gradient Boosting Model
86 set.seed(777)
87 xgboost_model <- xgb.train(params = xgb_params,

88 data = train_matrix,

89 nrounds = 1000,

90 watchlist = watchlist,

91 eta = 0.001, # this low value to avoid model's over-fitting
92 max.depth = 5,

93 trControl=cross_val)

Figure 49: Building Extreme Gradient Boosting Model

Feature importance, based on "Gain" values, was obtained from the developed XGBoost
model. It is obvious that "ASTV" is the most important independent feature (refer Figure 50).
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Figure 50: Feature Importance Based on XGBoost Gini Values

The XGBoost model’s performance was evaluated by a confusion matrix (refer Figure 51)
where the model classified abnormal class at recall of 93% and an accuracy of 90%.

> p <- predict(bst_model, newdata = test_matrix)
> pred <- matrix(p, nrow = nc, ncol = length(p)/nc) %>%
+ tO %%
+ data.frame() %>%
+ mutate(label = test_label, max_prob = max.col(., "last")-1)
> tab <- table(Prediction = pred$max_prob, Actual = pred$label)
> tab
Actual
Prediction 0 1
0 443 9
1 52 127
Figure 51: XGBoost Confusion Matrix
A (127 + 443) 0.9033281
cCc = = U
(127 + 443 + 9+ 52)
Recall 127 0.9338235
ecall = —/————— = L.
(127 +9)
S ificit 443 0.8949495
eciLjicit = ——= U.
pectficlty = a3+ 52)
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4.8 Implementation of Deep Learning Multilayer Perceptron Neural
Networks

Multiple Multilayer Perceptron Neural Networks (MLPNNs) with different hidden layers were
applied to select the best performing MLPNN regarding classification of abnormal foetuses.
Figure 52 shows that data has been transformed to matrix form and all data points were
normalized. Data then partitioned to 70% as train data and 30% as test data. The response
variable in both train and test data was converted to categorical type using one hot encoding
technique. The R codes for XGBoost algorithm were taken from prof. Bharatendra Rai’s online
machine learning and deep learning tutorials' with some modifications made by me.

41 1library(keras)

4?2 data <- as.matrix(data)

43 dimnames(data) <- NULL

44  datal,1:21] <- normalize(datal,1:21])

45 set.seed(1234)

46 1ind <- sample(2, nrow(data), replace = T, prob = c(0.7, 0.3))
47 training <- data[ind==1, 1:21]

48 test <- data[ind==2, 1:21]

49 trainingtarget <- data[ind==1, 22]

50 testtarget <- datal[ind==2, 22]

51

52 # one hot encoding

53 trainLabels <- to_categorical(trainingtarget)
54 testlLabels <- to_categorical(testtarget)

Figure 52: Data Preparation for MLPNN Algorithms

4.8.1 First MLPNN Model

The first MLPNN model was built with one hidden layer bearing 8 neurons (refer Figure 53).
"input_shape = 21" as we have 21 independent variables and "units = 2" because there are two
different groups in NSP.

1 https://www.youtube.com/watch?v=hd81EH1g1bE&t=811s
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57 frst_model <- keras_model_sequential()

58

59 frst_model %>%

60 layer_dense(units = 8, activation = 'relu', input_shape = c(21)) %>%
6l layer_dense(units = 2, activation = 'softmax')

Figure 53: The First MLPNN Model

The first model was compiled by "compile" function from "Keras" package (refer Figure 54).
The "adam" optimization algorithm was used for "optimizer" as it is a popular algorithm in
deep learning field.

65 frst_model %>%

66 compile(loss = 'binary_crossentropy',
67 optimizer = 'adam',

68 metrics = 'accuracy')

Figure 54: The First MLPNN Model Compile

The first model was fitted with a normalized train dataset and performance-enhancing
parameters as shown in Figure 55. The "epochs = 200" is the number of iterations, "batch_size
= 32" refers to the number of samples that be used per gradient. To resolve class imbalance
problem, "class weight" parameter was used with a weight for class "0" = 1 referring to 1655
instances of normal foetuses and a weight for abnormal foetuses’ class "1" = 3.5 resulting from
1655 divided by 471 which is the number of instances for abnormal foetuses’ class.

70 frst_fit_model <- frst_model %>%

71 fit(training,

72 trainLabels,

73 epochs = 200,

74 batch_size = 32,

75 validation_split = 0.2,

76 class_weight = 1ist("0" = 1, "1" = 3.5))

Figure 55: The First MLPNN Model Fit

As the first model is running, the two plots (refer Figure 56) were seen. First plot explains the
loss based on training data "blue line" and the loss based on 20% validation data "green line".
Ideally, as training loss decreases, validation loss should decrease, otherwise there is an
overfitting problem. The second plot is for accuracy where after about 30 iterations, model's
accuracy started to increase.
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Figure 56: The First MLPNN Model's Performance

The following confusion matrix based on test dataset (refer Figure 57) was used to evaluate
the first MLPNN model's performance where abnormal foetuses were classified at a recall of
89%.

> frst_pred <- frst_model %>%
+ predict_classes(test)
> frst_tabl<- table(Predicted = frst_pred, Actual = testtarget)
> frst_tabl

Actual
Predicted 0 1

@ 367 16

1 93 127

Figure 57: The First MLPNN Model Confusion Matrix

Acc = (127 + 367) — 0.8192371
““T127+367+16+93)

127
= 0.8881119

Recall = m =

367
= 0.7978261

SpECifiCity = m =
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4.8.2 Second MPNN Model

The second model was built with the same procedures mentioned above with one hidden layer
bearing 50 neurons (refer Figure 58).

101 scnd_model <- keras_model_sequential()
102 scnd_model %>%

103 layer_dense(units = 50, activation = 'relu', input_shape = c(21)) %>%

104 layer_dense(units = 2, activation = 'softmax')
105

106 scnd_model %>%

107 compile(loss = 'binary_crossentropy',

108 optimizer = 'adam',

109 metrics = 'accuracy')

110

111 scnd_fit_model <- scnd_model %>%
112 fit(training,

113 trainLabels,

114 epochs = 200,

115 batch_size = 32,

116 validation_split = 0.2,

117 class_weight = 1list("0" = 1, "1" = 3.5))

Figure 58: Create, Compile and Fit Second MLPNN Model

Loss and accuracy plots for the second model are shown in Figure 59. Compared to first model's
accuracy, second plot shows accuracy increased after about 15 iterations.
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Figure 59: The Second MLPNN Model's Performance

Confusion matrix of the second model based on test dataset is shown in Figure 60 where the
model classified abnormal foetuses at a recall of 91%.

> scnd_pred <- scnd_model %>%
+ predict_classes(test)
> tab2 <- table(Predicted = scnd_pred, Actual = testtarget)
> tab?2
Actual
Predicted 0 1
0 366 13

1 94 130

Figure 60: The Second MLPNN Model Confusion Matrix

(130 + 366) = 0.8225539
(130 + 366 + 13 +94)

Acc =

130
= 0.9090909

Recall = m =

366
= 0.7956522

SpBCifiCity = m =

29



4.8.3 Third MPNN Model

The third MLPNN model was built by combining two different hidden layers that were used in
the first and second models to enhance the classification performance (refer Figure 61).

139 thrd_model <- keras_model_sequential()

140

141  thrd_model %>%

142 layer_dense(units = 50, activation = 'relu', input_shape = c(21)) %%
143 layer_dense(units = 8, activation = 'relu') %%
144 layer_dense(units = 2, activation = 'softmax')
145

146

147 thrd_model %>%

148 compile(loss = 'binary_crossentropy',

149 optimizer = "adam',

150 metrics = 'accuracy')

151

152 thrd_fit_model <- thrd_model %>%

153 fit(training,

154 trainLabels,

155 epochs = 100,

156 batch_size = 32,

157 validation_split = 0.2,

158 class_weight = list("0" = 1, "1" = 3.5))

Figure 61: Create, Compile and Fit Third MLPNN Model

Compared to first and second MLPNN model, the third MLPNN model showed accuracy
increased after about 5 iterations (refer Figure 62)
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Figure 62: The Third MLPNN Model's Performance

Confusion matrix for the third MLPNN model based on test dataset is shown in Figure 63
where abnormal foetuses were classified at a higher recall of 94%.

> thrd_pred <- thrd_model %>%
+ predict_classes(test)
>
>

tab3
Actual
Predicted 0 1
0 378 9
1 82 134

tab3 <- table(Predicted = thrd_pred, Actual = testtarget)

Figure 63: The Third MLPNN Model Confusion Matrix

doc = ——I3AF378) 8490879
““T34+378+9+82)

134

Recall = —————= 0.9370629
et = 132+ 9)

Specificity = 578 = 0.8217391
pecificity = G7etr8y
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Comparing the three different MLPNN models, the third model overweighed the other two
models regarding accuracy and recall which are the most significant performance metrics for
classifying abnormal foetuses. As a such, the results of third MLPNN model were considered
to be compared with other applied machine learning algorithms. The above results of MLPNNs
are not repeatable as slightly different results will be generated each time the model is running
because of randomisation element.

5 Evaluation and Results

The gained results were represented by Tableau for a comparison in order to select the best
performing model. The C5.0 decision tree and RF models scored the highest accuracy
compared to SVM (refer Figure 64).

91.760 91.440 90.650 90.330
o S — 88.580 87.960
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@
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Figure 64: Accuracy as a Performance Metric for Evaluation

Despite the highest accuracy of C5.0 and RF, they performed better at classifying normal
foetuses which does not serve the research question of this project (refer Figure 65).
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Figure 65: Specificity as a Performance Metric for Evaluation

Among machine learning and deep learning algorithms applied in this project, the SVM model
performed as the best classifier to classify abnormal foetuses at a recall of 96.32% compared
to a specificity of 89.09% (refer Figure 66).
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Figure 66: Recall as a Performance Metric for Evaluation

The hardware and software environments helped to fulfil this research project allowing
research question and sub-question to be answered comprehensively. Additionally, these
environments paved the way to the implementation of machine learning and deep learning
algorithms that resulted in the development of SVM algorithm capable of classifying abnormal
foetuses at a reliable scale.

33



6 Conclusion

The software and hardware environments explained above played a key role in the
classification of abnormal foetuses. Post-hoc test analysis, performed by SPSS, could
determine the power of study by proving the significant difference between the means of NSP
different groups and the observed power value of each independent variable. The application
of Artificial Intelligence, represented by its subsets; machine learning and deep learning
algorithms, added a synergy to healthcare sector saving their time and money through the
identification of abnormal foetuses. The user-friendly environments which are R and RStudio
helped in data exploration and analysis. The data visualization tool, Tableau, also reverted
informative visualizations for the gained results.
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