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Abstract
This paper discusses the impact of structured parallel programming methodologies

in state-of-the-art industrial and research parallel programming frameworks. We

first recap the main ideas underpinning structured parallel programming models and

then present the concepts of algorithmic skeletons and parallel design patterns. We

then discuss how such concepts have permeated the wider parallel programming

community. Finally, we give our personal overview—as researchers active for more

than two decades in the parallel programming models and frameworks area—of the

process that led to the adoption of these concepts in state-of-the-art industrial and

research parallel programming frameworks, and the perspectives they open in

relation to the exploitation of forthcoming massively-parallel (both general and

special-purpose) architectures.

Keywords Algorithmic skeletons � Parallel design patterns � High performance

computing � Multi-core architecture � Parallel computing

1 Introduction

In the last two decades, the number of parallel architectures available to the masses

has substantially increased. The world has moved from clusters/networks of

workstations—composed of individual nodes with a small number of CPUs sharing

a common memory hierarchy—to the ubiquitous presence of multi-core CPUs

coupled with different many-core accelerators, typically interconnected through

high-bandwidth, low-latency networks. As a result, parallel application program-

mers now face the challenge of targeting hundreds of hardware-thread contexts,

possibly associated to thousands of GP-GPU cores or, for top500-class architec-

tures, millions of cores. These hardware features exacerbate the ‘‘software gap,’’ as
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they present more substantial challenges to skilled application programmers and to

programming framework developers.

The need for programming models and programming frameworks to ease the task

of parallel application programmers is therefore acute. A number of ‘‘de facto
standards’’—OpenMP for shared memory architectures, CUDA and OpenCL for

GP-GPUs, MPI for distributed clusters—are widely recognised. Furthermore, other

higher-level frameworks such as IntelTBB or Microsoft PPL have been recognised

as emerging touchstones. Arguably, such frameworks build upon—and to different

degrees, recognise roots in—research results from structured parallel programming.

Our chief contribution in this paper is to provide an outline of the main results

from algorithmic skeletons and parallel design patterns that have been migrated to

industrial-strength parallel programming frameworks. They have arguably con-

tributed to the acceptance and success of these frameworks along with the outlining

of the possibilities still to be explored in the area. The paper is not intended to be a

comprehensive survey, but rather to trace how laboratory results from the research

community have percolated through industrial strength programming models. As

such, our contribution is quite different from both the contributions of survey papers

(e.g. [35]) and of books dealing with pattern abstractions [42] or pattern

implementations with existing parallel programming frameworks [43]. Aside from

being of historical interest to those with an interest in structured parallel

programming, the work may serve to inform the efforts of those charged with

addressing the programmability of next generation computing systems.

2 Structured Parallel Programming

Structured parallel programming encompasses programming models where con-

currency can only be expressed and orchestrated via structured compositions of

parallel components representing notable ‘‘forms’’ of parallel computations. Similar

to its sequential counterpart, its structural quality adds new organic constructs while

banning programming practices that may be popular in the non-structured world.

Structured parallel programming fosters not only more maintainable code, but also

parameterisable constructs with predictable performance.

In sequential programming, if-then-else, switch-case, and repeat-until or while-
do have replaced the indiscriminate use of gotos and made possible the

implementation of compiler tools that have closed the gap between compiled code

and handwritten assembly code in terms of efficiency.

In parallel programming, the use of algorithmic skeletons and parallel design

patterns—such as the map (and parallel for), pipeline, farm (and master worker) and

Google’s MapReduce—has been gaining momentum, confining primitive message

passing, shared memory mechanisms, and low-level programming models to ad-hoc

deployments.

Launched in the ’90s through the algorithmic skeleton concept, structured

parallel programming was boosted in the early ’00s with the introduction of parallel

design patterns, which we briefly recap in the next two sections.
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2.1 Algorithmic Skeletons

The algorithmic skeleton concept was introduced by Cole in his PhD thesis in the

late ’80s [13] and subsequently adopted by a number of research groups, mostly in

Europe and Japan. Having arguably emanated from the HPC community, the

skeleton concept is intended to address the difficulties relating to the implemen-

tation of efficient parallel applications by separating concerns:

• the application programmer’s responsibility is to select suitable compositions1 of

algorithmic skeletons by modelling the parallel behaviour of the application

using the set of available skeletons; and,

• the system programmer’s responsibility is to provide suitable, efficient, and

composable skeletons that support—alone or in composition—the efficient

parallel implementation of the vast majority of real world parallel applications.

Algorithmic skeletons are therefore provided to application programmers as pre-

defined abstractions analogous to a ‘‘host-based’’ sequential programming environ-

ment: higher-order functions, classes, or, simply, imperative library interfaces

(Fig. 1 shows the way FastFlow [18, 29] presents parallel patterns to the application

programmer as plain C?? objects, as an example). Since Cole’s initial work, a

number of parallel programming frameworks have been proposed and implemented

[35], whose evolution is discussed in Sect. 3.

2.2 Parallel Design Patterns

Design patterns were introduced in the ’90s by the software engineering community

as a viable solution to increase programming efficiency as well as software quality

and maintainability.

A design pattern is a ‘‘recipe’’ that addresses some specific programming

scenario. The canonical ‘‘Gang of Four’’ book [30] describes object-oriented

patterns targeting programming situations programmers face when designing object-

oriented applications. A design pattern carefully describes a (set of) prob-

lem(s) along with the set of solutions that may be put in place to solve it (them)

(see Table 1).

The design pattern concept migrated to the parallel programming world in the

early ’00s. It was welcomed by practitioners and researchers for the support of

programming frameworks, mainly in the US with notable industry representatives.

While there have been some incipient attempts to establish a mapping between

parallel design patterns and algorithmic skeletons [12], it is now recognised that

research on parallel design patterns has subsumed the fundamental idea of

algorithmic skeletons, i.e. to provide programmers with ready-to-use parallel

programming abstractions and currently various parallel ‘‘pattern’’ libraries exist

and are used to implement parallel applications.

Further structuring in parallel patterns is introduced in [42]. Besides considering

patterns modelling structured parallelism exploitation, it introduces a design pattern

1 Compositionality has been added after Cole’s initial proposal [13].
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space hierarchy. The hierarchy includes four spaces (finding concurrency, algorithm

design, implementation structures, and execution mechanisms) where each of the

spaces provides patterns solving specific problems. Namely:

• the problem of determining the possibilities to exploit parallelism (i.e. where is

concurrency);

• the problem of modelling parallelism exploitation through suitable algorithms;

• the problem of efficient implementation of some parallel algorithm; and,

• the identification of the mechanisms to be used in the parallel application

implementation, once all other aspects have been addressed in the higher level

design spaces.

2.3 Strengths and Weaknesses of Structured Parallel Programming

Structured parallel programming frameworks, either based on the algorithmic

skeleton or on the parallel design pattern concept, provide the application

Fig. 1 Sample FastFlow 3 stage pipeline application code

Table 1 Sketch of sample pipeline parallel pattern (the whole pattern may easily take tens of pages to be

properly described [43])

NAME Pipeline

PROBLEM Computations organised in stages, over large number of independent data sets

EXAMPLES Assembly line, processor instruction fetch-decode-execute cycle, video frame

processing with multiple filters, etc.

FEATURES Input/output ordering, stage load balancing, parallel stage computation, ...

OPTIMISATION

STRATEGIES

Merge adjacent stages with sum of service time smaller than service time of the

previous or successive stage. Parallelise stages with higher service time, by

replicating stage executor in parallel

IMPLEMENTATION Set up a chain of parallel activities, each one processing a stage, receiving input

data from previous stage and delivering results to next stage through proper

single-producer single-consumer message queues. Alternatively, represent stages

as tasks and organise pipeline computations with a thread/process pool computing

‘‘ready’’ stages

SAMPLE

IMPLEMENTATION

Sketch of multi-threaded code computing an n-stage pipeline. Sketch of MPI code

computing an n-stage pipeline

The problem solved is outlined, along with possible implementation and optimisation strategies
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programmer with advanced and useful abstractions that can be used to build parallel

applications via a clear and productive workflow (see Fig. 2):

1. the application programmer identifies the parallelism exploitation opportunities

of the application at hand;

2. he/she identifies which patterns or pattern compositions are suitable to model

these parallelism opportunities;

3. he/she uses the knowledge base associated with the pattern(s), in the form of

performance models or good practice heuristics, to identify the possibilities

offered by the pattern (composition) on the target architecture considered;

4. he/she codes the application; and finally

5. performs functional (correctness of the business logic code2) and non-functional

(performance) debugging with the usual compile-run-debug cycle.

The workflow is slightly different in the case of pure algorithmic skeletons and of

pure parallel design pattern frameworks (see Fig. 3). The main differences consist in

the effort required of the application programmer, which is lighter in the case of

algorithmic skeletons, as in this case the effort needed to efficiently implement

parallel exploitation patterns is completely the responsibility of the system

programmer implementing the algorithmic skeletons rather than of the application

programmer. The application programmer’s major duty is to select the appropriate

skeleton (skeleton composition). All the implementation effort is hidden in the

skeleton library/DSL implementation. The workflow is not radically different from

that adopted when using a classical, non-structured parallel programming environ-

ment. In that case, however, there is no pattern library: the pattern expression phase

consists in a full implementation of the parallelism exploitation mechanism

identified by the programmer and the refactoring phase may require substantial

coding effort.

Clearly, the adoption of a structured parallel programming model has both

strengths and weaknesses which are worth begin recapped and commented upon in

detail.

Expressivity The availability of primitive mechanisms and abstractions for fully

expressing complex parallel activity orchestrations greatly enhances the expressiv-

ity of the programming model. Programmers may use advanced abstractions to

model the parallel activities they identified in the application at hand rather than

being forced to use low level mechanisms (threads, processes, communications,

synchronisations, shared data structures, etc.). Figure 1 evidences this fact. The

simple use of a ff_Pipe object subsumes the fact that a thread is forked to host each

of the three stages, communication queues are established to move data between

stages and appropriate shared memory access mechanisms are used to implement

communications and sharing. All this with no application programmer intervention

at all!

Rapid prototyping The possibility to program parallel applications without the

need to deal with all the necessary low level detail related to use of parallelism

2 It is assumed that the correctness of the parallel pattern implementation has been confirmed by the

system programmer.
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clearly greatly enhances the possibility of achieving rapid prototyping. In addition,

changes to the parallel structure of an application may be simply achieved by

minimal changes in the abstractions used to program the pattern composition

modelling the parallel behaviour of the application at hand. If we discover that the

middle stage of the pipeline of Fig. 1 is too slow, we may simply replace the line 4

of the listing with the line:

that installs a parallel computation of the middle stage with parallelism degree

equal to nworkers. This step de facto uses the refactoring rule:

Fig. 2 Structured parallel application development workflow

Fig. 3 Algorithmic skeletons (left) and parallel design patterns (right) typical user workflow
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seqðf Þ � farmðseqðf Þ; pardegreeÞ pardegree[ 1 and statelessðf Þ

stating that farms can be freely introduced/eliminated (left to right and right to left

usage of the rule) on stateless stages preserving functional semantics. seq(f) denotes

generic sequential code computing function f.
Parallelism exploitation correctness ‘‘by construction’’ The correctness of the

parallelism exploitation mechanisms and policies is guaranteed by the system

programmer implementing the parallel patterns provided through the framework

along with the pattern composition mechanisms. The application programmer is not

required to consider any of the related problems. Rather, he/she can focus on

guaranteeing that the business logic code used as parameter for the patterns respects

the specifications stated by the pattern framework. As an example, the refactoring

rule stating that a sequential pipeline stage may be safely replaced by a parallel farm

with sequential workers—the one applied to Fig. 1 code in the previous

paragraph—may be safely applied only in the case of ‘‘stateless’’ stages. It is up

to the application programmer to check/ensure the second_stage is stateless, in this

case. If this happens, then the correctness of the second version of the program—as

the correctness of the first version—is guaranteed ‘‘for free’’ from the application

programmer viewpoint.

Performance portability The exposition of the complete parallel structure of the

application enables the use of any known effective and applicable rule, policy or

heuristic when porting an application from one target architecture to a different one.

As an example, moving from architecture A to architecture B such that the

communication and synchronisation costs on B turn out to be significantly higher

than those on A, any rules coarsening the grain of the parallel computations may be

automatically applied to preserve application vertical scalability on architecture

B. For example, consider a video stream processing application structured as a

pipeline of filters, with each filter programmed as a data parallel map pattern over

the frame pixels. When moving from a standard shared memory multi-core

architecture to a high speed cluster, the data parallel pattern may be automatically

refactored out of the pattern expression modelling application parallelism3 or

individual computations of different, consecutive filter stages may be merged into a

single, coarser grain stage4 to enhance grain and therefore increase application

efficiency. Similar reasoning can also be applied to various hardware accelerators,

including GP-GPUs and FPGAs [40, 46] and, potentially, enable a performance

continuum into more distributed systems such as clouds [8]. It is worth pointing out

that, provided the set of valid refactoring rules, the policies and the heuristics are

suitably tagged with models qualitatively describing their effect w.r.t. target

architecture features, the adaptation of the implementation of the parallel

application may be performed independently of the declaration of its pattern

structure as initially provided by the application programmer. Hardware targeting

may or may not require pattern structure refactoring and may in general be

3 Using the rule ðmapðf ÞÞðXÞ � ðseqð8 x 2 X do x ¼ f ðxÞÞÞðXÞ.
4 Using the classical map fusion rule mapðf Þ � mapðgÞ � mapðf � gÞ, the composition of two maps

computes the same result as a single map of a function which is the composition of the two map functions.
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implemented in the compiler—runtime tool-chain, completely transparently to the

application programmer.

Optimisations Pattern expressions, that is, the parallel structure of an application

expressed using a single pattern or a pattern composition, are the only logically

parallel code of a structured parallel application. A number of refactoring rules

apply to stateless or stateful parallel pattern compositions. These rules may be used

to explore a possibly large space of alternative pattern expressions that may be used

to express the same functional computation with different non-functional features,

e.g. different performance, power consumption, resource usage, fault tolerance or

security properties, etc. Various tools have been developed to support structured

parallel application refactoring [32, 34, 44]. Some of these tools apply or exploit

rules that are well known in the application auto-tuning context. However, the

exposition of the parallel structure of the program opens improved possibilities for

optimisation through refactoring, and in particular:

• the possibility to implement semi-automatic exploration of the functionally

equivalent pattern expression alternatives modelling the parallel behaviour of the

application at hand;

• the possibility to automatically adapt the parallelism degree of the application to

the available resources; and

• the possibility to implement automatic code generation starting from selected

and certified ‘‘functional’’ business logic code portions.

As an example, the reader may consider the work proposed in [31] that outlines the

main features of a tool that can be used to support application programmer directed

exploration of the space of pattern alternatives available for a given application and

also provides basic support for the automatic generation of structured parallel code

out of a syntactically simple pattern expression—either provided by the application

programmer or derived using the refactoring and optimisation rules included in the

tool—and the original, suitably wrapped5 business logic code.

Rigidity of the pattern set Very often the structured parallel programming

frameworks have been criticised for the fact that the set of patterns provided to the

user is fixed. Murray Cole already pointed out in his famous manifesto [14] that

algorithmic skeletons should ‘‘integrate ad-hoc parallelism’’ and ‘‘accommodate

diversity’’, meaning that:

It is unrealistic to assume that skeletons can provide all the parallelism we

need. We must construct our systems to allow the integration of skeletal and

ad-hoc parallelism in a well defined way.

concerning ad-hoc parallelism; and, with respect to the need to specify slightly

different parameters in different computations employing the same general parallel

pattern (accommodate diversity):

5 The wrapping is needed to expose features to be used while composing the business logic components

into general application code.
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We must be careful to draw a balance between our desire for abstract

simplicity and the pragmatic need for flexibility. This is not a quantifiable

trade-off.

Indeed, most of the structured parallel programming frameworks currently available

either prohibit mixing the patterns provided with primitive parallel constructs or

warn users that the efficiency and the optimisation of the framework patterns may be

impaired/contaminated by this ‘‘hybrid’’ usage of the framework. Various kinds of

workaround have been proposed to overcome the problem, as this is a really

important issue in those cases where the patterns provided by the structured parallel

programming framework do not suffice to match application programmer expec-

tations. Proposed solutions include ‘‘escape’’ patterns encapsulating and controlling

the interaction with the rest of the system of user-defined parallel patterns using base

parallel mechanisms, or the provision of access for application and system

programmers to a lower level of pattern building blocks that can be used to

compose, orchestrate and implement alternative patterns in a flexible, safe, and

efficient way [1].

Moreover, in many structured parallel programming frameworks, such as Intel

TBB [47] or SkePU [27], nothing prevents programmers from using threads outside

the parallel patterns they provide.

Minimal disruption effort Structured parallel programming frameworks have

been provided in several distinct ways, including new languages and libraries. In the

former case, application programmers are required to learn brand new syntax rules

and to set aside their favorite programming abstractions to embrace the model

imposed by the ‘‘new language’’ structured programming framework. In the latter

case, application programmers may preserve all their knowledge and best

programming practices as the structured abstractions are provided as abstractions

of the existing (sequential) programming language/model, thus ensuring the

‘‘minimal disruption’’ principle advocated by Cole in his manifesto. It is of

fundamental importance that the new programming environments preserve the

possibility to re-use the existing programmer knowledge base, for two fundamental

reasons:

1. first, due to the fact that changing to ‘‘yet another programming language’’

would require substantial time to have a decent set of expert programmers,

independently of the importance and effectiveness of the new parallel

programming model; and

2. second, due to the fact that code reuse may be of great help in guaranteeing the

possibility to move into a new programming model, and code reuse is definitely

much easier when libraries are involved than when new programming languages

are designed and implemented.
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3 Research Programming Framework Evolution

We present a short review of the history of structured parallel programming models

and frameworks in order to introduce the discussion on state-of-the-art parallel

programming environments in relation to the ‘‘structured’’ parallel programming

concepts of Sect. 4. We distinguish three different phases: pioneering, colonisation
and integration phases.

Pioneering In the late ’90s, several structured parallel programming environ-

ments based on the algorithmic skeleton concept were proposed. These were the

first examples of this kind of framework, often conceived as ‘‘proof-of-concept’’

functional programming prototypes [49]. Some of them did not support composition

of skeletons [6]. Some were conceived as brand new programming languages [45]

or extension to existing ones [19], and some supported business code reuse from

other languages [7]. No optimisations, affecting and possibly improving the

skeleton expression used by the application programmer, were supported, either

static or dynamic. In most cases, the number of patterns supported as skeletons was

limited and basically none of these frameworks provided the possibility to program

your own skeletons/patterns if those provided did not fulfil your needs. The success

of these early programming frameworks was limited, their impact lying chiefly in

the fact that several research groups became interested in the concept and started

evolving the design and development of structured parallel programming frame-

works along various lines.

Colonisation From the late ’90s on the algorithmic skeleton concepts were

sufficiently mature to lead to the design and implementation of programming

frameworks that provided good programmabilty, excellent performance and the

capacity to target different kinds of parallel architectures. Meanwhile, the parallel

design patterns community emerged and began influencing the parallel program-

ming landscape. However, the two research communities operated more or less

independently, with little evidence of synergy. The net result was the appearance of

quite a number of frameworks that presented very attractive features even if they

were still restricted in usage and adoption by groups not already involved in

structured parallel programming. This notwithstanding, Muesli [26] provided

support to target both shared memory and cluster architectures, SkeTo [24]

introduced automatic optimisations of data parallel computations through conscious

exploitation of a map fusion refactoring rule, OSL [38] brought into structured

parallel programming the BSP model, SkePU [25] supported GP-GPU accelerators,

Lithium [17] introduced the macro data flow based implementation model and

Muskel [15] introduced the concept of autonomic management of non-functional

features as well as the first opportunity for user defined customisation of the

skeleton set.

We regard this phase as a kind of ‘‘colonisation’’ era, as the key point is that the

main concepts that make the structured parallel programming models attractive and

efficient had mostly been developed but their exploitation was still largely confined

to the community.
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Integration From the late ’00s, several new developments changed the scene, in

our opinion. Different structured programming frameworks fully embraced modern

sequential ‘‘host’’ languages, such as C??. Muesli, FastFlow and SkePU adopted

and integrated the programming facilities provided through the C??11 standard,

both as valid business logic code abstractions and as implementation tools and

mechanisms. This resulted in more modern and effective opportunities to convince

parallel application programmers to adopt the structured parallel programming

model fully, thus realising Cole’s minimal disruption principle.

Different target architectures are fully addressed, including GP-GPUs but also

FPGAs, which makes the structured programming model effective in dealing with

the more advanced architectures available. Finally, structured parallel programming

models have been adopted in several EU-funded research projects (SkePU in

Peppher [4] and Excess6, FastFlow in ParaPhrase [37], REPARA7 and RePhrase8

projects) that spread adoption across different industrial contexts and therefore

ensured a wider diffusion of their concepts.

This is the ‘‘integration’’ phase, where concepts born, grown and matured in the

structured parallel programming research enclave begin to permeate other commu-

nities, based on the consolidated results achieved so far. A notable result is the porting

of the PARSEC benchmark suite onto a structured parallel programming framework

with excellent performance results achieved in the recent past [20].

4 Industrial Strength Programming Frameworks

While different phases were elapsing in the structured parallel programming

scenario, developments were also occurring in industry based parallel programming

frameworks. In this section we discuss examples of programming frameworks that

inherited from structured parallel programming research results, even if in most

cases the common features have been proposed as brand new and the research

results from structured programming community have been little acknowledged. For

example, Google’s MapReduce clearly builds on results that were investigated in

the ’80s (as discussed later in this Section). Besides, Microsoft PPL includes most of

the patterns that were commonly included in algorithmic skeleton parallel

programming frameworks already available in the last years of the past century,

such as Muesli, SkeTo, SkePu, Lithium, as well as in P3L [16] and, more recently,

in FastFlow and GrPPI [22]. We aim to cover the widest scenario respecting the

paper size, and we selected different kinds of programming framework: Google

MapReduce is included as it was the first widely used programming framework

leveraging the parallel pattern concept [21]. OpenMP and MPI represent de facto
standards in HPC (distributed and shared memory contexts [2, 23]), Microsoft PPL

[9] and Intel TBB9 are the only industrial frameworks actually leveraging the

6 http://www.excess-project.eu/.
7 http://repara-project.eu/.
8 https://rephrase-eu.weebly.com/.
9 TBB is no longer supported, as is, but it has been included in the new OneAPI framework (see

https://spec.oneapi.com) as an integral part of the library, also providing classical data parallel
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parallel pattern concepts. Finally, Storm is mentioned here as a representative of a

range of programming environments providing stream processing support (e.g.

[50, 51]). These frameworks support a similar set of ‘‘structured patterns’’ while

delivering different levels of efficiency in their implementation on distributed

architectures. Table 2 outlines some relevant features of the frameworks, discussed

qualitatively in the following sections.

The table rows capture different features of the programming frameworks

considered. Unless otherwise stated, the contents of each row are derived from the

framework’s available documentation. Pattern set lists the range of parallel patterns

provided by the framework. Expressiveness and rapid prototyping, whose evalu-

ation is based on authors’ direct experience, discuss the expressive power of the

frameworks, and in particular the effort required to implement applications whose

parallel behaviour is modeled with (a composition of) the provided parallel patterns,

once the business logic code is available. High level refactoring indicates which

frameworks support the possibility to implement the refactoring of the parallel

structure of the application without the need to completely rewrite the application

code, either the business logic or the system/parallel code.

Performance portability comments on the portability of the programming

environments across fairly different, common parallel and distributed architectures,

mainly outlining the possibility to run on multi-core hardware (shared memory

architectures in the table) and on clusters/networks of workstations (distributed

architectures in the table). Support for extra patterns considers whether the

framework includes support for the programming of extra patterns to be used alone

or in conjunction with those that are natively provided. Finally (the Designer and
maintainers row is included to acknowledge the maintainers of these frameworks),

the ease of use row reports the authors’ personal experience of the ‘‘minimal

disruption’’ principle defined in Cole’s manifesto [14], that is, the provisioning of

parallel programming abstractions through mechanisms and tools as uniform and

consistent as possible with the mechanisms and tools provided by the ‘‘hosting’’

(sequential) programming environment.

OpenMP OpenMP has been proposed with the intent of fulfilling a ‘‘minimal

disruption’’ principle while providing task and data parallel patterns to the shared

memory architecture programmer. The initial parallel region and parallel for

concepts, introduced through pragmas preserving the sequential semantics of the

code, have been immediately successful. The simple pragma enabling independent

iterations of a for loop to be executed in parallel and supporting the ‘‘reduction’’ of

simple variables through common arithmetic operators provided the means to easily

and immediately parallelise a number of existing applications on standard shared

memory multi-cores. The section and task constructs support also the possibility to

implement task parallel computations, although the parallelisation effort is not as

small as that required to introduce data parallelism. OpenMP actually provides map

and reduce patterns, with very efficient implementation on shared memory

Footnote 9 continued

patterns, collective communication patterns as well as specific patterns to address coprocessors (GP-

GPUs and FPGAs).
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architectures based on threads, but not providing any kind of global optimisation

(e.g. exploitation of map fusion across subsequent parallel for loops). Due to the

simplicity of the code required to introduce the provided patterns, OpenMP has

become the de facto standard for shared memory architectures in parallel

programming.

Intel TBB Intel TBB provides a number of patterns including stream parallel

(pipeline, task farm) and data parallel (parallel for and reduce) patterns. The library

also provides lower level patterns such as synchronisation or memory allocation

patterns and higher level parallel algorithms (e.g. sort) thus making available a mix

of tools that all contribute to support the parallel application programmer in solving

a number of the problems he/she has to face when dealing with parallel execution.

Intel TBB fully embraces modern C??11 concepts. The availability of most of the

commonly needed parallel patterns requires anyway some non-trivial programming

effort from the application programmer. However, separation of concerns is

guaranteed, modulo the existence of different levels of abstraction in the patterns

provided to the application programmer. Efficiency is mainly guaranteed by the

extremely efficient thread pool that manages all the parallel computations set up via

the library patterns. No automatic optimisation of the parallel structure of the

application is supported.

Microsoft parallel pattern library Microsoft Parallel Pattern Library (PPL)

provides patterns that are available across all the languages supported by Microsoft

development tools through CLR (Common Language Runtime). The pattern set

provided is wide. It includes data and stream parallel patterns, the possibility to

model data flow graphs (workflows), support for task parallelism and constructs

similar to those provided originally by OpenMP pragmas to parallelise loops are

also present.

The library supports the minimal disruption principle in that it is provided as any

other library of the CLI programming environment and users may seamlessly use

entries of the library to parallelise complex applications according to the pattern

implemented by the library entry.

As far as we know, there is no support for any kind of static or dynamic pattern

optimisation in PPL, nor is there support to introduce new patterns when those

provided do not fit the application programmer needs. This notwithstanding, the

PPL library has proven to be effective in the parallelisation of applications [10] and

guidelines are provided to help programmers in using the possibilities of the

library10.

MPI MPI still represents the de facto standard in the field of (massively) parallel

applications targeting distributed architectures, such as networks or tightly coupled

clusters of workstations. The standard was designed to include different variants of

point to point communications as well as a comprehensive set of collective

communications to be used to orchestrate MIMD11 computations in a SPMD12

execution environment. While decent efficiency may be obtained by using a

10 See https://msdn.microsoft.com/en-us/library/ff601930.aspx.
11 Multiple Instruction Multiple Data.
12 Single Program Multiple Data.
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reasonably small subset of MPI calls, the library requires the application

programmer to understand the hundreds of different functions in the MPI collection

to optimise applications. Also, MPI leads to code which is a global mix of

communication, orchestration and business logic code, making maintenance,

debugging or tuning operations much more difficult to tackle than those used in

other kinds of parallel environments and frameworks.

This notwithstanding, the advent of multi-core machines and the global

availability of GP-GPU accelerators has forced a global evolution of the way

MPI programs are architected and so brought the whole story much closer than

expected to the structured parallel programming concepts. It is widely recognised

[14, 42, 43] that most of the more performant applications running on massively

parallel architectures, such as those of the www.top500.org list, share a common

parallel structure including:

• some general data parallel orchestration of the overall computations distributed

on the cluster nodes implemented using the MPI SPMD model, and widespread

use of both collective and point-to-point communications, reflecting the fact that

massively parallel computations are basically embarrassingly or quasi-embar-

rassingly data parallel computations (e.g. computations implementing various

kinds of stencil data parallel pattern);

• a finer grain parallel orchestration of the single node sub computation, exploiting

multi-core and multi-threading facilities of the node through OpenMP, not

necessarily but often in yet another context of data parallel computation;

• possibly, some offloading of the third level of data parallel computations to one

or more node-attached GP-GPU nodes.

Overall this contributes to the definition of parallel computations that may be re-

read as patterned data parallel computations (maps of maps of maps) where the

known data parallel pattern optimisation rules have been deployed to target any

level of the hardware available with the most suitable computation grain that can be

used with the given business logic code.

However, even in the case of MPI computations, optimisations are still an ‘‘art’’

which is required of the application programmer, although some research tracks are

actively seeking possible automatic optimisations of MPI computations (see for

instance [28])

mostly looking for automatic identification of the most appropriate communi-

cation mechanisms to be used once the overall parallel structure of the application

and, possibly, the related computation grains are known.

Google MapReduce Google’s MapReduce has many features that can be

obviously related to structured parallel programming concepts. Optimisation of

maps followed by reduces has been subject to intense mathematical work in the ’80s

[5] and the same results have been employed in the structured parallel programming

frameworks in the ’90s by Gorlatch [36], as an example. Google’s main addition to

these results consists in two simple but extremely effective enhancements: (1) the

addition of the key—value pair concept as the result of the map phase, which, with

the shuffling and key-directed reduce phases, enables several distinct opportunities
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to enhance the exploited parallelism, and (2) the in-place application of the map-

reduce pattern to massive amounts of data spread among different cluster

components to incorporate fault resilience. This is complemented by an efficient

implementation of the pattern, which includes a very effective ‘‘shuffle’’ commu-

nication pattern connecting the map with the reduce phases and the support for large

(‘‘big data’’) datasets.

The success of the MapReduce framework has been notable. So many different

applications have been developed and successfully run on top, which is a perfect

illustration of the fact that requiring application programmers to provide just the

business logic code portions and using them to fill parameters of an existing,

efficient implementation of a pattern is a real success story. In addition to this,

Google MapReduce has been subject to research aimed at optimising compositions

of map-reduces (e.g. see Flume work [11]) much in the perspective of the

algorithmic skeleton optimisation.

Storm Storm provides stream processing as the main programming model. The

graph of filters and transformers applied to a set of possibly infinite input streams

may be arbitrarily structured by merging and splitting streams in different places

according to the application needs, or even processing any one of the input streams

with its own dedicated filters and transformers. The emphasis in Storm is on

throughput. Despite the fact that the user may define arbitrary topologies made of

‘‘spouts’’ (stream sources) and ‘‘bolts’’ (stream processors), the structure of Storm

parallel computations is somehow restricted by the stream item flow and by the data

flow semantics associated with stream items. Simple performance models can be

built for Storm applications once the semantics and timings of the business logic of

the spouts and bolts are known. Also, Storm topologies may be refactored and,

possibly, optimised due to the clear semantics of the different components used to

build these topologies and to the complete absence of topology side effects.

5 Programming Frameworks Perspectives

We have discussed how in a number of cases results achieved and assessed in the

structured parallel programming research arena have been absorbed, adopted and

exploited in programming frameworks used throughout the software industry.

Putting the trend in perspective, we now outline three different evolutions of this

scenario, characterised by the focus taken when dealing with design, implemen-

tation and deployment of parallel programming frameworks.

User centric view Users of parallel programming frameworks are application

programmers. Application programmers are typically comfortable in using some

programming language and are experts in the domain of the applications they

program. They rarely are parallel programming experts nor, typically, do they know

all the hardware details of the target architecture, i.e. those worth careful

consideration and those causing inefficiencies during parallel execution unless

particular attention is paid while programming the application. Structured parallel

programming may help in this case by leveraging natural possibilities offered for

high level syntax design, once a complete set of general purpose parallel patterns is
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provided and efficiently implemented. The parallel pattern set may be used to

provide the exact pattern compositions of interest in the application domain at hand

as further level programming abstractions. These abstractions will be closer to the

application programmer’s way of reasoning, in that they provide more general

parallel abstractions w.r.t. those provided by the underlying parallel libraries.

Therefore they are easier to use, they may be directly compiled to the underlying

pattern set and, as a consequence, they will be easy to implement (efficiently). The

same process requires, in classical parallel programming environments, the design

and implementation of full DSLs, either internal or external, which usually is a more

demanding process. It is worth pointing out that hardware advances will, in the near

future, follow a similar approach, using the available resources to provide

specialised architectures rather than more powerful general purpose architectures

(see [39]).

Tool centric The exposition of the full parallel structure of an application through

the pattern expression used to model its parallel semantics allows application of

different optimisation strategies. On the one hand, the application programmer may

be given a rough description of the parallel semantics of the patterns, modelling the

bare minimum notions relative to computation dependency necessary to express the

semantics of what is going to happen in parallel. Then, the application programmer

may be asked to provide an initial pattern expression modelling as much knowledge

as he/she has on the application. Finally, an exploration of different alternatives

derived by the use of different refactoring and optimisation rules may be used to

optimise this pattern expression. On the other hand, the established knowledge base

relating to optimisation of non-functional features affecting parallel execution of

applications (e.g. cache friendliness, thread affinity, generic locality enhancing

techniques, etc.) may be much better employed than in traditional, non structured

parallel programming environments, due to the fact that both local (single pattern)

and global (pattern composition) parallelism structure is known. Finally, JIT-like

techniques may be put in place to optimise implementation of the patterns used in a

given application only when the features of the target architecture are known. This

may involve both picking up different known implementation templates for single

patterns or pattern compositions as well as the refactoring of the whole parallel

application structure by applying known rules to implement ‘‘better’’—w.r.t. current

target hardware features—parallel patterned code.

Hardware centric Using available hardware acceleration has always been subject

to different phases. Initial availability of hardware accelerators requires specific,

low level programming techniques to benefit from the accelerator’s features. Over

time, by analysing the existing code base targeting the particular accelerators, we

can perceive that most of the applications use these low level tools to model

particular parallel patterns, and we then can provide higher level, specific

programming tools. Eventually, ways to identify and express the specific accelerator

patterns in standard (sequential) code are developed and this brings accelerators to

mainstream usage. This happened most notably with GP-GPUs. Initially very low

level CUDA/OpenCL code was needed to implement data parallel computations on

GP-GPUs. Later, specific programming environments evolved to relieve the

application programmer from the effort of dealing with the low level details and
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support for more common and useful situations was transferred to hardware (e.g.

memory management or remote (host) memory uniform access). Finally, the

community is trying to devise efficient techniques and tools that allow the

programmer to annotate sequential code computations as data parallel and leave the

underlying tool-chain to take care of the details needed for efficient implementation

on accelerators (e.g. OpenACC13). Structured parallel programming adds additional

possibilities to this process. By requiring the application programmer to identify the

opportunities for parallelism expression through patterns, the data parallel

computations identified may be easily implemented on GP-GPUs using an

implementation approach very similar to that adopted in OpenACC [52] and to

that adopted to target GP-GPUs in more classical and older skeleton based

frameworks (e.g. SkePU). However, the identification of data parallel computations

and the possibility to implement them on both CPUs and GP-GPUs (and on different

kinds of accelerators) opens perspectives for cross accelerator (that is CPU?GP-

GPU) implementation and optimisation of the same data parallel computations

[33, 41, 48]. As an example, the time usually spent waiting for GP-GPU data

parallel task computation may be used on the (multi-core) CPU to execute part of

the data parallel task such that the overall execution time of the data parallel

computation is decreased/optimised. While this may result in minimal improve-

ments in cases where GP-GPUs clearly outperform CPUs, good improvements may

be achieved in cases where the GP-GPU offloading overhead is not negligible.

6 Conclusions

Structured parallel programming models have been investigated in two distinct

research communities for quite a long time: algorithmic skeletons in the HPC and

parallel design patterns in the Software Engineering academic research community.

Both research areas have contributed a significant number of results and

achievements that are currently being integrated and exploited in industrial strength

parallel programming frameworks. In this work we outlined the main qualitative

achievements in this area as well as the way in which they have been adopted in

different state-of-the-art parallel programming environments. We claim that the

adoption of the full range of results coming from structured parallel programming

communities may be considered a viable roadmap to reduce the software gap [3],

may lead to availability of new and more advanced tools supporting parallelism

exploitation, and may help achieve better hardware targeting.
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34. Goli, M., González-Vélez, H.: Formalised composition and interaction for heterogeneous structured

parallelism. Int. J. Parallel Program. 46(1), 120–151 (2018)
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