~

"'—-
\ National
College

Ireland

Configuration Manual

MSc Research Project
Data Analytics

Anamika Chavan
Student ID: x18199950

School of Computing
National College of Ireland

Supervisor:  Pierpaolo Dondio




National College of Ireland National

Project Submission Sheet Col]ege of
School of Computing Ireland
Student Name: Anamika Chavan
Student ID: x18199950
Programme: Data Analytics
Year: 2019
Module: MSc Research Project
Supervisor: Pierpaolo Dondio
Submission Due Date: 12/12/2019
Project Title: Recruitment of Suitable Football Player by using Machine
Learning Techniques.
Word Count: 547
Page Count: B

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature:

Date: 11th December 2019

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). O
Attach a Moodle submission receipt of the online project submission, to | [J
each project (including multiple copies).
You must ensure that you retain a HARD COPY of the project, both for | [J
your own reference and in case a project is lost or mislaid. It is not sufficient to keep

a copy on computer.

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only
Signature:

Date:
Penalty Applied (if applicable):




Configuration Manual

Anamika Chavan
x18199950

1 Introduction

A complete guidelines for the implementation of the research ”Recruitment of Suitable
Football Player By using Machine Learning Techniques” is given in this document.This
research have been developed in R-studio. All the libraries and packages used to develop
this project are mentioned in this document.

2 Hardware Requirements

This research study was done on " DELL Inspiron 13” laptop. Hardware configuration of
this laptop is as follows:
Operating System: Windows 10
RAM : 8GB
Processor : Core i5
Storage: 256GBSSD
All above configuration are sufficient to run this project.

3 Software Requirements

For this research study R Studio and PowerBI was used. So below steps will explain
installation process for R and PowerBI.

3.1 Download and Install R Studio

e Download the R-studio server for Windows 10 from the below link.
https://rstudio.com/products/rstudio/download/

e After downloading the R-studio, next step is to install the R-studio. To install R-
studio, refer the following link which contains clear instruction about installation.
http://rprogramming.net/download-and-install-rstudio/

3.2 Download and Install PowerBI

e Download the PowerBI for Windows 10 from the below link.
https://powerbi.microsoft.com/en-us/downloads/


https://rstudio.com/products/rstudio/download/
http://rprogramming.net/download-and-install-rstudio/
https://powerbi.microsoft.com/en-us/downloads/

o After downloading the powerBI, next step is to install the powerBl. To install
powerBI, refer the following link which contains clear instruction about installation.

https://www.knowledgehut.com/blog/business-intelligence-and-visualization/

how-to-install-power-bi

4 Implementation of the Models

After installation of all software, implementation of the project can be done as follows.

4.1 Download the dataset

For this research, data is collected from kaggle which contains information about various
players. Download the dataset from below link website.
https://www.knowledgehut.com/blog/business-intelligence-and-visualization/
how-to-install-power-bi

4.2 Import the libraries

For this research, we have used R language to develop machine learning models. To do
so, we need to firstly clean the data. Hence, to clean and develop the model, we need to
import some R libraries. Below are the R libraries used for this research.

ibrary(dplyr)
Tibrary(Hmisc)
Tibrary(corrplot)
library(caTools)
Tibrary(tidyr)
Tibrary(el071)
Tibrary(caret)
Tibrary (FNN)

10 Tlibrary(MASS)

11 Tlibrary(rpart)
12 Tibrary(xgboost)

W oo~ uvkwmiNpE

Figure 1: Imported Libraries

4.3 Pre-processing of the data

After downloading the dataset,we preprocessed the data before applying it to the machine
learning models. Preprocessing steps includes checking missing values,feature engineer-
ing, data encoding and data scaling. The screenshot of code snippet is given below.


https://www.knowledgehut.com/blog/business-intelligence-and-visualization/how-to-install-power-bi
https://www.knowledgehut.com/blog/business-intelligence-and-visualization/how-to-install-power-bi
https://www.knowledgehut.com/blog/business-intelligence-and-visualization/how-to-install-power-bi
https://www.knowledgehut.com/blog/business-intelligence-and-visualization/how-to-install-power-bi

#checking for null values
players_data[players_data==""] <- NA
which(is.na(players_data) == TRUE, arr.ind=TRUE)
#remove unwanted column
players_data[ ,c('Name’,'Club', 'Contract_Expiry",
'‘Nationality', 'Club_Joining', 'Birth_Date", 'National_Position’,
"National_Kit', 'Club_Position', "Club_Kit"')] <- Tist(NULL)
#data Encoding
players_dataSwork_Rate_1 <- as.factor(players_datalwork_Rate_1)
players_data$work_Rate_1 <- factor(players_data$work_Rate_1,
levels = c("Low ", "Medium ", "High "),ordered = TRUE)
L convert columns character to numeric
cols.num <- c("Height","weight™)
players_datalcols.num] <- sapply(players_data[cols.num],as.numeric)

#convert rating into categories
players_datafRating <- cut(players_data$SRating, breaks=c(40,45,50,55,60,65,70,75,80,90,100),
'Iabe'ls = C("l",“z”,"3"’.”4"r"s“’II6II,II7II’"8","9”,"10“))

#separate dataframe for each category
ForwardPlayers<- players_data%>% filter(players_dataSPreffered_Position =="Forward")
ForwardPlayers$Preffered_Position <- NULL

MidfielderPlayers<- players_data%>% filter(players_data$Preffered_Position =="Midfielder")
DefenderPlayers<- players_data%>% filter(players_dataSPreffered_Position =="Defender")
GoalkeeperPlayers<- players_data%>% filter(players_dataSPreffered_Position =="Goalkeeper"™)
# Feature Scaling

training_set[c(2,3,5,7:41)] <- scale(training_set[c(2,3,5,7:41)1)
test_set[c(2,3,5,7:41)] <- scale(test_set[c(2,3,5,7:41)])

Figure 2: Preprocessing of the Data

4.4 SVM Model

After pre-processing of the data, now we will apply all the models one by one. We
will start with Support Vector Machine(SVM) model.Atter applying the model on the
dataset, we have calculated evaluation metrics. The screenshot of all the above process
is given below.



35 #implementation of SVM

37 Tlibrary(el071)
38 Tlibrary(caret)
39 folds <- createFolds(data$Rating, k = 10)

40
41 -~ cv <- Tapply(folds, function(x) {
42 training_fold = data[-x, ] # training fold = training set minus (-) it's sub test fold

43 test_fold = data[x, ] # here we describe the test fold individually
44 # now apply (train) the classifer on the training_fold

45 classifier = svm(formula = Rating ~ .,

46 data = training_fold,

47 type = 'C-classification’,
48 kernel = 'radial’)

49 y_pred = predict(classifier, newdata = test_fold[-1])
50

51 cm = table(test_foldSRating, y_pred)

52

53 return(cm)

54 1)

55

56 cm <- Reduce('+', cv)

57 accuracy_svm <- sum(diag(cm))/sum{cm)

58 precision_svm <- diag(cm)/colSums(cm)

59 avg_precision_svm <- mean(as.nhumeric(precision_svm), na.rm=TRUE)
60 recall_svm <- diag(cm)/rowSums(cm)

61 avg_recall_svm <- mean(recall_svm, na.rm=TRUE)

62 Fmeasure_SVM <- 2 * avg_precision_svm * avg_recall_svm / (avg_precision_svm + avg_recall_svm)

Figure 3: Implementation of SVM model

4.5 LDA model

Now we will apply Linear Discriminant Analysis(LDA) model on the data. The screenshot
of the process is given below.

66 #applying LDA model

67

68 T1ibrary(mass)

69

70~ cv_1da <- lapply(folds, function(x) { # start of function

71 # in the next two lines we will separate the Training set into it's 10 pieces

72 training_fold = data[-x, ] # training fold = training set m'inuls (-) it's sub test fold
73 test_fold = data[x, ] # here we describe the test fold individually
74 # now apply (train) the classifer on the training_fold

75 classifier = l1da(Rating ~ .,training_fold)

76 # next step in the Toop, we calculate the predictions and cm and we equate the accuracy
77 # note we are training on training_fold and testing its accuracy on the test_fold

78 y_pred = predict(classifier, newdata = test_fold[-1])

79

80 cm = table(test_fold$rRating, y_predSclass)

81 return(cm)

82 1

83 cm <- Reduce('+', cv_lda)

84 accuracy_lda <- sum(diag(cm))/sum(cm)

85 precision_lda <- diag(cm)/colSums(cm)

86 avg_precision_lda <- mean(precision_lda, na.rm=TRUE)

87 recall_lda <- diag(cm)/rowsums(cm)

88 avg_recall_lda <- mean(recall_lda, na.rm=TRUE)

89 Fmeasure_lda <- 2 * avg_precision_lda * avg_recall_lda / (avg_precision_lda + avg_recall_lda)
90

a1

Figure 4: Implementation of LDA model



4.6 Naive Bayes model
Developing the Naive Bayes model is given below.

254 #naive_bayes

255

256 ~ cv_naive_bayes <- lapply(folds, function(x) { # start of function

257 # in the next two lines we will separate the Training set into it's 10 pieces

258 training_fold = ForwardPlayers[-x, ] # training fold = training set minus (-) it's sub test fold
259 test_fold = ForwardPlayers[x, ] # here we describe the test fold individually

260 # now apply (train) the classifer on the training_fold

261 classifier = naiveBayes(formula = Rating ~ .,

262 data = training_fold,

263 probability = TRUE)

264 # next step 1in the loop, we calculate the predictions and cm and we equate the accuracy
265 # note we are training on training_fold and testing its accuracy on the test_fold

266 y_pred = predict(classifier, newdata = test_fold[-1])

267

268 cm = table(test_foldSRating, y_pred)

269 accuracy <- sum(diagCcm))/sum(cm)

270 return(cm)

271 B

272 cm <- Reduce('+', cv_naive_bayes)

273 accuracy_naive_bayes <- sum(diag(cm))/sum(cm)

274 precision_naive_bayes <- diag(cm)/colSums(cm)

275 avg_precision_naive_bayes <- mean(precision_naive_bayes, na.rm=TRUE)

276 recall_naive_bayes <- diag(cm)/rowSums(cm)

277 avg_recall_naive_bayes <- mean(recall_naive_bayes, na.rm=TRUE)

278 Fmeasure_naive_bayes <- 2 * avg_precision_naive_bayes * avg_recall_naive_bayes /
279 kavg_precisicn_naive_bayes + avg_recall_naive_bayes)
280

281

282 accuracy_haive_bayes <- mean(as.numeric(cv_naive_bayes))

283

284

Figure 5: Implementation of Naive Bayes model

4.7 Decision Tree model

Code snippet of building decision tree model is given below.



92 #decision tree

93

94 Tibrary(rpart)

95

96 ~ cv_rpart <- lapply(folds, function(x) { # start of function

97 # 1in the next two Tines we will separate the Training set into it's 10 pieces
98 training_fold = ForwardPlayers[-x, ]

99 # training fold = training set minus (-) it's sub test fold
100 test_fold = ForwardPlayers[x, ]
101 # here we describe the test fold individually

102 # now apply (train) the classifer on the training_fold

103 classifier = rpart(Rating~., data = training_fold, method = 'class")

104 # next step in the loop, we calculate the predictions and cm and we equate the accuracy
105 # note we are training on training_fold and testing its accuracy on the test_fold
106 y_pred = predict(classifier, test_fold[-1], type = ‘class’)

107

108 cm = table(test_fold$rRating, y_pred)

109 accuracy <- sum(diagCcm))/sum(cm)

110 return(cm)

11 B

112

113 cm <- Reduce('+', cv_rpart)

114 conf_matrix <- confusionMatrix(cm)

115 accuracy_rpart <- sum(diagCcm))/sum(cm)

116 precision_rpart <- diag(cm)/colsums(cm)

117 avg_precision_rpart <- mean(precision_rpart, na.rm=TRUE)

118 recall_rpart <- diag(cm)/rowsums(cm)

119 avg_recall_rpart <- mean(recall_rpart, na.rm=TRUE)

120 Fmeasure_rpart <- 2 * avg_precision_rpart * avg_recall_rpart /
121 Kavg_precision_rpart + avg_recall_rpart)

Figure 6: Implementation of Decision Tree model

4.8 XGBoost model
Code snippet of building XGBoost model is given below.

154 #implementation of XGBoost

155 folds <- createFolds(training_set$Rating, k = 10)

156 Tlibrary(xgboost)

157 ~ cv_xgboost <- Tlapply(folds, function(x) { # start of function|

158 # 1in the next two Tines we will separate the Training set into it's 10 pieces

159 ForwardPlayers$Preffered_Foot <- as.numeric(ForwardPlayers$Preffered_Foot)

160 training_fold = training_set[-x, ] # training fold = training set minus (-) it's sub test fold
161 test_fold = training_set[x, ] # here we describe the test fold individually

162 # now apply (train) the classifer on the training_fold

163

164 XTrain <- data.frame(lapply(training_fold[,-1],as.numeric))

165 XTrain <- as.matrix(XTrain)

166 yTrain <- unclass(training_fold$rRating)-1

167 m.Xg.def <- xgboost(data=XTrain,label=yTrain,objective="multi:softmax”,num_class=10,nrounds = 1)
168

169 XTest <- data.frame(lapply(test_set[,-1],as.numeric))

170 XTest <- as.matrix(XTest)

171

172 y.Xg.def <- predict(m.xg.def,newdata=XTest)+1

173 y.gbm.defaultl <- factor(y.xg.def, levels = c(1,2,3,4,5,6,7,8,9,10), ordered = TRUE)
174 cm <- table(test_set$Rating,y.gbm.defaultl)

175 return(cm)

176 1)

177 cm <- Reduce('+',cv_xgboost)

178 accuracy_xgboost <- sum(diag(cm))/sum(cm)

179 precision_xghoost <- diag(cm)/colSums(cm)

180 avg_precision_xgboost <- mean(precision_xgboost, na.rm=TRUE)
181 recall_xgboost <- diag(cm)/rowSums(cm)

182 avg_recall_xgboost <- mean(recall_xgboost, na.rm=TRUE)

183 Fmeasure_xgboost <- 2 * avg_precision_xgboost * avg_recall_xgboost / (avg_precision_xgboost + avg_recall_xgboost)
14

Figure 7: Implementation of XGBoost model

4.9 KNN model
Code snippet of building KNN model is given below.



127 #knnn

128 Tibrary(FNN)

129 ForwardPlayers$Rating <- as.numeric(ForwardPlayersSRating)

130 ForwardPlayersSwWork_Rate_l1 <- as.numeric(ForwardPlayersSwork_Rate_1)

131 ForwardPlayersSwWork_Rate_2 <- as.numeric(ForwardPlayersSwork_Rate_2)

132 ForwardPlayers$Preffered_Foot <- as.numeric(ForwardPlayersSPreffered_Foot)
133~ cv_knn <- Tlapply(folds, function(x) { # start of function

134 # in the next two 1ines we will separate the Training set into it's 10 pieces
135 training_fold = ForwardPlayers[-x, ] # training fold = training set minus (-) it's sub test fold
136 test_fold = ForwardPlayers[x, ] # here we describe the test fold individually

137 # now apply (train) the classifer on the training_fold
138 training_fold <- ForwardPlayers[-x,]

139 ##extract testing set

140 test_fold <- ForwardPlayers[x,]

141 ##extract 5th column of train dataset because it will be used as 'c1' argument in knn function.
142 target_category <- ForwardPlayers[-x,1]

143 ##extract 5th column if test dataset to measure the accuracy

144 test_category <- ForwardPlayers[x,1]

145 test_category <- factor(test_category, levels = ¢(1,2,3,4,5,6,7,8,9,10), ordered = TRUE)
146 k <- knn(training_fold, test_fold, training_fold$Rating, k = 8)

147

148 k <- factor(k, levels = c(1,2,3,4,5,6,7,8,9,10), ordered = TRUE)

149 cm <- table(k,test_category)

150 return{cm)

151 1)

152 cm <- Reduce('+",cv_knn)

153 accuracy_knn <- sum(diag(cm))/sum(cm)

154 precision_knn <- diag(cm)/colSums(cm)

155 avg_precision_knn <- mean(precision_knn, na.rm=TRUE)

156 recall_knn <- diag(cm)/rowSums(cm)

157 avg_recall_knn <- mean(recall_knn, na.rm=TRUE)

158 Fmeasure_knn <- 2 * avg_precision_knn * avg_recall_knn / (avg_precision_knn + avg_recall_knn)

Figure 8: Implementation of KNN model

4.10 Finding the closest match

To find the closest match for the replaced player, we have used knn model.Code snippet
of finding the closest match is given below.

385

386 k <- knn(training_set[,-1], test_set[,-1], Tabels, k = 10)
387 1indices = attr(k, "nn.index™)

388 print(indices[156, 1)

389

Figure 9: Implementation of closest match



4.11 Evaluation Results by using powerBI

We have compared the two evaluation metrics accuracy and F-measure for different mod-
els. Following screenshot shows the comparison between different models in terms of
accuracy and F-measure.

® Accuracy © F-measure
o0

83.77
80.31
&0
72
7142 052
70 &7
62.95

60
= 56
H 54
3
E =
L
-
g
40
m
g
2 30

20

10

0 - ..

SVM LDA MNaive Bayes KNMN XGBoost Decision Tree

Algorithms

Figure 10: Accuracy and F-measure score by %



	Introduction
	Hardware Requirements
	Software Requirements
	Download and Install R Studio
	Download and Install PowerBI

	Implementation of the Models
	Download the dataset
	Import the libraries
	Pre-processing of the data
	SVM Model
	LDA model
	Naive Bayes model
	Decision Tree model
	XGBoost model
	KNN model
	Finding the closest match
	Evaluation Results by using powerBI


