National
College
[reland

Configuration Manual

MSc Research Project
Data Analytics

Enwere Chibuike Kenneth
StudentlD:X18178090

School of Computing

National College of Ireland

Supervisor: Dr. Cristina Muntean

National College of Ireland ~~
Project Submission Sheet School of Y National

Computing College of
Ireland
Student Name: Enwere Chibuike Kenneth
Student ID: x18178090
Programme: Data Analytics
Year: 2019
Module: MSc Research Project
Supervisor: Dr. Cristina Muntean
Submission Due Date: 12/12/2019
Project Title: Configuration Manual
Word Count: 2201
Page Count: 24

[hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature:

Date:

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:
Attach a completed copy of this sheet to each project (including multiple copies).

Attach a Moodle submission receipt of the online project submission, to each
project (including multiple copies).

You must ensure that you retain a HARD COPY of the project, both for your own
reference and in case a project is lost or mislaid. It is not sufficient to keep a copy on
computer.

Assignments that are submitted to the Programme Coordinator office must be
placed into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

Configuration Manual
Enwere Chibuike Kenneth x18178090

1 Introduction

In this configuration manual a detailed procedure used in achieving “Predicting Flight Arrival delay
Reduction For Delta Airlines ” is explained. This includes comprehensive instructions on the
requirements (hardware and software), source of the data, environment specification and modelling
techniques used

2 System Specification

This research has been carried out a windows environment using DELL Inspiron 14 5000
with the system specification is shown below.

View basic information about your computer

Windows edition

Windows 10 Home Single Language
© 2018 Microsoft Corporation. All rights reserved.

System
Processor: Intel(R) Core(TM) i5-8265U CPU @ 1.60GHz 1.80 GHz
Installed memory (RAM): 8.00 GB (7.78 GB usable)
System type: 64-bit Operating System, x64-based processor
Pen and Touch: Pen and Touch Support with 10 Touch Points

Figure 1: System specification

3 Data Collection

Data was collected from a primary source, this was the Bureau of transport statistics (BTS) on
the airline on-time statistics for Flight arrival 1

Lhttps:// https://transtats.bts.gov/ONTIME/Arrivals.aspx_

1

4. Data Storage and Preparation

e The dataset that was sourced from BTS for flight arrival delay was a structured data in a
CSV format and was directly downloaded and stored on the system.

e This data was saved in C:\Users\kenne\OneDrive\Desktop\data

- Home Share View

% Cut N/ TEy New item ~ v Open -~ [Select all
J Co > % | Easy access v Edit Select none
Pinto Quick Copy Paste N Move Cop: Delete Rename New Properties -
o access #| Pa to to - folder - & History 55 Invert selection
= Clipboard Organize New Open Select
32 r -
;2 « > v » ThisPC > Desktop » data v O| | Searchdata P
32 # g
[Name Date modified Type Size
g 3 Quick access
-] data.csv 27/1172019 14:12 Microsoft Excel C 39,855 KB
[Desktop
4 Downloads
%| Documents
= Pictures

n @ Creative Cloud Files
&% Dropbox
@ OneDrive

id [ThisPC
J 3D Objects
0 [Desktop

Figure 1: Location where dataset is stored

5. Download and Installation of Anaconda

Anaconda is a package manager, an environment manager, and Python distribution that contains

a collection of many open source packages. With packages such as (numpy,scikit-learn, scipy and
pandas). Below are the steps to download anaconda

* Go to https://www.anaconda.com/distribution/

Products

{O ANACONDA

Anaconda Distribution

The World's Most Popular Python/R Data Science Platform

Download

The open-source Anaconda Distribution is the sasiest way to perform Python/R

over 15 millior itis the industry stand: evelo

testing, and training on a single machine. enabling individual data scier

* Quickly download 1,500+ Python/R data sclence packages

Manage librarie:

dependencies. and environm:

ning and deep

umba

Visualize results with Matplotlib, Bokeh, Datashader. and Holoviews

=8 Windows

Why Anaconda?

Solutions Resources Company

o] 2
pandas | 9 ‘ < | v
Bokeh HoloViews

‘lmalo\elllb .@" H,O

P Datashader

TensorfFlow | CONDA

& macos B Linux

Figure 2: How to download anaconda

Locate where to download it and

Anaconda 201910 for Windows Installer

Python 3.7 version

64-Bit Graphical Installer (462 MB)
32-Bit Graphical Installer (410 MB)

Python 2.7 version

64-Bit Graphical Installer (413 MB)
32-Bit Graphical Installer (356 MB)

Figure 3: Version of Anaconda

Download Python version 3.7 below

) Anaconda3 5.1.0 (64-bit) Setup — X

Welcome to Anaconda3 5.1.0
(64-bit) Setup

Setup will quide you through the installation of Anaconda3
5.1.0 (64-bit).

ANACONDA It is recommended that you dose all other applications
before starting Setup. This will make it possible to update
relevant system files without having to reboot your
computer,

Click Next to continue.

Lo J] conce

Figure 4: Anaconda setup process
* You can use either of the two approach [went with the recommended approach .The
recommended approach enables youto use Anaconda Navigator or the Anaconda
Command Prompt (located in the Start Menu under "Anaconda")

Recommended Approach

Alternative Approach

) Anaconda3 5.1.0 (64-bit) Setup

_) ANACONDA

Advanced Installation Options
Customize how Anaconda ntegrates with Windows

2 Anaconda3 5.1.0 (64-bit) Setup

Advanced Installation Oplions

‘) ANACONDA Customize how Anaconda integrates with Windows

Advanced Options Advanced Options

[[] Add Anaconda to my PATH environment variable 4] Add Anaconda to my PATH environment variable

Not recommended. Instead, open Anaconda with the Windows Start
menu and select “Anaconda (64-bit)". This "add to PATH" option makes
Anaconda get found before previously installed software, but may
cause problems requinng you to uninstall and renstall Anaconda.

Not recommended. Instead, open Anaconda with the Windows Start
menu and select "Anaconda (64-bit)". This “add to PATH" option makes
Anaconds get found before previously nstaled software, but may
cause problems requirng you to uninstall and renstall Anaconda

[FIRegster Anaconda as my default Python 3.6

This will allow other programs, such as Python Tools for Visual Studio
PyCharm, Wing IDE, PyDev, and MSI binary packages, to automatically
detect Anaconda as the primary Python 3.6 on the system.

[“IRegster Anaconda as my defauit Python 3.6

This will allow other programs, such as Python Tools for Visual Studo
PyCharm, Wing IDE, PyDev, and MSI binary packages, to automatically
detect Anaconda as the primary Python 3.6 on the system.

[2 i e 2= ==

Figure 4: Recommended Approach
* Anaconda installation is completed

D
o Installation Complete
.) ANACONDA Setup was completed successfuly.
Completed
Show detais
< Badk Next > anced

Figure 6: Anaconda setup completion

6. Preparing Data For Analysis

Here we load the entire dataset, performing cleaning and create data visualizations. The
aim of the project is to predict arrival delays for the months of summer.

Step 1: Import necessary libraries to be used in the analysis

In [1]: M| # Importing required libraries
import pandas as pd
import numpy as np

import seaborn as sns

c CEUFUT LCo.

& cunl sentsan 15hrars ec
LSU@LLIsSaTion Lioragries

import matplotlib.pyplot as plt
#matplotlib inline
sns.set{color_codes=True)

Figure 7: Code to import libraries
Step 2: Load Dataset
In [2]: »

| ~ L T R T
d GuLdy

AU

‘C:\\Users\\kenne\\OneDrive\\Desktop\\da
da

j.read_csv(file_loc) # This will load our d

Figure 8: Code to load dataset

7 Data Cleaning and Feature Extraction

Cleaning: We need to remove columns which will not be of any use in our analysis. All the
irrelevant columns needs to be removed as it might reduce our models accuracy. Also it is
important to extract required features in order to predict arrival delay more accurately.

Feature Extraction: It leads to accuracy improvements and speedup in training. It is very
important to get the right set of features to get good prediction of our model. It aims to reduce no
of features from dataset by extracting relevant information and discarding irrelevant ones.

Steps for data cleaning:

« Removing irrelevant columns: Irrelevant data are those that are not actually needed, and
don’t fit under the context of the problem we’re trying to solve.

« Removing duplicate data: Duplicates are data points that are repeated in your dataset.

- Fixing null values by either discarding or relevant substitution

« Type conversion: Changing columns to valid datatypes. Make sure numbers are stored as
numerical data types. Categorical values can be converted into and from numbers if
needed.

- Syntax errors: Removing whitespaces or fixing typos.

In [4]: N

out[4]:

REMOVING IRRELEVANT COLUMNS ##

R

We need to remove irrelevant columns. It is important to remove data which is not providing any

YEAR - We are using 2017 datoc so there is no point considering it.

o W

Other irrelevant coulmns are also ignored.

df = df.drop(['YEAR®, 'OP_UNIQUE_CARRIER', \

"OP_CARRIER_AIRLINE_ID', 'OP_CARRIER_FL_NUM', \

'ORIGIN_AIRPORT_ID', 'DEST_AIRPORT_ID','DEP_DELAY',\

'DEP_DELAY_NEW', 'WHEELS_ON', 'DEP_TIME', \

'TAXI_IN', 'CRS_ARR_TIME', 'CRS_ELAPSED_TIME', 'ACTUAL_ELAPSED_TIME', \

'ARR_TIME_BLK', 'ARR_DELAY_GROUP', 'DIVERTED', \

'CARRIER_DELAY', 'WEATHER_DELAY', 'NAS_DELAY', 'SECURITY_DELAY', 'LATE_AIRCRAFT_DELAY'], axis=1)
df.head(5) # displays top 5 rows from dataframe

4

MONTH DAY_OF_MONTH DAY_OF_WEEK ORIGIN DEST CRS_DEP_TIME DEP_DEL15 ARR_TIME ARR_DELAY ARR_DELAY_NEW

OP_UNIQUE_CARRIER, OP_CARRIER_AIRLINE_ID, OP_CARRIER_FL_NUM - We are considered Delta Airlines so these fields can be remo\
ORIGIN_AIRPORT_ID, DEST_AIRPORT_ID - We considered ORIGIN and DEST insteadd of these fields, so they are duplicates and car
DEP_DELAY, DEP_DELAY_NEW, DEP_TIME, CARRIER_DELAY, WEATHER _DELAY, NAS_DELAY, SECURITY_DELAY, LATE_AIRCRAFT_DELAY - Removed

ARR_DEL15 CA

0] 4 1 LGA MCO 1120 0.0 1354.0 -440 0.0
1 e 4 1 ATL SAN 1830 0.0 20440 -16.0 0.0
2 e 4 1 BWM DTW 1045 1.0 22520 5.0 5.0
3 Q 4 1 DTW 8w 1730 1.0 1828.0 26.0 286.0
4 9 4 1 MKE MSP 210 00 1018.0 -8.0 0.0

Figure 9: Code showing how data cleaning is done

0.0
0.0
1.0
10
0.0

In-order to fix the null values we check how columns and rows are presented in the data. We
have the total number of rows to be 322199 and columns as 15. This can be seen in the code
below

In [8]: M | ##ssess BEERERES ## FIXING NULL VALUES
Let us now check how mony columns/features and rows/examples ore present in our data

In order to clean the data it is important to either fill null values with some data or remove them from the dataset.

In this cose we will drop the missing values. Hence, we are not considering null values for ARR_DEL15 as it is our output/
df = df.dropna(subset=["'ARR_DEL15'])

df = df.fillna({'ARR_DEL15": 1}

df.count()

rows, cols = df.shape # returns dimensions of the dataframe
print(“Number of rows: ", rows)
print("Number of columns: ", cols)

Converting both columns as int as they have either @ or 1 reoresenting ontime or delaoyed
df.astype({'DEP_DEL15': 'int32'}) # converting datatype of DEP_DEL15 column to int
df.astype({'ARR_DEL15"': 'int32'}) # converting dotatype of ARR_DEL15 column to int

4 »

Number of rows: 322199
Number of columns: 1S

T ZEK ORIGIN DEST CRS_DEP_TIME DEP_DEL15 ARR_TIME ARR_DELAY ARR_DELAY_NEW ARR_DEL15 CANCELLED AIR_TIME FLIGHTS DiSTANCE
1 LGA MCO 1120 0.0 1354.0 -440 0.0 0 0 127.0 1 950
1 ATL SAN 1030 0.0 20440 -16.0 0.0 0 0 226.0 1 1802
1 BM DTW 1045 1.0 22520 e5.0 e5.0 1 0 100.0 1 400
1 oW BW 1730 10 1828.0 26.0 26.0 1 0 65.0 1 402
1 MKE MSP 210 0.0 1019.0 -8.0 0.0 0 0 51.0 1 207
2 DTW LAS 840 0.0 2380 -25.0 0.0 0 0 218.0 1 1748
2 ATL MsP 1645 0.0 1811.0 -19.0 0.0 0 0 125.0 1 207
2 MSP ATL 2015 0.0 23280 -27.0 0.0 0 0 111.0 1 207
2 ATL BW 2229 0.0 20 -23.0 0.0 0 0 740 1 577
2 ATL BHM 1537 0.0 15220 -8.0 0.0 0 0 320 1 124

Figure 10: Code showing how to fix null values

To find out if the dataset is free from null values we run the code print (df.isnull().sum) as seen
below

In [9]: M |# Let's check if we hove any null values remaining in the daotaset. If yes, we will handle according
print(df.isnull().sum()) # Displays count of null values for each column

4 »

MONTH
DAY_OF_MONTH
DAY_OF_WEEK
ORIGIN

DEST
CRS_DEP_TIME
DEP_DEL1S
ARR_TIME
ARR_DELAY
ARR_DELAY_NEW
ARR_DEL1S
CANCELLED
AIR_TIME
FLIGHTS
DISTANCE
dtype: intes

DD ODDDDODDODDDODDODDODD®

Figure 11: Code showing rechecking for null values

Steps for feature extraction

In [5]: W

out[5]:

Extracting critical information from complex features

Creating new columns with information from combination of two or more features

The codes describes the dataframe and shows feature that will provide insight to the
analysis.

&
#
d

4

f.describe() # Lets see the description of our dotaframe

Few features can provide important information for prediction of arrival delay ond hence are considered.

MONTH - Can be an important factor as people might trovel more in few months which can Lead to more aircrafts and hence moi
DAY_OF_MONTH - Might be a useful feature to consider

DAY OF WEEK - Very important informgtion to consider as people have tendency to travel more during weekends

CRS_DEP_TIME - Time is also very important as oirports are often crowded for some hours in o day

ISTANCE - Can play an important role as flights with shorter distence can get delayed more often

FLIGHTS - More flights can Lead to more delay.

MONTH DAY_OF_MONTH DAY_OF_WEEK CRS_DEP_TIME DEP_DEL15 ARR_TIME ARR_DELAY ARR_DELAY_NEW ARR_DEL15

count 324047.000000 324047.000000 324047.000000 324047.000000 222051.000000 322000.000000 322120.000000 322100.000000 3221909.000000

mean 7.476330 15.928585 3.935208 1334.888341 0.147728 1478.508069 0.044277 0.845347 0.138135
std 1.101323 8.732768 1.972664 482610812 0.354302 533.000045 41.600151 38.146251 0.345042
min 6.000000 1.000000 1.000000 1.000000 0.000000 1.000000 -238.000000 0.000000 0.000000
25% 7.000000 £.000000 2.000000 ©10.000000 0.000000 1051.000000 -18.000000 0.000000 0.000000
50% 7.000000 16.000000 4.000000 1322.000000 0.000000 1511.000000 -8.000000 0.000000 0.000000
75% 8.000000 23.000000 6.000000 1735.000000 0.000000 1924.000000 2.000000 2.000000 0.000000
max 9.000000 31.000000 7.000000 23508.000000 1.000000 2400.000000 1168.000000 1168.000000 1.000000

»

Figure 12: Code describing data frames

Next after getting information of the data-frame. We check the data-frame to know the
different columns and datatype format

In [7]: W df.info() # Getting information of our dataframe

<class ‘pandas.core.frame.DataFrame’>
RangeIndex: 324947 entries, @ to 324945
Data columns (total 15 columns):

MONTH 324247 non-null intes
DAY_OF_MONTH 324947 non-null inte4
DAY_OF_WEEK 324947 non-null intes
ORIGIN 324947 non-null object
DEST 324947 non-null object
CRS_DEP_TIME 324947 non-null intes
DEP_DEL1S 322951 non-null floatss g
ARR_TIME 322980 non-null floats4
ARR_DELAY 322199 non-null floats4
ARR_DELAY_NEW 322199 non-null floatss
ARR_DEL1S 322199 non-null floates
CANCELLED 324947 non-null intes
AIR_TIME 322199 non-null floatsa
FLIGHTS 324947 non-null intes
DISTANCE 324947 non-null intes

dtypes: floate4(e), inte4(7), object(2)
memory usage: 37.2+ MB

Figure 13: Code showing dataframe data types

The next step is to remove irrelevant features by using the df.drop function

In [10]: W | # We are removi n: fligh

df = df.loc[~(df['CANC
= df. drop\[‘CAWCELL

which got cancelled as we are considering only those flights which are not cancelled
D'] == 1)]

ts
LLE
D'], axis=1)

c
E

Figure 14: Code to remove cancelled flights

8 Data Exploration and Visualization

Here we find unique airports used by Delta airlines for both origin and destination flights.
had 150 airport origin and 150 destination

In [11]: M # In this secti O” of code we will Ffind how many unique airports are present in the data from where
unique_origin = df['ORIGIN'].unigue() # Finds unique va b c
unique_origin_count = len(unique_origin) # Finds toteol unique origins
print(“"The total number of origins are: " , unique_origin_count)

print(*\n")
print(unique_origin)

The total number of origins are: 15

['LGA' 'ATL" 'BWLI' 'DTW' 'MKE' 'SAN' 'SAT' 'DEN' 'CMH" 'MDW' ‘LAX' 'MYR'
'SFO' 'SLC' 'TPA" 'PBI' 'MCO' 'PHL' 'GSP" 'PHX' 'CHS' 'DCA" 'BUF' ‘RIC'
'LAS' 'BNA' 'MSP' 'S3C' 'ORF' 'STL' 'BDL' 'IAD' 'BOS® 'FLL' 'MSO' 'DFW'
'GEG' 'CLT" 'OMA' 'EWR' 'SRQ' ‘CvG' 'AUS" ‘ECP' 'CID' 'PDX"' 'CLE' ‘SMF'
'MIA' 'SEA' 'SAV' 'ABQ' 'SNA' 'IND' 'GRR' 'FNT' ‘OGG" "MEM' 'RDU' ‘ORD'
'GSO' 'JAX' 'IAH' 'ATW' 'HOU' 'PNS' 'MHT' 'MSN' 'VPS' 'LIT" 'HNL' 'CHA'
'JAN' 'LFT" 'TRI' 'PIT' 'MSY' 'DSM' 'BHM' 'SYR' ‘ROA® 'OAK' 'ALB' 'JFK'
'ANC' "MCI' 'BTV' 'SDF' 'PVD' 'COS' 'LEX' 'KOA' 'ELP' 'ROC"' 'GPT' 'FCA'
'DAY' 'GRB" 'CAE' 'OKC' 'RSW' 'BIL' 'DAB' 'BOI' 'DAL' 'ICT" 'TLH' 'MDT'
'CHO' 'TYS' 'EYW' 'BIN' 'AGS' 'MLB' 'AVP" 'SJU" 'RNO" *TUL" 'STT' 'PHF'
'BIS' 'XNA' "CRW' 'HSV' 'ABE' 'ONT' 'FAR' 'JAC' 'PWM' ‘FAY" 'CAK' 'FSD'
'GNV' 'TUS' 'LIH' 'RAP' 'EVV' 'PSC’' 'ILM" ‘TvC" ‘AVL' "MOB' 'BGR' ‘SBN'
'FAL' "JINU' 'SGF' 'BTR' 'STX' 'GTF']

Figure 15: Code for Destination (Arrival airport)

Next, we drilled down to find the top 20 unique airport by their flight volume. Note since we
considering arrival delay we will only look at destination airports. Hartsfield-Jackson Atlanta
International airport (ATL) had the highest flight volume of 82519 this was for the year 2017
during the summer months

10

In [15]: M hi_volume_dest = df['DEST'].value_counts()[:20]
print(hi_volume_dest)

ATL 82519
MSP 25351
DTW 19613
SLC 15530
LAX 11421
IFK 9977
In [SEA 8763
LGA 7403
MCO 5771
BOS 5280
57O 4329
LAS 4438
TPA 3670
FLL 3653
DEN 3629
MIA 3226
DCA 3054
PDX 2903
ORD 2876
VG 2605

Name: DEST, dtype: intss

'MIA' 'CLE' 'GRR' 'ORD' 'JAX' 'SAT' 'IAH' 'BOS' 'HOU" 'PNS' ‘AUS' "MSN'
'MCI' 'SMF' 'LIT' 'ALB' 'DAL' 'IND' 'ANC" 'TLH" 'PIT" "MSY' 'DSM' 'RIC'
'TvC' 'SYR' 'IAD' 'ROA' 'OAK' 'CLT' 'BIL" 'PVD" 'COS" 'ILM' 'ELP' 'ROC'
'GPT' 'FCA' 'SDF' 'BIN' 'PWM' 'MHT' 'TRI" 'GRB" 'DAY" 'PSC" 'ATW' 'AGS'
'DAB' 'BOI' 'RAP' 'ICT' 'SJU' 'MDT' 'OKC" 'TYS" "EYW' 'MLB' 'PHF' 'HSV'
'BIS' 'FSD' 'LFT' 'XNA' 'RNO' 'JAN' 'STT' 'TUL' 'CRW" ‘AVP' 'JAC' 'ABE'
'"CAK' 'ONT' 'OGG" 'KOA' 'BTV' 'FAR' 'MOB" 'MSO" 'FAY" 'BGR' 'CHO' 'FAI'
'SBN' 'BTR' 'SGF' 'INU' 'STX' 'GTF']

Figure 16: Code showing top 20 unique airport used by Delta airlines by their flight volume

8.1 Arrival Delay Visualization

Here a histogram was plotted to show frequency of flights at destination airports

11

In [17]: W | # Plotting a Histogram
df['DEST'].value_counts().nlargest(28).plot(kind="bar', figsize=(16,5))
plt.title('Histogram')
plt.ylabel('Frequency of flights')
plt.xlabel('Destination Airport');

plt.figure(figsize=(10, 18))

plt.title('Histogram for Number of flights arrived at airport vs Destination Airports’)

axis = sns.countplot(x=df['DEST'], data = df,
order=df['DEST'].value_counts().iloc[:20].index)

axis.set_xticklabels(axis.get_xticklabels(), rotaticon=2@, ha="right")

plt.tight_layout()

plt.show()

Histogram for Number of flights arrived at airport vs Destmation Airports

count

40000

10000

T 4 Ea 3% § 33 g LEREEIEEER G

DEST

o

Figure 17: Hartsfield-Jackson Atlanta International airport (ATL) has the highest flight frequency
as compared to other airports used by Delta airlines

Next, we find the role of distance in arrival delay. From the analysis, flight with shorter distance
have arrival delays

12

In [24]:

sEEE #EE BEE #####% ROLE OF DISTANCE IN ARRIVAL DELAY # SEE sEE EEEE i

Checking if distance affects delays.
import statsmodels.api as sm

create o data frame that stores 2 varicbles: distence and arrival delay
dist_delay = df.groupby(DISTANCE', as_index = False)['ARR_DELAY_NEW'].mean() # Grouping by distar

plot a scatter plot that takes distance as predictor, and arrivel delay as response. This will st
X = dist_delay['DISTANCE']

y = dist_delay['ARR_DELAY_NEW']

plt.xlabel("pistance (in km)")

plt.ylabel("Average Arrival Delay (in min)")

plt.scatter(x, y, alpha=2.4)

Graph below crearly indicates that shorter distance flights are more prone to arrival delaoys.

.| ’

Figure 18: Code check if distance affects delay

cut[24]: <matplotlib.collections.PathCollecticon at ex28255b&eascsS>

70
o

?33

E

£ =

>

EE a0

%

2

& ™

= =

IR '::!i=' ~ = -
0 e

3000 2000
Distance (im km)

Figure 19: Visualization showing flight with shorter distance have arrival delays

13

Next, we check how the role of month of travel affects arrival delay

In [26]: M #REEsssdesssssisssssdtsss ROLE OF MONTH OF TRAVEL IN ARRIVAL DELAY $###3888isifsssss o

| # Finding probablity of arrival delay for according to months

| # Some months can see more delays than the others. Below histogram clearly indicates more delays 1ir
Then we can see drop in delays for next two months

| month_delay = df.groupby('MONTH', as_index = False)['ARR_DELAY_NEW'].mean()

| # print out average orrival delay time by month:
print(month_delay)

| # plot @ scatter plot that tokes distance as predictor, and arrival delay as response
| x = month_delay['MONTH"]

y = month_delay['ARR_DELAY_NEW']

plt.xlabel("mMonth")

| plt.ylabel("Average Arrival Delay (in min)")

| plt.bar(x, y, alpha=8.4)

|« I b
MONTH ARR_DELAY_NEW

8 5 12.204245

1 7 12.258788

2 g 2.828336

3 s 5.615292

Figure 20: Code showing output of arrival delay caused by travel months

Oout{2e]: <«<eBarcontainer object of 4 artists>

12
10 I
S5 €60 65 70 75 80 as 20 a5
Month

Figure 21 : Visualization showing months with the highest arrival delay for Delta

>

Average Arival Delay (in min)
by

N

airlines
We notice that June which is the 6™ month and July the 7" month have the highest arrival delay during

the summer while there is a slight difference of 0.5 to make July the highest arrival delay month in the
year 2017.

14

Here, we analyse how depature time affects arrival delay

In [21]: M =2 e £ SEESERBFRELE ROLE OF DEPARTURE TIME IN ARRIVAL DELAY # R EEpE

in the same way above, create a data frome thaot aggregate ARR_DELAY_NEW by hour in o day
hour_delay = df.groupby('CRS_DEP_TIME', as_index = False)['ARR_DELAY_NEW'].mean()

print out average arrival delay time by hour:
print(hour_delay)

plot @ Line graph:
hour_delay.plot(x = 'CRS_DEP_TIME', ¥ = 'ARR_DELAY_NEW')
ax = sns.lineplot(x="CRS_DEP_TIME", y="ARR_DELAY NEW", data=hour_delay, label='Average delay (in mi

1 »
CRS_DEP_TIME ARR_DELAY_NEW

2 e 4.343293

1 1 6.530120

2 5 2.413658

3 6 5.269229

- 7 5.680161

5 8 5.572165

6 9 £.449561

7 1e 6.288707

8 11 6.958391

9 12 7.859506

18 13 8.955663

11 14 9.488976

12 15 11.388974

13 15 13.419919

14 17 14.518483

15 18 15.631798

16 19 18.896218

17 2e 13.727559

18 21 13.77619%6

19 22 12.443485

20 23 13.524565

21 24 10.862595

Figure 23 : Code to show how depture time affect arrival delay
18 — Awarage delay {in mn)
16

I

ARR_DELAY NEW
3 R

w

0 S 10 15 20 25
CRS_DEP_TIME

Figure 24: Visualization showing lateness in departure time causes flight arrival delay

15

9 Data Modelling

The first thing done here was to use the label encoder to convert strings to numbers. The values of
origin and destination had the data type float and was converted to int using the python function as seen
in the codes

In [32]: M = ## DATA CLEANING: CATEGORICAL VALUES : - ==

Converting origin and dest to numeric volues for analy
We are using a Label encoder to convert strings n
from sklearn.preprocessing import Labelencoder

le = LabelEncoder()

df["ORIGIN"] = le.fit_transform(df["ORIGIN"])

df["DEST"] = le.fit_transform(df["DEST"])

. In order to train our ML models, we
ch number will act as a label for ¢ |

ng

Figure 25: Code to convert values of origin and destination to int

Next was to carry out another feature extraction to remove columns not relevant in training our
model for arrival delay

In [33]: W ? DATA CLEANING: REMOVING IRRELEVANT COLUMNS

Removing these values as we are not considering departure and oerrival delay in input parameters.
df = df.drop(['DEP_DEL15', 'ARR_TIME', 'ARR_DELAY', 'ARR_DELAY_NEW'], axis=1)
In [322]: M df.head()

out[34]:

MONTH DAY_OF_MONTH DAY_OF_WEEK ORIGIN DEST CRS_DEP_TIME ARR_DEL15 AIR_TIME FLIGHTS DISTAN!

c e - 1 a1 85 1" 0.0 127.0 1 g
1 2 4 1 5 123 19 c.C 226.0 1 12
2 e 4 1 21 42 19 1.0 100.0 1 4
3 2 4 1 42 21 17 1.0 66.0 1 4
4 2 4 1 a1 a3 8 0.0 51.0 1 2
1 »

In [35]: M df.info()

<class 'pandas.core.frame.DataFrame’>
Int64Index: 322199 entries, @ to 324946
Data columns (total 1@ columns):

MONTH 322199 non-null ints4
DAY_OF_MONTH 322199 non-null ints4
DAY_OF_WEEK 322199 non-null inte4
ORIGIN 3221992 non-null int32
DEST 322199 non-null int32
CRS_DEP_TIME 322199 non-null int32
ARR_DEL1S 322199 non-null floates
AIR_TIME 3221992 non-null floates
FLIGHTS 322199 non-null intss
DISTANCE 322199 non-null ints4

dtypes: floate4(2), int32(3), intes(s)
memory usage: 23.4 MB

Figure 26: Code to remove irrelevant columns

After this the data is saved

16

- F2c1s & snn] enne da n reu
in |[3o6]: M | # Saving cleaned G 1n CSs\

df .to_csv('data_ c'.“r.:'i csv')

Figure 27: Code showing data been saved

10. Preparing Training set

We will prepare a balanced dataset for training so that we get better accuracy on test data.
Below are the codes used to prepare the dataset by dividing to training and testing dataset. Here
are the steps we followed to make our training data balanced with same positive and negative
value. i.e. positive =1 negative=0

10.1 Splitting the data set

These are the steps in splitting the data

« Step 1: Get validation data and test data
In [38]: W # Getting 38% volidation data for test

- (97
df valu',at-vn _test = df.sample(frac=0.2, random_state=42)

Figure 28: code showing Validation of dat
This will remove 30% data from our dataframe to create both validation and test data.
« Step 2: Divide validation and test data further into 15% each the remaining 50% will
be used for cross validation

r2q1- el vunlsd an Aatn +n Fectr and unlsdars doto
1 139]): ” # Divid "u validation data to test and velidation Lo

df_test = df_validation_test.sample(frac=0.5, 'andom_stat: 42) # 58% of this vali te
df_valid = df_‘fa--dc*lun_tﬁt drop(df_test. 1nce,~:_‘v # remaining 56% will be used for cross v

Figure 29: Code showing validation and test data further splitted

« Step 3: Getting the train data

- CAn. 7 -~ ne o Ans P in) S AR AR
In [42]: M | # Complete training dota after removing validation ar

df_train_all = of drop(df_validation tc<1’ index)

17

Figure 30: Code showing how to get training data

+ Step 4: Calculating prevalence to show the total number of cases where arrival delay
happened in the test and validation data

n [41]: M calculate_prevalence(df_test['ARR_DEL15']) # Displaoys ratio of test datoe having arrival delays.

1]: ©.1398510242685651

n [42]: M |calculate_prevalence(df_valid['ARR_DEL15']) # Displays ratio of validation data having arrival del

»
Out[#£2]: ©.1385888581978@575
n [43] M calculate_prevalence(df_train_all['ARR_DEL15']) # Displays ratio of troining data having orrival
>
uci4 9.13767028337945987
Figure 31: Code calculating prevalence
-+ Step 5: Separating the training dataset into input and output. Note all columns are input
except that of ARR_DEL15 which is the output. The figure below the block 45 in the
code shows the size of the matrix in rows and columns.
In [45 M # Preparing training and test data
X_train = df_train.drop(['ARR_DEL15'], axis=1).values # returns numpy array with training values.
X_train_all = df_train_all.drop(['ARR_DEL15'], axis=1).values
X_valid = df_valid.drop(['ARR_DEL15"'], axis=1).values # returns numpy array with velidation volue:
y_train = df_train['ARR_DEL15"].values
valid = df_valid['ARR_DEL15"].values
print(X_train_all.shape)
print(X_train.shape, y_train.shape)
print(X_valid.shape, y_valid.shape)
»

(225539, 9)
(62100, 9) (62180,)

(48338, 9) (4833e,)

Figure 32 : Code showing the separation of training data

10.2 Steps To Prepare the Dataset

The Listed steps are as follows:

1. Taking out all positive values from training data so that it gives all the data of po

2. Taking out all the negative values by removing positive data from the complete training
dataset

3. Calculating how many positive values we have

4. Taking out the same no of negative data randomly from the negative data

18

5. Concatenating both positive data and negative data which we got from step 4
6. Randomly shuffling the data from step 5 in order to mix positive and negative examples

CODE FOR STEPS IN BLOCK 44

Y ey gp—y

has balanced example

amn®s 1o e v nl e

Negactives examples
s

on, recall, f1 scc

. This means ARR DEL1:

M | # In order to successfully train o model it is important thet treining dotaset
This 15 becouse negative examples are more so our model can be biased toward
It 1s important not only to get the best accuracy but also metrics Like prec
Bolancing positive ond negative examples for ¢ balanced dataset
rows_pos = df_train_all['ARR_DEL1S'] == 1 dices for positive examples
df_train_pos = df_train_all.loc[rows_pos] ame with tive examples
df_train_neg = df_train_all.loc[~rows_pos] t ative examples
df_train = pd.concat([df_train_pos, df_train_neg.sample(n = len(df_train_pos), random_state=42)], ¢
df_train = df_train.sample(n = len(df_train), random_state-=42).reset_index(drop = True)

Figure 33: Code to prepare dataset for modelling

For step 1 and 3 the code line 1 and 2 rows_pos = df train_all[‘ARR _DELI15’] ==I1 and
df_train_pos = df _train_all.loc[rows_pos] explains how the positive values from the training

data is taken out to give all positive dataset

For step 2, code line 3 df train_neg = df train_all.loc[~rows_pos] takes out all the negative

values by removing positive data from the complete traini

ng dataset

For step 3, 4 and 5 code line 4 df train = pd.concat([df train_pos, df train_neg.sample(n =
len(df_train_pos), random_state=42)], axis = 0) pd.concat does randomization and takes the
same number of negative values as positive and removing remaining ones. In this way we will
have a balanced training data with equal positive and negative values
For step 6 , shuffling was done by randomly mixing the values to achieve values that are
representatives of the entire data distribution which will produce good performance of the

algorithm and avoid bias

Antn £ar

M | # Shuffling

[37]: data for better results and avoid biased resu
df = df.sample(n = len(df), random_state=42)
df = df.reset_index(drop = True) # This will shuffle

Figure 34: Code showing Shuffling

19

11 Training Machine Learning Models

We will train different Machine learning Algorithms and see how they perform on our dataset.
It is important to note that each machine learning algorithm performs differently and we need
to choose the right algorithm for our problem. We will also calculate metrics associated with
each algorithm for a comparative analysis. Models used are Logistics regression, Support
vector Classifier, Random forest, Naive bayes, Gradient Boosting, SDG classifier

STEP 1: Import the necessary libraries to carry out analysis and define the necessary metrics to
be used

In [48]: M from sklearn.metrics import roc_auc_score, accuracy_score, precision_score, recall_score
from sklearn.metrics import confusion_matrix

from sklearn.model_selection import GridSearchcv

def calculate_specificity(y, y_pred, th=0.5):

return sum((y_pred < th) & (y == ©)) / sum(y == @)

def print_report(y, y_pred, th=0.5):
auc = roc_auc_score(y, y_pred)
accuracy = accuracy_score(y, (y_pred > th))
precision = precision_score(y, (y_pred » th))
recall = recall_score(y, (y_pred > th))
specificity = calculate_specificity(y, y_pred, th)
prevalence = calculate_prevalence(y)

print(’ ', auc)

print('a : ', accuracy)
print('pr : ', precision)
print('r recall)

print(’s ty: ', specificity)
print('prevalence: ', prevalence)

Figure 35: Code showing libraries imported for modelling and

Training Proper

Logistics Regression

Logistic regression was implemented using the sklearn.linear_model in LogisticRegression. This
implementation can fit binary, One-vs-Rest, or multinomial logistic regression with optional , or Elastic-
Net regularization

20

In [47]: MW | # Training a Logistic regression model and testing its accuracy
from sklearn.linear_model import LogisticRegression
1r = LogisticRegression()
1r.fit(X_train, y_train)

C:\Users\kenne\Anaconda3\1lib\site-packages\sklearn\linear_mocdel\logistic.py:432: rFuturewWarning:

fault solver will be changed to 'lbfgs' in @.22. Specify a solver tec silence this warning.
Futurewarning)

out[47]: LogisticrRegression(C=1.@, class_weight=None, dual=False, fit_intercept=True,
intercept_scaling=1, 11_ratio=None, max_iter=10@,
multi_class='warn', n_jobs=None, penalty="12‘,
random_state=None, solver='warn', tol=0.eee1, verbose=e,
warm_start=False)
In [48]: M 1r.score(X_valid, y_valid)
Out[48]: ©.54085121388371612
In [42]: M y_pred = lr.predict(X_valid)
print_report(y_valid, y_pred)

duc: ©.5487538608708521
accuracy: .64e5131388371612
precision: ©.222908282392026578
recall: ©.5410863916@34357
specificity: ©.6494223301206688
prevalence: ©.1385888681978@675

In [52]: W confusion_matrix(y_valid, y_pred)

out[se]: array([[26662, 14970],
[2424, 4294]], dtype=ints4)

Figure 36: Logistics regression code for modelling

In block code 47 line 1 and 2 the logistic regression is initialised, in line 3 the model is trained
to fit function using different parameters . Block code 48 shows the output from the cross
validation. Looking at the confusion matrix the number of true positives (TP) are 26662 False
positives are 14970 False negative are 2404 and True negative are 4292. So, since we
considering accuracy, TP+TN/total will give the accuracy of 64%

21

De

Naive Bayes
The sklearn.naive_bayes function was used while importing the Gaussian Naive Bayes. Several
parameters were defined to ensure effective modelling of the trained data

In [S5]: M | # Training a naive bayes classifier and testing its accuracy
from sklearn.naive_bayes import Gaussianhg
nb = GaussianNe()
nb.fit(X_train, y_train)

OQut[55]: GaussiannB(priors=None, var_smoothing=1e-29)

In [558]: M nb.score(X_valid, y_valid)
Out[56]: ©.6027312228429547

in [57]: MW y_pred = nb.predict(X_valid)

print_report(y_valid, y_pred)

3uc: ©.52089072707c0528
accuracy: ©.6027312228429547
precision: ©.2@452826562128947
recall: @.6468137254432159
specificity: ©.5957676787085856
prevalence: ©.1335888631978@675

In [58]: W confusion_matrix(y_valid, y_pred)

Out[S58]: array([[248e3, 15829],
[2371, 4327]], dtype=intsa)

Figure 35: Naive Bayes code for modelling

After using the confusion matrix the accuracy was 60%

22

Decision trees

performs multi-class classification on a dataset. They are supervised machine learning methods that
performs classification tasks. However, the aim here was to develop a model that predicts the value of a
target variable by learning simple decision rules inferred from the data features

M | # Training a Decision Tree Classifier and testing its accuracy
from sklearn.tree import DecisionTreeClassifier
tree = DecisionTreeClassifier(max_depth = 1@)
tree.fit(X_train, y_train)

Out[59]: DpecisionTreeClassifier(class_weight=None, criterion='gini', max_depth=18,
max_features=None, max_leaf_nodes=None,
min_impurity_decrease=0.@, min_impurity_split=None,
min_samples_leaf=1, min_samples_split=2,
min_weight_fraction_leaf=0.0, presort=False,
random_state=None, splitter='best')

In [6@]: M tree.score(X_valid, y_valid)

Out[s@]: ©.7e568901303538175

In [61]: M y_pred = tree.predict(X_valid)
print_report(y_valid, y_pred)
auc: ©.65468699270842363
accuracy: ©.7868991223538175
precision: ©.26848749198203974
recall: @.5062@03881755747
specificity: ©.7230735972328978
prevalence: ©,1385888681978@675

In [62]: M confusion_matrix{y_valid, y_pred)

Out[s62]: array([[3e1e2, 11529],
[2637, 4es61]], dtype=inte4)

Figure 36: Decision tree code for modelling

The sklearn.tree function was employed to use in the decision tree classifier and the different
paraments where used to find the appropriate performance. Confusion matrix showed how the
data performance calculation. Accuracy here was 66%

23

Random forest

out[62]: RandomForestClassifier(bootstrap=True, class_weight=None, critericn='gini',
max_depth=6, max_features='auto', max_leaf_nodes=None,
min_impurity_decrease=0.@, min_impurity_split=None,
min_samples_leaf=1, min_samples_split=2,
min_weight_fraction_leaf=8.e, n_estimators=5e,
n_jobs=None, ocb_score=False, random_state=None,
verbose=e, warm_start=False)

n [64]: W | rf.score(X_valid, y_valid)

Cut[e4]: e.6666873577488103

n [65]: M |y_pred = rf.predict(X_valid)
print_report(y_valid, y_pred)

auc: ©.6542552439162377
accuracy: ©.66668735774881e3
precision: @.2377821120@891614
recall: ©.6370558375634517
specificity: ©.6714546502690228
prevalence: ©.13858886819780675

n [68]: M| confusion_matrix(y_valid, y_pred)

out[ss]: array([[27954, 13578],
[2431, 4267]], dtype=intées)

The performance metrics considered here was accuracy and it was 66%

Gradient Boosting Classifier
Using the sklearn.ensemble function the gradient boosting classifier was imported

In [67]: M| # Troining o Gradient Boosting Classifier ond testing its accuracy
from sklearn.ensemble import GradientBoostingClassifier
gbc = GradientBoostingClassifier(n_estimators=188, max_depth=3, learning_rate=1.9)
gbc.fit(X_train, y_train)

Out[67]: GradientBoostingClassifier(criterion='friedman_mse', init=None,
learning_rate=1.e, loss='deviance', max_depth=3,
max_features=None, max_leaf_nodes=None,
min_impurity_decrease=0.e, min_impurity_split=None,
min_samples_leaf=1, min_samples_split=2,
min_weight_fraction_leaf=0.0, n_estimators=1e@,
n_iter_no_change=None, presort="autec’,
random_state=None, subsample=1.e, tol=0.0001,
validation_fraction=0.1, verbose=0,
warm_start=False)

In [68]: WM gbc.score(X_valid, y_valid)
Out[eg]: e.7e97661907717774

In [69]: M y_pred = gbc.predict(X_valid)
print_report(y_valid, y_pred)
auc: ©.6922263533471852
accuracy: @.7e97661907717774
precision: @.2748563758577889
recall: ©.6679605852493281
specificity: ©.716492121445@423
prevalence: ©.12858886819788675

In [72]: W confusion_matrix(y_valid, y_pred)

out[7e]: array([[29829, 118e3],
[2224, 4474]], dtype=intes)

The gradient boosting classifier was the best classifier as it outperformed all other models
predicting flight arrival delay for delta airlines with a 70% accuracy.

24

