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Abstract 

Abstract—Load forecasting forms the basis of demand response planning in energy 
trading markets where smart grid operators look to achieve effective resource planning 
in servicing customers’ electricity needs. To this end, historical data on customer 
electricity usage patterns have been deployed extensively in literature, applying state-of-
the-art approaches in building predictive models for various use cases. In this research 
paper, a comparative study of different approaches for modeling time series load data is 
presented. The aim is to measure the impact and performance of classical statistical 
approaches, and more recent machine learning approaches on different lengths of 
historical data. To achieve this, 10 years of electric load data from PJM transmission 
and weather data were used to deploy day-ahead forecasts using ARIMA, SARIMA, 
Extra Trees regressor and XGBoost. Performance was compared using evaluation 
metrics such as RMSE, MAPE and MAE. Upon successful completion of experiments, 
results show that regression-based machine learning models generally showed better 
results for modeling with lengthier historical data (more than two years). This is 
especially so as Extra Trees regressor delivered the best RMSE of 0.425 for 6years data 
overall. For shorter time series length between 4 weeks to 6 months, SARIMA delivered 
an RMSE of 0.129, which is the best result overall.  
 
 
Keywords: Electric Load Forecasting, Time Series Forecasting and Machine 
Learning.  
 

1. Introduction 
 
Demand-response forecasting is a critical component of energy management systems, 
as it allows for effective resource planning and distribution in modern smart grid 
operations through the measurement, control and optimization of load resources. As a 
result, over the last decade, electric load forecasting has been a subject of keen 
interest in academic research. During this time, several innovative approaches have 
been explored with the goal of continuous improvement in terms of methodologies 
and (or) model performance— a common denominator being the design of intelligent 
load forecasting systems (ILF) that help to find the balance between consumers’ 
energy demand and the distributed resources from micro-grid energy producers. 
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Forecasting load inaccurately, either by overestimating or underestimating load 
demand hinders resource scheduling. This may result in the smart grid system 
operating in a vulnerable state. Conversely models that deliver accurate forecasts 
mitigate this risk, guaranteeing stability in power system operations. Predictive 
models that have been deployed in electric load forecasting (ELF) can be broadly 
categorized into classical statistical models and data-driven models. The classical 
techniques are mostly applied to effectively model historical usage patterns.  This 
includes the use of time series models such as auto regressive integrated moving 
average (ARIMA) proposed by Box and Jenkins in 1994. Similarly, data-driven 
models have been widely deployed mostly to improve accuracy of electric load 
forecasting. As a result machine-learning and artificial intelligence algorithms have 
been leveraged to account for the intrinsic non-linear patterns in load consumption 
data.  
 
The pros and cons of these approaches have been extensively studied in literature. 
Classical statistical models generally suffer from under-fitting and an inability to 
effectively model non-linear patterns. This is due to the trend and seasonal factors 
present in historical electric load data. As such, we can’t just dump time series 
algorithms on such datasets for predictive analytics. While data driven models are 
efficient for modeling complicated non-linear relationships, they are plagued with the 
problem of overfitting as evident in the use of traditional neural networks for short-
term load forecasting, with a high number of non-evident nodes.  
 
Also, while electricity consumers are increasingly adopting IOT and smart home 
devices thereby scaling grid data volume, veracity and velocity, most state-of-the-art 
propositions in electric load forecasting have yet to address these changes as most 
models are still deployed using in-memory system on single machines. Recent 
breakthroughs in parallel computing can help us leverage distributed system 
frameworks such as spark, and machine learning algorithms (such as XGBoost) to 
improve processing time while dealing with large datasets. It is worthy of note that 
different business needs require different load forecasting models. This is because 
load-forecasting tasks are broadly classified into short-term (including hour-ahead, 
day-ahead to 2 weeks-ahead), and long term (beyond two weeks-ahead to years-
ahead). As such it is imperative to understand the strength and limitations of different 
models giving forecast scenarios and length of data. 
 
In this research, several approaches will be used to deal with the stochastic nature of 
the time series data (testing for and achieving stationarity), after which experiments 
are carried out to evaluate the performance of models such as ARIMA, SARIMA, 
XGBoost Regressor, and Extra Trees Regressor, for dah-ahead forecast using 
different lengths of data (including one week, two weeks, three weeks, four weeks, six 
months and one year). This will help us address the following research question:  
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RQ: To what extent can various machine-learning algorithms deployed on parallel 
computing framework optimize the performance of electric load forecast using 
different scale and length of data.    
 
SUB RQ: What machine learning approaches are best suited to modeling different 
lengths of data (in terms of model accuracy and processing time).    
 
In addressing the above research questions, our proposed framework makes the 
following contribution to improve the efficiency of electric load forecast:  
 

1. The use of state-of-the-art techniques (as presented in literature) to deal with 
the stochastic nature of time series data in preparation for various modeling 
techniques.  
 

2. An elaborate comparative analysis of the performance of five classical and 
machine learning approaches (including ARIMA, SARIMA, XGBoost, and 
Extra Trees Regressor) in electric load forecasting (ELF), vis-à-vis model 
accuracy and processing time on different lengths of data.  

 
3. Ascertain the size of historical data that results in optimized forecasts for each 

approach. 
 
The following sections of the paper are organized as follows. Section 2 presents the 
review of relevant literature. In section 3, the research methodology is described 
while section 4 presents the proposed design prototype. Details of all steps taken in 
the solutions deployment are described with corresponding outputs in section 5. 
Experiment results and evaluation are presented in section 6, while section 7 presents 
further discussion of results. Section 8 concludes the research with a suggestion on 
future work. 
 

2. Literature Review 
 
This research draws inspiration from previously published literatures in the data 
analytics subdomain of electric load forecasting. To address our research question, the 
solutions presented, and methodologies adopted in this paper are based on critical 
review of relevant literatures, where classical statistical and machine-learning 
approaches have been widely applied in the analysis of electric load data. The first 
subsection presents a review of bodies of work where time series techniques such as 
ARIMA have been applied for the analysis and prediction of load patterns. Next is the 
review of machine learning based approaches (either as lone or hybridized models). 
The pros and cons of these approaches are highlighted as the section concludes by 
summarizing the key findings as a basis for justifying this research. 
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2.1 Time Series Forecasting Using Classical Statistical Models 
 
Several classical statistical methodologies have been proposed for time series based electric 
load forecast (ELF), however, the autoregressive moving average (ARMA) and its variants 
have been widely deployed for short term demand forecast [1]. These models are preferred in 
some quarters to deal with the time-dependent structures such as trends, seasonality and 
cyclicality inherent in time series datasets. [2] built a model to forecast monthly electric load 
consumption in Saudi Arabia using ARIMA. Likewise, the model was adopted to create 
short-term electric load forecasts in the state of Karnataka, India [3]. A comparative analysis 
of ARIMA and ARMA models using electric consumption data from residential buildings 
was presented by [4].    
 
Other extensions have also been deployed in literature to deal with specific challenges of time 
series data, for example the Seasonal Autoregressive Integrated Moving Average 
(SARIMA)—which is robust enough to deal with the seasonal elements in time series 
datasets. Others are: Multiplicative Seasonal Autoregressive Integrated Moving Average 
(MSARIMA)—which integrates independent variables to SARIMA, as well as ARIMAX—
which adds exogenous inputs to ARIMA. [5] sought to improve efficiency of load 
management, as such deployed MSARIMA to forecast peak electric load demand for five 
regions in India using weather features as independent explanatory variables. [6] proposed a 
model to optimize the cumulative energy consumption for an office building. This they 
achieved by modeling hours-ahead power demand for the said building using ARIMAX. 
Multiple linear regression (MLR) is another type of classical statistical technique that has 
been widely deployed on time series data for electric load forecasts. Using data curated from 
ISO New England and the Global Energy Forecasting Competition, [7] used separate subset 
of trained variables to deploy a family of regression models. A methodology for optimal 
precision was proposed by [8] comprising a number of techniques that included simple 
regression and multiple linear regression models. This was deployed to forecast gross energy 
consumption using India as a case study. Linear regression approach was used by [9] to 
analyse the daily and hourly electric load pattern of a retail building located in Houston, 
Texas. [10] used electricity consumption time series data of two years to evaluate the 
performance of Gaussian model and multiple linear regression models.  
 
2.2 Forecasting with Machine Learning Models 
 
A number of forecasting approaches based on machine learning techniques have been 
deployed either as lone or hybridized models. Fuzzy logic (FL), an offshoot of fuzzy set 
theory—first introduced by Lotfi A. Zadeh in 1965, maps inputs variables to output variables 
using “if-then” statements. This peculiarity makes FL algorithms suitable for exploring 
patterns from load consumption data whose input and output variables exhibit some non–
linear patterns. [11] incorporated this peculiarity of FL algorithms by modeling non-linearly 
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correlated attributes between peak electric load and a number of weather features including 
temperature and humidity. The model successfully predicted year-ahead load achieving a 
6.9% mean absolute percentage error value. A downside however is the failure of FL 
algorithms to effectively deal with potential cognitive misgivings inherent in non-linear 
patterns—this is an aspect Artificial Neural Networks (ANN) come in handy.  
 
ANN algorithms offer greater tolerance for errors, characteristic generalization, alongside 
parallel processing and efficient learning abilities. As such they have been extensively 
deployed to a great degree of success in modeling non-linear relationships peculiar to electric 
load forecasts. In addition to this, the algorithms are architecturally flexible as such can be 
deployed in varying forms for tasks that include classification, pattern recognition, etc. These 
broad variants include Deep Learning (DL), Self Organizing Map (SOM), Extreme Learning 
Machine (ELM), and Multilayer Perceptron (MLP).  [12] used MLP to model day-ahead and 
hour-ahead scenarios for electric load consumption. The model made use of the back 
propagation technique for data training. The hour-ahead and day-ahead forecasts achieved 
MAPE values of 2.06% and 1.40% respectively with the authors suggesting a deployment of 
furthers state-of-the-art architecture to address more data features in the future. A further 
innovative approach was deployed using MLP. Adaptive weighted method was used for the 
combination of three predictive components to dynamically predict k days hourly load (where 
K is stated to be a number of days between 2 to 7 days). First, the authors split the 
relationship between electric load and temperature into three varying sets of weekly, daily 
and hourly. Results show a MAPE of 2.34% and 1.67% MAPE for the daily and hourly 
forecasts respectively [13]. The shortcoming of this algorithm is that large MLP structures are 
required for training the electric load datasets. Also there is a potential risk of increased 
redundancy as a result of the three-pronged input components. [14] proposed a methodology 
to address these problems. In a bid to optimize for the overfitting challenges of large-scale 
data, the authors used electricity consumption time series data from a residential building to 
deploy a model using MLP based STFL. The model showed relatively improved accuracy for 
several loads. For future work, the authors suggested a deployment of the model on a parallel 
computing framework—as an alternate solution to handling the complex MLP algorithms. 
The SOM is an unsupervised clustering technique able to mirror local representation of data 
inputs. [15] employed a two-stage approach to improve forecast accuracy. SOM was first 
used to create several profiles from time series electric load data using clustering. In the 
second stage, MLP was then used to build the forecast model as supervised learning. This 
approach resulted in improved accuracy compared to the initial deployment where clustering 
was not applied. DL uses a combination of multiple processing layers in a neural network to 
analyse non-linear relationships between predictor and dependent variables. However, it is 
plagued with the risk of overfitting in demand side electric load forecasts. This is due to the 
high number of input layers. To address this issue, the literature [16] proposed a method to 
increase the data volume and variety fed into a pooling-based RNN. Testing on 920 smart 
meter customers in Ireland, the method showed impressive results. Specifically, the model 
achieved this by establishing correlation amongst several households thus generating more 
learning layers before overfitting. Also the pooling of customer usage profiles was a major 
factor in improving accuracy. ELM algorithms are characterized by their exceptional capacity 



	
	

9	

for generalization. As a result they are considered more efficient than conventional neural 
networks (CNN)—particularly for faster processing times training large datasets. An RELM 
(basically an ELM incorporated into RNN) was used by [17] to reduce load forecast errors in 
their work. However, it is worthy of mention that neural network based algorithms generally 
suffer from limitations such as overfitting as well as network nodes complexities that may 
lead to over estimation of models, amongst others. SVM is preferred in some quarters for its 
features that minimize risks thereby addressing the challenges of overfitting peculiar to ANN. 
SVM was used to build a model for short-term load demand using data from the electricity 
market operator in Australia [18]. The model’s performance was benchmarked against that of 
ARIMA and MARS. The SVM model performed better, with the day-ahead forecast reaching 
the highest willmot’s index of 0.890.   
 
A number of machine learning models have also been employed in literature, with the aim of 
consolidating the strengths of different algorithms to improve forecast accuracy. Kennedy 
and Eberhart introduced the particle swam optimization (PSO) in 1965. The metaheuristic 
algorithm finds the optimal solution by initiating multiple solutions to move through 
multidimensional search space in a pattern that mirrors the characteristic movement of bird 
flocks.  The algorithms require no assumptions of the situation being optimized, as such are a 
great fit to compliment other algorithms in hybrid architecture. For instance, PSO can be 
deployed with ANN to ascertain the optimal arrangement of the network, and optimize 
weights of the neurons. A PSO trained MLP for day-ahead load forecast was presented by 
[19]. The weights of the neurons were trimmed using PSO. The model achieved an accuracy 
surpassing that of back-propagation techniques. [20] deployed a PSO-ELM hybrid for a high 
fluctuation, low capacity micro grid. PSO was used to decompose and filter the data in the 
pre-processing phase, after which the model was trained using ELM. [21] leveraged the 
ability of the SVM-PSO hybrid to retain identified solutions from particles searches. In their 
implementation, PSO was used for feature selection while using the support vector regression 
for modeling. The results presented surpassed the hybrid of genetic algorithms GA and SVR.    
 
Time series data can effectively be split into low and high frequency components using 
wavelet transformation (WT) making the algorithm effective for analysing signals that are 
dynamic. A hybrid of WT and ANN was proposed by [22]. WT was first used to split electric 
load into a number of frequency units. ANN algorithm was then applied to model the 
resulting normalized data. A test on ISO datasets showed an overall improved performance.  
 
While a number of these models have proven effective, their downsides have been 
extensively highlighted. Also for different use cases, the impact of varying data lengths in 
ascertaining optimal performance for state-of-the-art modeling approaches have not been 
adequately covered. 
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3. Research Methodology  
 
In this section, an overview of the applied methods adopted in addressing our research 
question is presented. The methods presented can be classified into two broad categories 
namely: statistical based approach for modeling timer series (SARIMA and ARIMA), and 
machine learning approach (XGBoost, Extra Trees, and Adaboost). A process flow is 
presented detailing the steps taken to perform the experiments, as well as a detailed overview 
of all algorithms employed.   
 

3.1 Data Gathering and Requirements  
 
This research will make use of two categories of time series datasets namely electric load 
data and weather data as presented in Table 1 below: 
 

• Load Data, which contains 10 years of hourly energy consumption (in megawatts) 
for the state of North Carolina US, was sourced from the PJM utility database. PJM is 
a regional transmission organisation controlling the distribution of power to 7+ states 
in the US. The data contains time series features thereby exhibiting annual, weekly 
and hourly cycles.  
 

• Weather Data: A strong positive correlation between temperature and electricity 
consumption during winter was established [23]. For this research, an 
OpenWeatherMap dataset was sourced from Kaggle. The datasets are time series 
spanning five years of weather for temperature, humidity, pressure, wind direction 
and wind speed for North American cities.  

 

                                          Table 1: Description of data sources 

 Category Data Source Description Features Target Variables 

1	 Weather 
Data 

Kaggle/ 
OpenWeatherMap 
(5 years of hourly 
weather 
measures) 

Meteorological data 
containing weather 
measurements for 
several North 
American cities 
curated from 
OpenWeatherMap  

Time Stamps 
Temperature, 
Pressure, 
Humidity, 
Wind Speed, 
Wind 
Direction 

Temperature (K),  
Wind speed 
(Km/h),  
Relative Humidity 
(%) Atmospheric 
Pressure (milibar) 

2	 Load 
Data 

PJM Power 
Utility Company 

10 years of hourly 
load consumption 
data from PJM. The 
data is open source 
and available 
through the firm’s 
website. 

 (Time, Day, 
Month, 
Year), and 
Energy 
consumption 
in 
Megawatts 

Load Consumption 
(MW) 
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3.2 Process Flow  
 
The process in Figure 1 below captures the steps and procedures taken in implementing the 
solutions of this research. The methodology adopted in this research is adapted from the 
knowledge discovery in data mining (KDD) framework. 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

 
 
 
 
 
 

 
 
   
                                              Figure 1: Implementation framework 
 
 
Layer 1: Data Sources (Electric load and Weather data). Layer 2: Data Processing comprising 
of Cleaning and pre-processing, transformation, de-trending and seasonal adjustment. Layer 
3: Modeling showing ARIMA, SARIMA, XGBoost and Extra Trees Regressor. Layer 4: 
Day-ahead forecasts for varying lengths of data. 5: Evaluation and Results. 
 
 
3.2 Overview of Data Mining Algorithms and Techniques  
 
The following section describes the statistical and data mining techniques and algorithms 
used in this research, with the aim of providing justification for their selection in addressing 
our research questions.  
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(i) ARIMA: Autoregressive integrated moving average (an integrated extension of the 
general ARMA model) was implemented using the Box-Jenkins procedure [24] 
recommended for time series forecasting. This method was used due to its compatibility with 
non-stationary time series. However a primary requirement of the model is stationarity of the 
time series data [25]. As such necessary inspection and adjustment for stationarity was 
carried out as further detailed in section 5 of this paper. A non seasonal ARIMA is defined by 
three parameters written as ARIMA (p, d. q) where P is the number of autoregressive terms 
(AR), d is the measure of differencing required to make the time series stationary (also 
known as the degree of differencing), and q is the size of the moving average window or 
order of moving average (MA). Using these model parameters, the ARIMA (p, d, q) 
forecasting equation is a linear model in the form: 
 
Υ𝓉 =𝛼 +𝛽1 Υ𝓉−1 + 𝛽2 Υ𝓉−2+…+ 𝛽𝑝 Υ𝑡−𝑝∈𝑡  + 𝜙1∈𝑡−1+ 𝜙2∈𝑡−2 + … + 𝜙𝑞∈𝑡−𝑞                                                                                                                                 
…                                                                                                               (1) 
 
Predicted (Υ𝓉) = Constant + Linear combination lags of Y (up to p lags) + Linear 
Combination of lagged forecast errors (up to q lags) 
 
To execute the ARIMA model, the first objective will therefore be to identify the parameter 
values p, d and q.  
 
(ii) SARIMA: The Seasonal Autoregressive Integrated Moving Average provides an 
additional modeling of temporal influence specifically addressing potential seasonal elements 
in the time series. As such it is an enhancement of the ARIMA model with additional P, D, Q 
parameters used to model inherent seasonality in the data. It is denoted as SARIMA (p, d, q) 
(P, D, Q) m, where “m” signifies the periodic trend of the time series [26].  This model was 
selected to due to it’s adaptation to seasonality especially as achieving stationarity is a 
necessary requirement for building forecast models on time series using classical statistical 
techniques. Therefor a SARIMA (p, d, q) × (P, D, Q) can be expressed as follows: 
 
∅ (𝐵) Φ (𝐵S)(1−𝐵) 𝑑 (1−𝐵𝑠) 𝐷 Yt= 𝜃 (𝐵) Θ (𝐵𝑠) Zt …………                 (2) 
 
Where: are unknown parameters, d and D are finite non-seasonal and seasonal 
differencing respectively.  
 
	

 (iii) Grid Search: The process of selecting and tuning the ARIMA & SARIMA 
hyperparameters (p. d, q) and (P, D, Q) to achieve the best combination for modeling was 
achieved using the grid search procedure for a one-step rolling forecast. In python, the 
pandas, scikit-learn, and statsmodels libraries were used to implement an iterative model that 
achieves optimal parameters for our models. Essentially the process involves several 
iterations that studies varying combinations of hyperparameters. The parameters with the 
lowest AIC* score were selected for building the forecast models as suggested by [31]. 
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(iv) XGBoost: The XGBoost algorithms use the principle of gradient boosting to build 
ensemble of trees. The algorithm has grown popular in application to electric load forecasting 
problems in recent years. This is mostly due to scalability as it achieves 10x speed compared 
to similar algorithms [27]. Also, it is able to overcome the problem to overfitting compared to 
Generalized Boosted Regression Models (GBM) by regularizing model formalization thereby 
attaining better results. Lastly, the use of out-of-core computation makes it efficiently process 
large-scale data even on a single machine. These qualities particularly justify the selection of 
XGBoost in addressing a part of our research question. Class xgb. XGBRegressor () 
implementation provided in the scikit-learn library in python was used.   
 
(v) Extra Trees Regression: The Extra trees Regressor model builds multiple randomized 
decision trees on several data sub-samples while using averaging to mitigate overfitting and 
optimize accuracy. Unlike Random forests, observations are not bootstrapped, while nodes 
are split randomly among feature subsets. As such they generally achieve lower variance than 
random forests. The class ExtraTreeRegressor () implementation provided in the scikit-learn 
library in python was used.    
 
(vi) Lagging Features: To reframe a time series problem into a supervised learning one, 
such that machine learning regression models can be applied effectively for forecasts, lagging 
features are required. In the feature engineering stage of this research, lag features of each 
observation was created using procedures outlined in literature [31], after which we were able 
to effectively apply Xgboost, Extra trees Regressor for modeling to great effects.  
 
(vii) Cross Validation:  K-fold was used for validation as suggested by [32]. The procedure 
involves randomly splitting the data into approximately equal K number of folds. One hold 
out fold is used as the testing set, while the aggregate of the other folds as the training set. 
The accuracy of the test set is calculated, and the procedure iterated K number of times 
reporting the average accuracy. This method makes more efficient use of data as every 
observation gets chance to be used featured in the training and testing, leading to more 
accurate results.  The cross-val-score function in python’s sklearn library was used to achieve 
this while setting k= 10 folds as recommended in the python sklearn manual2. 
 
(viii) Differencing: This procedure was used during the transformation stage to achieve 
stationarity of time series data as one of the assumptions of ARIMA and SARIMA modeling. 
To remove seasonality and trends, the difference between each observation is computed 
according to the equation below:     
 
 𝒀𝒕 =  𝒀𝒕 – 𝒀t-1                                                                                                                                   (3)     
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4. Design Specification  
 
For the purpose of reusability, the research solution is implemented via three-layer 
application architecture. This is presented in the figure below:    
 
 

 
 
 
 
 
 
 
 
 
 
                           
 
 
                            

                               Figure 2:  A Three-tier Design Architecture 
 
1: Data Tier for storage and retrieval of data from multiple sources in CSV. 2: Logic Tier 
containing all libraries in pithing and R used for processing and manipulation. 3: Presentation 
Layer where the modeling algorithms, prediction and forecasts are presented.  
 
 
5. Implementation and Solution Development  
 
This section describes the solution implementation based on the methodology described in 
section 3 above. Also visualization and schematics are presented where necessary to provide 
clarity. First, the solution architecture is presented in Figure 3 below: 

 
                  Figure 3: Implementation of the day-ahead electric load forecast system 
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1: Data Extraction (Load and weather data). 2: Preprocessing and Transformation consisting 
creation of date time features, creation of lag features, de-trending and seasonal adjustment, 
feature selection. 3: Modeling showing cross validation, grid search and algorithms used. 4: 
Evaluation and Results.  
 
 

5.1 Data Exploration, Preprocessing and Transformation 

 
A total of six datasets were extracted for experimental use in csv format—five of them being 
hourly weather readings for various cities in North America with date-time features, while the 
last dataset records the hourly power consumption (in megawatts) for various cities in North 
America.  
 
Extraction and Cleaning using R Studio: All six datasets were imported into R studio for 
cleaning and initial processing. For load consumption, the raw data file consisted of 2 
variables (Datetime and Power_MW), and 116, 189 observations after missing values were 
dropped. The raw weather files namely temperature, humidity, pressure, wind speed, and 
wind direction each contained 37 columns that included datetime and the corresponding 
weather measurements for 36 cities. Our interest is for North Carolina so all other cities were 
dropped. Also all weather datasets had no missing values except for the pressure dataset 
(which had only 3 missing values), leaving us with: 2 variables and 45,250 observations for 
temperature; 2 variables and 45,250 observations for pressure; 2 variables and 45,252 
observations for wind direction; 2 variables and 45, 253 observations for humidity; 2 
variables and 45, 251 observations for wind speed. The datasets were then exported to the 
Jupyter notebook for python where exploratory data analysis and further feature engineering 
was implemented.  
 
Exploratory Analysis: In python, necessary data analysis libraries were installed namely 
numpy, pandas, seaborn, matplotlib, xgboost, sklearn, etc. Using the pandas library concat 
function, all six separate datasets were concatenated on the basis of the datetime column 
resulting in one single dataset of 7 variables (datetime, Power_MW, temperature, wind speed, 
pressure, wind direction, humidity), upon which our analysis were carried out.  
 
Stationarity of time series data is a critical assumption for statistical modeling methods such 
as ARIMA. Therefore, it is important to make preliminary checks for the presence of 
seasonal or trend effects in the time series datasets early enough in the exploration stage. This 
is such that necessary seasonal or trend adjustments techniques can be applied in the feature-
engineering phase.  [31] recommended three approaches to check for stationarity namely: 
inspection of plots, summary statistics, and a statistical test (The Augmented Dickey-Fuller 
Test).  
 

• Plots: A visual inspection of the line plot of the time series dataset presented in 
Figure 4 shows cycles giving rise to a possible presence of seasonal or trend elements. 
Also autocorrelation plots can provide an indication of the presence or not of 
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seasonality in time series data. In Figure 5, the autocorrelation plot is shown on the y-
axis and lagging features on the x-axis. The graph captures the self-correlation 
between an observation and its equivalent in similar or opposite seasons. Sinusoidal 
wavelike distributions such as these are a possible indication of seasonality. 

 
 
 
 
 
 
 
 
 
 
             Figure 4: Line plot for the time series                    Figure 5: Autocorrelation plot 
 

• Summary Statistics: A review of summary statistics is another quick way to inspect 
if a time series data is non-stationary. To achieve this, the time series was split into 
two partitions X1 and X2, inspecting the summary statistics of each partition to 
compare their mean and variance. Figure 6 shows the summary statistics presented for 
both partitions, with the mean and variance not showing significant spread.   
     

 
 
 
 
 
 
           Figure 6: Stationarity by summary statistics                Figure 7: ADF test statistics 
 
 

• The Augmented Dickey-Fuller Test: Is one of the most widely used unit root test to 
inspect how strongly a trend defines a time series. It tests the following hypothesis: 
 
(H0) = the time series data is non-stationary because of the presence of a unit root 
(H1) = the time series is stationary due to the absence of a unit root. 

 
 
The test is interpreted using the p-value. If P > 0.05, we fail to reject the null hypothesis (i.e 
the timer series non-stationary).  Whereas if P < 0.05 we reject the null hypothesis (i.e the 
time series is stationary). Figure 7 above shows the result of the test. Our P= 0.000, <0.05 
further confirming our time series is stationary. The adfuller () function in python was used to 
carry out this task.  
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Transformation: A number of feature engineering techniques were applied to further 
validate necessary assumptions as well as prepare the datasets for modeling. [31] 
recommended that a time series dataset must be further transformed so as to effectively 
model it as a supervised learning problem. To achieve this task, new features were invented 
from our time series dataset. The tasks carried out here are summarised below: 
 

• Creation of Date-Time Features: The Pandas library in python was used to extract 
further features from the time-stamp of our data, adding further columns one at a time 
such as day of week, quarter, month, day of year, hour of day, leap year or not, etc.    

 
• Creation of Lag Features: The classical way to transform time series for effective 

use in supervised learning problem is to use lag features. This method involves 
predicting the next time value (t +1) from the current time (t).  This creates a 
supervised learning problem with shifted values. For this research, the Pandas 
library’s shift () function was used to create seven lags from our dataset. 

 
• De-trending & Seasonal Adjustment using Differencing: Differencing was used to 

carry out de-trending and seasonal adjustment on the datasets. Below Figure 8 shows 
the original data, Figure 9 the line plot for the de-trended data, while Figure 10 is the 
line for the seasonally adjusted data.   

 
 
 
 
 
 
 
 
 
 
 
 
           Figure 8: Load Time Series                                                   Figure 9: De-trended Load                  
 
 
 
 
 
 
 
 
                                         
                                   
 
 
                  Figure 10: Seasonally Adjusted Load 
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Feature Selection: A feature importance plot of F-score using Xgboost regression modeling 
was used to identify the most important features. Figure 11 below presents the ranking by F-
score of the 18 features selected out of the total 54 features going forward.  
 
 
 
 
 
 
 
 
 
 
 
 
                                             
 
 
                                                         Figure 11: Feature Selection 
 
Summarily, the transformation process addressed one half of the model fitting approach by 
achieving three things namely: stationarity of the time series data—a critical assumption for 
applying autoregressive modeling techniques, creation of lagging features—necessary for 
adapting the time series to regression-based supervised learning modeling techniques, and 
lastly selecting the best features to be used for load forecasts.    
 

 
5.2 Application of Data Mining Algorithms 

 
Upon successful completion of the transformation steps, a total of four modeling techniques 
namely ARIMA, SARIMA, Xgboost, Extra Trees Regressor were used to forecast day-ahead 
load using different lengths of data (i.e 2 weeks, 4 weeks, 6 months, 1 year and 6 years). Our 
data was split into 70% for training and 30% for testing. K-fold cross validation was used for 
validation as extensively discussed in section 3 above. 
 
 
 

6. Results and Evaluation  
 
Results obtained from modeling with different algorithms described in section 5 above on 
datasets presented in section 3.1 are presented in this section. In summary, the experiments 
performed were aimed at three focal points: first, to ascertain which modeling technique is 
best suited to predicting day-ahead electric load consumption. Secondly to find the data 
threshold (length of data) required for achieving best performance for each of the models. 
Lastly, to deduce the impact of distributed systems on processing time for large-scale data. 
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For performance measurements, error metrics such as MAPE, RMSE and MAE were used. 
The accuracy metrics are described below: 

																					 RMSE =
(Yobs,i −Ymodel ,i )

2

i=1

n
∑

n
																																																											(4) 
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∑
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| 																																																										(5) 

 
 

																											MAE =|
Yobs,i −Ymodel ,ii=1

n
∑

Yobs,i
| 																																																																(6) 

 

Where Yobs,i  is the actual value, and Ymodel ,i is	the	forecast	value.	  
 
It is worthy of note that both RMSE and MAE error values are the units as the dependent 
variable. As such, it is necessary to normalize the error values to get the actual errors as 
presented in equation 7 below:  
 

Error actual =                                                                                     (7) 
 
Also, these two metrics have been widely used to compare the performances of different time 
series forecasting approaches [28, 29]. The closer to zero the error values are, the better the 
model. RMSE is particularly useful when avoiding large forecasting errors as it assigns a big 
penalty to enormous errors. Results are presented in tables 2, 3 and 4 below:  
 

                         Table 2: Results for regression-based machine learning models 
 

 
 
 
 
 
 

 
                                         Table 3: Results for SARIMA 
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                                 Table 4: Results for ARIMA 
 
The next section of this documentation presents the experiments and outputs from ARIMA, 
SARIMA, Xgboost, and Extra Trees Regressor. Day-ahead forecast experiments were 
carried out for four scenarios of data length namely: 4 weeks, 6months, 1 year and 6 years.  
(ARIMA was modeled for 1 and 4 weeks length data only)    
 

6.1 Experiment 1 (Day-Ahead load forecast using XGBoost Regressor): 
 
The first experiment is to evaluate the performance of Xgboost on forecasting day-ahead load 
given different scenarios of data lengths. The error metrics RMSE, MAPE and MAE are used 
to ascertain the goodness of fit of Xgboost in modeling these scenarios as presented in results 
table 3 above. Also the processing time for prediction is recorded. Figure 12 shows the 
outputs for Xgboost on 6 years, 1 year, 6 months and 4 weeks length of data respectively. 
 
 

 
 
 

 
 
                              Figure 12: Experimental outputs for XGBoost Regression 
 
 
It follows therefore that for day-ahead forecast of electric load, Xgboost Regressor shows the 
best performance—as seen in figure 12a above, and RMSE of 0.492 in modeling longer 
lengths of data (6 years).  
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6.2 Experiment 2 (Day-Ahead load forecast using Extra Trees Regressor)  
 
In the second experiment, similar procedure as section 6.1 above was carried out on the same 
time series data using Extra Trees Regressor model. Day-ahead forecasts are presented in 
figure 13 for 6 years, 1 year, 6 months, and 4 weeks length data respectively.  
 
 

 
 

 
                   Figure 13: Experimental outputs for Extra Trees Regressor Model 
 
 
Comparing the outputs in figure 13 above, the Extra Tree Regressor model shows the best 
performance in forecasting dah-ahead load with longer data lengths (6 years time series), 
recording the lowers RMSE of 0.465. This is similar to the observed trends using Xgboost.  
 
 
6.3 Experiment 3 (Day-Ahead load forecast using SARIMA)  
 
In the third experiment, SARIMA was used to build day-ahead forecast models for the 
different lengths of data. However, the procedure here was a little more complicated than the 
regression based experiments described in 6.1 and 6.2 above. To begin each experiment, a 
seasonal decompose procedure is used to split the time series data into its trend, seasonality 
and residual elements as shown in figure 14 below for the 6 years data length.  
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                         Figure 14: Time series decomposed plot for six years data 
 
 
The decompose graphs for the rest of the data lengths are presented in the configuration 
manual attached to this research document.  
 
Next, for each data length scenario, a grid search procedure was used to find the optimal  
[(p, d, q) x (P, D, Q) m] hyper parameters to be used. This also doubles as the validation 
technique for autoregressive modeling methods, as the combination of parameters with the 
lowest AIC score is selected for building the forecast model. [31]. As in the previous 
experiments, forecast results are presented in Figure 15 for the respective data lengths.  
 

 
 

                              Figure 15: Experimental outputs for SARIMA Model 
 
 
The outputs in figure 15 above show that the SARIMA model improves with shorter time 
series data lengths. The model shows overall best performance for the 4 week length time 
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series data with an RMSE of 0.126 outperforming the regression models.   
 
 
6.4 Experiment 4 (Day-Ahead load forecast using ARIMA)  
 
Similar experiments as described in section 6.3 above were conducted on the datasets using 
ARIMA. However, ARIMA struggled with building forecast models for data lengths beyond 
4 weeks. As such for this experiment, ARIMA was used to build day-ahead forecast models 
using 2 weeks length and 4 weeks lengths data. Outputs are presented in figures 16a and 16b 
below:  
 

                           
                           Figure 16: Experimental outputs for ARIMA Model 
 
 
 
7.0 Discussion  
 
This section presents detailed discussion on the findings from the experiments presented in 
section 6 above. Specifically, findings from this research are explained based on output from 
the experiments, as well as benchmarked against findings from other literature.  
 
Observations from experiments 1 and 2 as described in sections 6.1and 6.2 above, where 
regression techniques like Xgboost and Extratrees Regressor were used to model day-ahead 
load forecasts for different lengths of historical data show that regression techniques 
generally performed well in modeling longer data lengths beyond 1 year (say from 2 to 6 
years). Results show that both the Xgboost and Extra Trees Regressor outperformed 
autoregressive models like SARIMA for lengthier historical data of 6 years recording RMSE 
values of 0.492 and 0.465 respectively, compared to an RMSE 0.574 for SARIMA 
(1,1,1)(0,0,1) 12. For the two regression based models, Extratrees Regressor particularly 
showed the best performance for lengthier historical data, outperforming Xgboost in the 
respective RMSE values for 6 years historical data. Also in terms of processing time, Extra 
trees recorded 9.8seconds compared to 3.64 seconds for Xgboost. Consequently, the 
regressor models show effective adaptation in dealing with time-series fluctuation given 
implementation of necessary feature engineering tasks such as lag features, and are well 
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suited to managing extreme values. Also the models performance is highly dependent on 
explanatory variables. However, performance of both regression models tapered off with 
shorter historical data lengths as RMSE values increased to 0.690 and 0.849 for Xgboost and 
Extra Trees regressor for the 4-week data historical data length. 
 
Results for autoregressive modeling techniques presented in 6.3 and 6.4 show the results for 
SARIMA and ARIMA models respectively. As observed, these models generally 
outperformed the regression-based models for day-ahead load forecasts with shorter lengths 
of historical data. Particularly SARIMA (1,1,1)(1,1,1) 12 showed the best overall 
performance for modeling 4 week-length historical data with an RMSE of 0.129 (the lowest 
for all experiments). That said, the observed trend from our results show that these models 
struggle with increased length of historical data as ARIMA was only able to successfully 
model not more than 4 weeks data length, while SARIMA recorded the highest RMSE 0.800 
for 1 year data length the entire research. These results make sense as classical statistical 
models are frequently applied to model short-term load forecasts using shorter lengths of 
historical data. Also the models were able to effectively model the trend and seasonality 
elements.  
 
Specifically, to address our research questions, Table 5 below captures the summary of 
findings from the experiments carried out. Stakeholders are able to reference this to decide 
what modeling approaches best optimize electric load forecasts giving various scenarios. 
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                                              Table 5: Summary of findings from research 

 

Approach Model Pros Cons 
Classical 
Statistical 
Methods 

ARIMA 
SARIMA 

(i) Delivers great 
accuracy for 
shorter time series 
history and data 
length  
(4 to 6 months) 
 
(ii) Requires 
fewer parameters 
to estimate and 
results are easy to 
interpret.  
 
(iii) ARIMA 
delivers even 
better for 
modeling very 
short data length 
due to the absence 
of seasonal 
elements (1 to 4 
weeks) 
 

(i) Accuracy lowers 
with increased 
historical data length.  
 
(ii) More complicated 
to implement and 
interpret the results, 
as a rigorous process 
is required to select 
the best 
hyperparameters.  
 
 
 
 
 
 
 
 
 
 

Regression 
Based Machine 
Learning 

Xgboost 
Extra Trees 

(i) Delivers great 
accuracy for 
longer time series 
history and data 
length 
(2 years and 
above). 
 
(ii) It’s easy to 
implement, 
interpret and 
understand. 

(i) Largely dependent 
on explanatory 
variables 
 
(ii) Modeling 
requires reframing 
the time series into a 
supervised learning 
problem by applying 
feature engineering 
techniques like 
lagged features 
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8. Conclusion and Future Work 
 
In this research work, different approaches to electric load forecasting were investigated with 
the aim of ascertaining the goodness of fit of each model on different historical data lengths 
that include 6 years, 1 year, 6 months, and 4 weeks. Two broad categories of modeling 
approaches were used namely classical statistical approach—ARIMA and SARIMA, and 
regression based machine-learning approach—Xgboost and Extra Trees Regressor. The 
comparative analysis was achieved using a 10-year electric load data from PJM and weather 
data. Upon successful completion of all experiments in data pre- processing, feature 
engineering, and modeling, the results are presented. The key finding is that machine learning 
regression models delivered the best performance for lengthier historical time series—
specifically Extra trees regressor with an RMSE of 0.465 for 6 years historical data length. 
This is in addition to the performance in terms of processing time, which surpassed all other 
models at 1.8 seconds for the 6 years data length. However, the autoregressive models 
delivered better results for day-ahead load forecast on shorter length of time series data. 
Especially SARIMA delivered the best performance overall achieving an RMSE of 0.129 for 
4 weeks data length. Therefore a safe historical data threshold for applying regression based 
models for effective performance is 2 years or above, while the data should between 4 weeks 
and 6 months to get efficient results for SARIMA. For ARIMA, a data length of 1 to 4 weeks 
delivered good results.  
 
For future work, the approaches deployed in this research should be applied to evaluate 
performance of neural network based algorithms on different lengths of data. Particularly as 
deep learning shows good performance with time series analysis.        
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