~

"'—-
\ National
College

Ireland

Configuration Manual

MSc Research Project
Data Analytics

Nisarg Shah
Student ID: x18137415

School of Computing
National College of Ireland

Supervisor : Dr. Muhammad Iqgbal

National College of Ireland National

Project Submission Sheet Col]ege of
School of Computing Ireland
Student Name: Nisarg Shah
Student ID: x18137415
Programme: Data Analytics
Year: 2019
Module: MSc Research Project
Supervisor: Dr. Muhammad Igbal
Submission Due Date: 12/12/2018
Project Title: Configuration Manual
Word Count: 1288
Page Count: [14

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature:

Date: 28th January 2020

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). O

Attach a Moodle submission receipt of the online project submission, to | [J
each project (including multiple copies).
You must ensure that you retain a HARD COPY of the project, both for | O
your own reference and in case a project is lost or mislaid. It is not sufficient to keep
a copy on computer.

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only
Signature:

Date:
Penalty Applied (if applicable):

turnitingJ)
Digital Receipt

This receipt acknowledges that Turnitin received your paper. Below you will find the receipt information regarding
your submission.

Submission Author Misarg Shah

Turnitin Paper ID (Ref. ID) 1232552843

Submission Title x18137415_Config_Manual

Assignment Title Submit Final Version - CONFIGURATION Manual (PDF file)

Submission Date 11/12/19, 20:23

Configuration Manual

Nisarg Shah
x18137415

1 Introduction

This configuration manual will help you understand the software and hardware require-
ments that will help to re-create the project. This manual will help to implement the
research project " Predicting Terrorism Attacks with Bitcoin Prediction using Time Series
Analysis.”

2 System Requirements

2.1 Hardware

Intel(R) Core(TM) i7 - 4150U CPU @ 2.00 Ghz; AMD Radeon R5 M230 2GB ; 12 GB
RAM; 1TB HDD; Windows 8.1 64 bit.

2.2 Software

e Rstudio: Loading the data and feature selection of data and filtering the data and
making tree maps for initial data visualization.

e Jupyter: Running various models on Bitcoin (ARIMA, LSTM, RNN) and Terrorism
(ARIMA) on a IDE of Python that is accessed using a browser.

e Tableau: For the final visualization of data of Bitcoin and Terrorism.

3 Project Development

3.1 Dataset

Two different datasets were taken for this research. The first one being Bitcoin Historical
data from kaggle [Zielak| (2019) and Terrorism data is also taken from kaggle START
(2017).

Bitcoin data has more than 2,49,000 rows and 8 columns. Terror data has more than
1,80,000 rows and 135 columns.

3.2 Data Preparation

Initial Preparation is done by both R and Python. Terrorism data is downloaded from
Kaggle and then loaded into Rstudio and then data is filtered out to some specific coun-
tries where we expect to get some results. Date is merged from day month and year
to a single column of date, this is further filtered to match the year of Bitcoin Data i.e
2013. After that we do some initial analysis by printing some tree maps to show number
of people killed in various countries and number of people killed year Wise.
Data is then saved into CSV format and then Jupyter notebook is used for further ana-
lysis. The Figure [I] shows the filtering of data and Figure [2 shows the tree map printing
code.

@ ARIMAR @' Data Grabbing.R @ | Cross Validation.R @ ARIMAT @ Global Terror.R gtd -]
: Source on Save \ A = Run i 4 Source =

1 setwd("D:/sem3™) A
2 gtd <- read.csv("D:/sem3/globalterrorism.csv") #Read terrorist data.

3

4 #Creating Filter for data after 2013 to match bitcoin data

5 Tlibrary(dplyr)

6 filter(gtd ,iyear >= "2013")->gtd

8 gtd=- filter(gtd, country_txt == "Iraqg"” country_txt == "Pakistan”

9 country_txt == "Syria” country_txt == "yvemen"
10 country_txt == "afghanistan”| country_txt == "Libya")

12 #Merging Date
13 gtdipate =- paste(gtd$iyear,gtdiimonth,gtdiiday,sep="-")

15 #Removing Columns
16 gtd<- gtd[-c(1:8,10:59,60:98,100,101,103:135)]

18 #Rearranging Columns
19 gtd<-gtd[c(4,1:3)]

21 #Removing Null Values
22 gtd=-na.omit(gtd)

24 #saving the File
25 write.csvigtd, 'Clean Terror all.csv",row.names = FALSE)

< >
231 (Top Level) = R Script =

Figure 1: Data Cleaning using RStudio

3.3 Bitcoin ARIMA prediction

Further on Bitcoin coin data is downloaded from kaggle again and loaded onto Jupyter
Notebook to pre-process data and do further analysis on it. As seen below in Figure
the libraries such as numpy, pandas, scipy, matplotlib and other are used and the code

guidance is taken from (2017).

@7 ARIMAR @] Data Grabbing.R @] Cross Validation.R @] ARIMA.T @] Global TerrorR gtd =
Source on Save Q 7 - = Run | =% Source =
28 #Printing Tree Maps o
29 library(treemap)
30 gtd =% filter(nkill = 0) -» gtdk

31 treemap(gtdk,

32 index=c("iyear"),

33 vsize = "nkill”,

34 palette

35 title="ki11ings in countries with IsIs",

36 fontsize.title = 14

37)

38

39 gtd %% filter (nwound > 0) -> gtdw

40 treemap(gtdw,

41 index=c("iyear"),

42 vsize = "nwound”,

43 palette = "Blues"”,

44 title="wounded in countries with I5I5",

45 fontsize.title = 14

46)

47

48 treemap(gtdk,

49 index=c("country_txt", "iyear"),

50 type

51 vsize

52 vcolor="nwound",

53 palett "Greens”,

54 title="Kki1lings in Global terrorism (Countries/vears) - size is proportional with the num
55 title.legend = "Number of wounded",

56 fontsize.title = 10

57)

58 w
39 ¢ >
48:15 Moo Level = R Scriot <

Figure 2: Tree Map Printing using RStudio

Impert libraries

import numpy as np farray operations and for Linear Algebra

import pandas as pd fused for reading C5V files.

import matplotlib.pyplot as plt # For Data plotting

from scipy import stats #for scientific Computing

import statsmodels.api as sm #for statistical data tests and statistical data exploration

import warnings

from itertools import product #Used for creating nested for loeps
from datetime import datetime #for date and time functions
from sklearn import metrics #for mean errors and other error functions

warnings.filterwarnings ('ignore")
plt.style.use{'seaborn-poster')

Load data
df = pd.read csv('Documents\Bitcoin\BICUSD.csv')
df.head()

Figure 3: Bitcoin Arima Libraries and Data Loading using Jupyter

After this the data is re sampled into daily and weekly format for easier analysis
seen in Figure [4

as

Unix-time to date format

df.Timestamp = pd.to_datetime (df.Timestamp, unit='s'})

df = df.zesample('D').mean()

#Resampling to weskly freguency

df week — df.resample('W').mean()

Resampling to annua nCy
df year — df.resample('n } .mean ()
Resampling to gua
df_Q = df.resample(
df week.head ()

fig = plt.figure (figsize=[15, 7])
plt.suptitle('Bitcoin exchanges, mean USD', fontsize=22)

plt.subplot (221)
plt.plot (df.Weighted Price, '-', label='By Days')
plt.legend()

plt.subplot (221)

plt.plot (df week.Weighted Price,'-', label='By Weeks')
plt.legend()

plt.subplot (222)

plt.plot (df_month.Weighted Price, '-', label='By Months')
plt.legend()

plt.subplot (223)

plt.plot (df_Q.Weighted_Price, '-', label='By Quarters')
plt.legend()

plt.subplot (224)

plt.plot (df_year.Weighted Price, '-', label-'By Years')
plt.legend()

plt.show ()

Figure 4: Bitcoin Data Re sampling and Plotting using Jupyter

This helps us understand how the data looks in different re sampled format. After
that we do the seasonality test to check the Observed, Trend, seasonality, Residuals.
All these are plotted. The Dickey Fuller test is conducted, If the values are greater
than 0. That implies that the data is non stationary. Hence transformations like Box
Cox transformations along with Seasonal and Regular Differentiation is done. Auto and
Partial correlation is then plotted to see if the seasonality is removed or not. The code
for the same is seen in Figure

plt.figure (figsize=[15,7])

sm.tsa.seasonal decompose (df_week.Weighted Price).plot()

print("Dickey-Fuller test: p=%f" % sm.tsa.stattools.adfuller(df week.Weighted Price)[1])
plt.show ()

Dickey-Fuller test: p=0.8219489

Box—Cox 1T

df week['Weigt ce box'], lmbda = stats.boxcox(df week.Weighted Price)

print("Dickey-Fuller test: p=%f" % sm.tsa.stattools.adfuller(df week.Weighted Price) [1])

Dickey-Fuller test: p=0.821948

Seasonal differentiation
df week['prices_box diff'] = df week.Weighted Price box - df week.Weighted Price box.shift({12)
print ("Dickey-Fuller test: p=%f" % sm.tsa.stattools.adfuller(df week.prices box diff[12:])[1])

Dickey-Fuller test: p=0.010333

Regula tiation
df_week|['prices_box diff2'] = df week.prices box diff - df week.prices_box diff.shift(l)
plt.figure (figsize=(15,7))

STL-decomposition
sm.tsa.seasonal decompose (df week.prices box diff2[13:]).plot()
print ("Dickey-Fuller test: p=%f" % sm.tsa.stattools.adfuller(df week.prices box diff2[13:])[1])

plt.show()

Dickey-Fuller test: p=0.000000

Figure 5: Transformations and Differentiation using Jupyter

After that Model selection is run, where variations are run by the system in a loop
to find the optimal P(Seasonal Autoregressive Order) ,D (Seasonal Difference Order)
,Q(Seasonal Moving Average Order) ,m (The number of times steps for a single seasonal
period) values. This helps us to find the best model that would be for the type of data
that we are providing it with. The code can be seen below in Figure [0]

Qs = range (0, 2)
gs = range (0, 3)
Bs — range (0, 3)
ps = zange (0, 3)

parameters = product{ps, gs, Bs, Qs)
parameters_list = list(parameters)
len(parameters_list)

Model Selection

results
best_aic = float("inf")
warnings.£filterwarnings ('ignoze')
for pazem in pazameters list:
try:
model—sm.tsa.statespace . SARIMAX (df week.Weighted Price box, order—(param[0], d, param([1]),
seasonal order—(param[2], D, param[3], 12)).fit(disp=-1)
except ValueError:

print ('wrong parameters:’, param)
continue
aic = medel.aic #akalik mation cirterion

if aic < best_aic:
best_model — model
best aic = aic
best param = param
results.append ([param, model.aic])

Best Modsls

result_table = pd.DataFrame (results)

result_table.columns = ['parameters', 'aic']

print (result_table.sort values(by = 'aic’', ascending=True).head())
print (best_model.summary())

Figure 6: Finding best model to run ARIMA using Jupyter

After that we confirm the residuals plot and auto correlation plot to confirm which
should show Dickey Fuller test as p = 0.00, indicating that the data is stationary as seen
in Figure [7]

STL-decomposition

plt.figure (figsize=(15,7})

plt.=subplot (211)

best model.resid[13:].plot()

plt.ylabel {u'Residuals')

ax = plt.subplot(212)

sm.graphics.tsa.plot_acf (best_model.resid[13:].values.sgueeze (), lags=4E8, ax—=ax)

print ("Dickey-Fuller test:: p=3if" % sm.t=za.stattools.adfuller (best_model.resid[13:]) [1])

plt.tight_layout()
plt.show ()

Dickey—Fuller test:: p=0.000000

0.5

0.0

Residuals

-0.5

2013 2014 2015 2016 2017 2018 2019
Timestamp

Autocorrelation

1.00
0.75
0.50

0.25

- |
0.00 Ay T T I | i T T T M

0 llO ZlU 30 4lO 5l0
Figure 7: Checking Autocorrelation plot for seasonality using Jupyter

After that we run the prediction model with the ’datetime’ function and input the
date values we are looking for a prediction of. The whole data is put to find the prediction
and another line is plotted along side the original values to show the predicted values.
This is plotted below in the Figure [8 After that we find the error percentage to find the
actual difference between the original values and the predicted values to show how best
our model works.

Prediction

df week2 = df week[['Weighted Price']]

date_list = [datetime (2019, 8, 25), datetime (2019, 9,1), datetime(2019, 9,8), datetime (2019, 9, 15),
datetime (2019, 2, 22),datetime(2019, 9, 29), datetime (2019, 10, &), datetime(s, 10, 13),
datetime (2019, 10, 20), datetime(2019,10,27), datetime (2019,11,3), datetime(2019,11,10),
datetime (2019,11,17), datetime(2019,11,24), datetime(2019,12,1), datetime(2019,12,8),
batetimetEle,lZ,lS}, datetime (2019,12,22), datetime(2019,12,29),datetime (2020,1,5)]

future = pd.DataFrame (index=date list, columns= df week.columns)

df week2 = pd.concat([df week2, Euture]} -

df week2['forecast'] = invboxcox(best_model.predict (start=0, end=500), lmkda)

df week.to csv('Documents\Bitcoin\Original Week.csv')

df week?.to csv('Documents\Bitcoin\Prediction Week.csv')

plE.figuretfigsize=tls,7}}

df week2.Weighted Price.plot()

df week2.forecast.plot(color='r', 1ls='--', label='Predicted Weighted Price')

plE.legendt} -

plc.title("Bitcoin Prices, by Weeks')

plt.ylabel {'mean USD'})

plt.show ()

Prediction

EPSILON = le-10

df week2 = df week[['Weighted Price']]

date list = []

future = pd.DataFrame (index=date list, columns= df week.columns)
df week2 = pd.concat ([df week2, future])

df week2['forecast'] = invboxcox (best model.predict (start
true price = df week.Weighted Price -

predEcted_price_= df_week2.fo;ecast

, end=450), lmbda)

def error(true price, predicted price):
o Simple error mmn -
return true_price - predicted price

def percentage_ error(true price, predicted price):

man

Percentage Eerror
Note: result is NOT multiplied by 100

man

return _error(true_price, predicted price) ! (true_price + EPSILON)
n_mse = np.mean(np.sguare(error(true_price, predicted price)))
print ('New Mean Sgquared Error: {}'.format (round(n mse, 2}})

mae = np.mean (np.abs(_error(true_price, predicted price)})
print ('Mean Absolute Error: {}'.format(round (maes, 2))}

print ("RMSE:',np.sgrt (metrics.mean sgquared error(true_price, predicted price)))

mape = np.mean(np.abs(_percentage error (true price, predicted price)))
print ("Mean Absolute Percentage Error: {}'.format (round (mape, 2)))

Figure 8: Predicting values and checking Accuracy using Jupyter

3.4 Terrorism ARIMA prediction

Terrorism Data is also loaded onto Jupyter Notebook as seen in Figure [9] for further
processing and implementing of model on it. It is mostly similar to the Bitcoin ARIMA
prediction but here the data needs to be pre processed and then converted to a time series

to implement time series prediction and the code guidance is taken from (2017)).

Import libraries

import numpy as np #a
import pandas as pd fused for readi
import matplotlib.pyplot as plt #
from scipy import stats #for

import statsmodels.api as sm #for statistical data
from statsmodels.tsa.stattools import adfuller#i
from statsmodels.tsa.arima model import ARIMA #For importin

L]
2
:
[
=]
Q
[*H
m
k

import warnings
from itertools import product #Io
from datetime import datetime

from sklearn import metrics #f I
warnings.filterwarnings('ignoxre")
plt.style.use('=zeaborn-poster')

#ILoading the file from the local system

df= pd.read csv('Documents\Terrcr\Clean T

rror.csv',encoding = 'ANSI',parse dates = ['Date'])
#removing the country columns since not I ed

df.drop(('country txt'), axis =1 , inplace = True)

#Index set as the date column

df.index = df.Date

#Removi Date column as already set as Index.
df.drop(('Date'), axis =1 , inplace = True)
df.head ()

Figure 9: Library initialization and Data Loaded using Jupyter

Initially the data is loaded and parsed along the date column and the multiple country
of the 'country_txt’ is dropped. The date column is set as the index for further processing
as seen in Figure [10]

df = df.groupby(['Date'],as_index=True) .agg ({'nkill':'sum', 'nwound’': 'sum'})
df.head ()

nkill nwound

Date
2013-01-1 43 0T
2013-01-02 15 36
2013-01-03 78 152
2013-01-04 8 25
2013-01-05 40 63

idx = pd.date range('2013-01-01', '2017-12-31'})
df.index = pd.DatetimeIndex (df.index)

df = df.reindex(idx, fill wvalue=0)
df .nead()

df.replace (0, np.nan, inplace=True)
df .head()

df.fillna (method = "£fill"', inplace =True)

df = df.resample("W") .mean()
df .head (10)

Figure 10: Data processing using Jupyter

The date is then grouped into 1 as there are multiple attacks in a day and need to

be summed into 1 to create a time series as seen in Figure [II] A new index is created to
complete the time series. Since not all days there is a terror attack and hence we put in
a new index and the values are set to 0, which are further on changed to 'NaN’ and then
they are filled in using ffill method since in box cox transformations all values should
be positive and above 0. The data is also resampled into weekly format so as to reduce
the error percentage. Below the data is plotted showing the number of people killed and
wounded over the years in Iraq, Afghanistan, Pakistan, Yemen, Syria and Libya where
ISIS is active.

fig = plt.figure (figsize=[15, 71}
plt.suptictle ('People Killed or Wounded in Terror Attacks, in ISIS affected countries', fontsize=22)

plt.subplot (221)
plt.plot (df.nkill, '-', label='"People EKilled")
plt.legend()

plt.subplot (222)

plt.plot (df .nwound, '-', label='People Wounded')
plt.legend()

#fplt.tight layout(}

plt.show()

People Killed or Wounded in Terror Attacks, in ISIS affected countries

200 - —— People Killed 300 1 — people Wounded
150 - 500
100 -
100
50 +
2013 2014 2015 2016 2017 2018 2013 2014 2015 2016 2017 2018

Figure 11: Data Plotted using Jupyter

Then the same process of ARIMA as in bitcoin prediction is repeated of finding auto
correlation and removing stationary data. Further we predict the values in a time series
based on the input of week dates that we provide and then check for the error percentage
between the original values and the predicted values as seen in Figure

Prediction

df2 = df[['nkill’']]

date list = [datetime (2018, 14), datetime (2018, 1
- , 11), datetime (2018,
11), datetime (2018,

, 1}, datetime (2018, 1 ,
2
3

15), datetime (2018, 4, 22),
5
&

1
datetime (2018, 1, 28), datetime (2018,
datetime (2018, 2, 25), datetime (2018,
datetime (2018, 3, 25), datetime (2018,

4

5

&

, 7}, datetime (2018, 1
2
3
4
datetime (2018, 4, 29), datetime (2018, 5
&
7
7

.
4), datetime (2018, 2
4), datetime (2018, 3
1), datetime (2018, 4
B
6
3

6), datetime (2018,
3), datetime (2018,

13), datetime (2018,
, 10), datetime (2018,
, B}, datetime(2018, 7, 15),

datetime (2018, 5, 27), datetime (2018,
datetime (2018, &, 24), datetime (2018, 1), datetime (2018,
datetime (2018, 7, 22), datetime (2018, 7, 23)]

future = pd.DataFrame (index=date_list, columns= df.columns)

df2 = pd.concat ([df2, future])

df2['forecast'] = invboxcox(best model.predict(start=0, end=3000), lmbda)

df.to csv('Docaments\Terror\ARIHE\All Countries Original.csv'})

df2.ta_c5v('Docaments\rerror\ARIHA\All Countries Prediction.csv'})

plt.figure (figsize=(15,7})

df2.nkill.plot ()

df2.forecast.plot (color="r', ls="'--', label='Predicted People EKilled'})

plt.legend()

plt.title ('People Killed in Irag, by Weeks')

plt.ylabel ('Humber of People')

plt.show()

People Killed in ISIS affected countries, by Weeks

800
—— People Killed

700 ==+ Predicted People Killed

600

L
[=
[=
T I L i i ————

Number of People
w =
= (=]
(=] (=]

200 {

100 h

of - = -

2 ¥ ° s S

Figure 12: Data Plotted using Jupyter

10

3.5 Bitcoin RNN prediction

Bitcoin Data is loaded onto the Jupyter Notebook. Data is parsed based on the time
stamp which was in seconds format and converted to normal date as seen in Figure

and the code guidance is taken from (2019).

import numpy as np # linear algebra
import pandas as pd # data processing,
import matplotlib.pyplot as plt # For
from sklearn import metrics #For checking
import warnings

warnings.filterwarnings ("ignore")

I/0 (e.g. pd.read csv)

bit_data=pd.read_csv("Documents/Bitcoin/BTCUSD.csv")
bit_data["date"]=pd.to_datetime (bit data["Timestamp"],unit="s").dt.date
group=bit_data.groupby("date")

data=group["Close™] .mean ()

Figure 13: Data Loaded and Parsed using Jupyter

Next the data is split into training and testing for further prediction. It is saved
into array format. After that the array is scaled by MinMaxScaler function and then
transformed as seen in Figure

close_train=data.iloc[:len(data)-530] #set

close_test=data.iloc[len({close_train):]#s

#feature scalling (set valuss betwesn 0-I)

close_train=np.array(close_train) fcreate array

close train—clese train.reshape(close train.shape[0],1l)# reshaping the array
from sklearn.preprocessing import MinMaxScaler

scaler=MinMaxScaler (feature range=(0,1))
close_scaled=scaler.fit transform(close train)

of the feature is subtracted by the range

timestep=50
x_train=[]
y¥_train=[]

for i in range(timestep,close scaled.shape[0]):
x_train.append(close_scaled[i-timestep:i,0])
v_train.append(close_scaled[i, 0]}
® train,y train-np.array(x train),np.array(y train)
¥_train=x_train.reshape(x train.shape[0],x train.shape[l],1) #reshaped for RNN
print("x train shape= ",x train.shape)
print("y_train shape= ",y _train.shape)

Figure 14: Training and Testing data created using Jupyter

Next the RNN model is run using TensorFlow with 100 epoch size. There are five rnn
layers deployed to improve the accuracy and working of the system, as seen in Figure
16

11

from keras.models import Sequential
from keras.layers import Dense, SimpleRNN, Dropout,Flatten

regressor=Sequential ()

#first RNN layer

regressor.add (SimpleRNN (128, activation="relu", return sequences=True,input shape=(x train.shape[1],1)))
regressor.add (Dropout (0.25))

#second RNN la
regressor.add (SimpleRNN (256, activation="relu", return sequences=True))
regressor.add (Dropout (0.25))

#third RNN layer

regressor.add(SimpleRNN (512, activation="relu", return sequences=True))
regressor.add (Dropout (0.33))

#fourth RNN layer

regressor.add(SimpleRNN (256, activation="relu", return sequences=True))
regressor.add (Dropout (0.23))

#fifth RNN layer

regressor.add(SimpleRNN (128, activation="relu", return sequences=True))
regressor.add (Dropout (0.25))

#convert the matrix to 1-line

regressor.add (Flatten())

#ontput layer

regressor.add (Dense (1))

regressor.compile (optimizer="adam", loss="mean squared_er
regressor.fit(x train,y train,epochs=100,batch size=g4)

Figure 15: RNN is run using Tensor Flow using Jupyter

inputs=data[len(data)-len(close_test)-timestep:]
inputs=inputs.values.reshape (-1,1)
inputs=scaler.transform(inputs)

x_test=[]

for i in range (timestep, inputs.shape[0]):
x_test.append(inputs[i-timestep:i,0])

x_test—=np.array(x_test)

X_test=x test.reshape(x test.shape[0],x_test.shape[l], 1)

predicted data=regressor.predict(x test)
predicted data=scaler.inverse_ transform(predicted_data)
pd.DataFrame (predicted data).to_csv(' Documents\Bitcoin\Predicted Price RNN.csv')

data test=np.array(close_test)
data_test=data_test.reshape (len(data_test),l)
pd.DataFrame (data test).to_csv('Documents\Bitcoin\Original Price RNN.csv')

plt.figure (figsize=(E,4), dpi=80, facecolor= , edgecolor="k'")
plt.plot(data_ test,color="r",label="true res ")
plt.plot(predicted data,color="b", label="predicted result")
plt.legend()

plt.xlabel ("Time (50 days)}")

plt.ylabel ("Close Values")

plt.grid(True)

plt.show()

Figure 16: RNN model is run and results displayed using Jupyter

The accuracy of the model is then checked. We use similar parameters as we did for
ARIMA model. i.e New Mean Squared Error, Mean Absolute Error, Root Mean Squared
Error and Mean Absolute Percentage Error as shown in Figure

12

Prediction
EPSILCON =
true price = data test

predicted price = predicted data

def error(true_price, predicted price):

wn r mumw

Simple erro
return true price - predicted price

def percentage_error(true_price, predicted price):
wn

Percentage error
Note: result is NOT multiplied by 100

won

return _error{true_price, predicted price) ! (true_price + EPSILON)
n_mse = np.mean(np.sguare (_error(true_price, predicted price)))
print('New Mean Sguared Error: {}'.format(round(n_mse, 2)))
mae = np.mean(np.abs(_error(true price, predicted price)))
print {"Mean Absclute Error: {}'.format(rocund(mae, 2)))
print ("EMSE: ', np.=sqrt (metrics.mean squared error(true_price, predicted price)))

mape = np.mean(np.abs(_percentage error(true price, predicted price}))
print('Mean Absolute Percentage Error: {}'.format(round(mape, 2)))

Figure 17: Model’s Accuracy is Displayed using Jupyter

3.6 Bitcoin LSTM Prediction

Long Short term memory model has one of the best accuracy there is. It continues the
work of RNN. It uses Tensor flow to calculate the values. It is much faster than RNN.
This is because we reduce the batch size to 32 than the 64 in RNN. The code can be seen
in Figure

from sklearn.metrics import mean absclute error

from keras.models import Sequential

from keras.layers import Dense, LSTM, Dropout,Flatten
model=Sequential ()

model.add (LSTM (10, input_shape=(None, 1} ,activation="relu"})
model.add (Dense (1))

model.compile (loss="mean squared error",optimizer="adam")

model.fit(x train,y_train,epochs=100,batch size=32)

Figure 18: LSTM model is run using Tensor Flow using Jupyter

After that the accuracy is checked similar to the RNN model. We use similar para-
meters as we did for ARIMA model. i.e New Mean Squared Error, Mean Absolute Error,
Root Mean Squared Error and Mean Absolute Percentage Error as shown in Figure

13

inputs=datal[len(data)-len(close_test)-timestep:]
inputs=inputs.values.reshape (-1,1)})
inputs=scaler.transform(inputs)

x_test=[1]
for i in range(timestep, inputs.shape[0]):
x_test.append (inputs[i-timestep:1,0])
x_test=np.array(x_test)
x_test=x test.reshape(x test.shape[l],x test.shape[l],1)

predicted data=model.predict(x test)
predicted data=scaler.inverse_transform(predicted data)
pd.DataFrame (predicted data).to csv{'Documents\Bitcoin\Predicted Price LSTM.csv')

data_test=np.array(close_test)
data_test=data test.reshape(len(data_test),1)
pd.DataFrame (data test).to_csv(’ Documents\Bitcoin\Original Price LSTM.csv')

plt.figure(figsize=(8,4), dpi=B0, facecolor='w', edgecolor="k'}
plt.plot(data test,color="r",label="true result")

plt.plot (predicted data,color="b", label="predicted result")
plt.legend ()

plt.xlabel {"Time (50 days)")

plt.ylabel {"Close Values™)

plt.grid (True)

plt.show()

Figure 19: LSTM model’s is plotted using Jupyter

References

Aptem (2017). Bitcoin price prediction by arima.
URL: https://www.kaggle.com/myonin/bitcoin-price-prediction-by-arima

Preda, G. (2019). Global terrorist attacks.
URL: https://www.kaggle.com/gpreda/global-terrorist-attacks

START (2017). Global terrorism data.
URL: https://www.kaggle.com/START-UMD/gtd

Tatbak, E. (2019). Rnn vs Istm on bitcoin dataset.
URL: https://www.kaggle.com/etatbak/rnn-vs-lstm-on-bitcoin-dataset

Zielak (2019). Historical bitcoin data.
URL: https://www.kaggle.com/mczielinski/bitcoin-historical-data

14

	Introduction
	System Requirements
	Hardware
	Software

	Project Development
	Dataset
	Data Preparation
	Bitcoin ARIMA prediction
	Terrorism ARIMA prediction
	Bitcoin RNN prediction
	Bitcoin LSTM Prediction

