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Abstract

Intrusion detection system (IDS) is the major aspect of security solutions for
every organization relying on internet services as well as for, internet providers who
offers internet services. IDSs aids proactive monitoring of the network in order to
detect potential threats and protect organizations from possible data and finan-
cial loss. Due to its high importance in real world, it has been a major interest for
research studies. IDSs adopts data mining techniques to analyze historical network-
connection information to detect attacks. The efficiency of IDSs are measured in
terms of the accuracy of prediction and its error rate. It is also important that
models perform in near real-time to detect threat before the control of network
resources is compromised. This creates a requirement for IDS to be built on high
computing environment. This paper experiments on well-performing classification
algorithms namely: support vector machine (SVM), decision tree, random forest,
gradient boosting and an ensemble of all these four algorithms. Correlation-based
feature engineering techniques namely ARM (Association Rule Mining) and Vari-
able importance are applied to enhance the performance. The performance of these
models are measured and compared in terms of accuracy and error rate. Addition-
ally, this paper conducts experiments on both centralized and distributed (Apache
Hadoop and Spark) environments to compare the time taken to train the data
mining models for IDS. The experimental results shows that tree-based algorithms
are better classifiers for IDSs and models are trained mush faster in distributed
(Hadoop and Spark framework) environments in comparison to centralized.

Keywords: Intrusion Detection system, SVM, Decision Tree, Random Forest, Gradi-
ent Boosting, Apache Spark, NSL-KDD dataset.

1 Introduction

1.1 Background and Motivation

From the past decade, big data has become ubiquitous in all the aspects of every business
organization and computer networks is no exception. Advent of smart devices and IoT
has spread the web of computer networks to a great extent than ever before. These
connected-networks play an important role in generating, collecting and transporting big
data along with its primary purpose of sharing files and connecting devices. Such networks
are enriched with an overwhelming amount of sensitive information. Due to this, they are
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prone to frequent attacks by people with malicious intent, commonly known as hackers,
cyber criminals or intruders. Apart from traffic data, they also carry content-related
information, connection-related information and timestamps. Network-related details
are commonly analyzed by telecom operators with an intention to optimize the network
for better availability, reliability and security to offer best customer experience which
can lead to business improvement. Networks carry huge enterprise data and customer-
related data and hence, network security has been one of the leading concerns of internet
providers. Network-related information can be leveraged to detect abnormal activities
proactively, any before potential attack on computer resources. A Intrusion detection
system analyzes network related information and predicts whether a connection is normal,
or an attack based on the historical data. It is also essential that IDS is built on high-
computing distributed platform such as Apache Hadoop and Apache Spark, as network-
related information can be in high volumes and computation speed is an essential factor
along with accuracy of prediction. Although many research studies are being carried-out
to predict the intrusion accurately, less importance has been given to computation speed.
This paper aims to predict intrusion in the computer networks with improved accuracy
along with high computational speed using Apache Spark that can aid near real-time
detection of attacks in computer networks.

1.2 Research Question

”What is the improvement in performance of a predictive model build using ensemble of
hyper-tuned algorithms on a Spark framework for detecting intrusion in computer net-
works, in terms of accuracy and computation time?”

1.3 Research Objectives

In the year 2018, 30% of the cyber-attacks experienced by companies in the U.S. are
caused due to network intrusion1. Although, they are many software and hardware
present for intrusion detection, the incidents of malware attacks have increased over
years2. Figure 1 shows number of malware attacks between year 2015 to 2018.

Figure 1: Incidents of Malware attacks

1https://www.statista.com/statistics/873097/malware-attacks-per-year-worldwide/
2https://www.statista.com/statistics/873097/malware-attacks-per-year-worldwide/
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There is necessity for IDSs with high predictive ability and less false alarm rate. It
is also importance to detect the threat in near real-time which requires high computing
speed. This research project works towards the following objectives.

• To build intrusion detection system for computer networks using two-class classi-
fication algorithm.

• Train different models using data mining algorithms namely: Support Vector Ma-
chine, Decision Tree, Random Forest, Gradient Boosting and one hybrid model
learning from all the other four models.

• Perform hyper-parameter tuning of all models to optimize its learning from train
data.

• Evaluate and compare all the models for best performance with respect to its pre-
dictive ability and false alarm rate.

• Set-up a distributed environment to train the models, using Apache Hadoop and
Spark for high-speed computation.

• Evaluate and compare the computation performance of centralized and distributed
environments, in terms of time-taken to train the data mining models.

Rest of the the paper is as follows: Section 2 discuss related work, Section 3 explains
methods adopted in this research ,Section 4 defines hardware and software requirements of
the research , Section 5 illustrates the machine learning model implemented in the research
experiments, Section 6 presents and discusses the results of the research experiments and
final 7 concludes the research work and suggests future work.

2 Related Work

2.1 Introduction

People all over the world can connect with each other within seconds due the power of
internet. Computer networks helps to connect all the smart devices in the world using
internet. With its power of connecting world, internet comes with major drawback of
security concerns. Computer networks are vulnerable to attacks like distributed denial
of service (DDoS), access controls, data breach, data manipulation, etc which affects
network availability, reliability, confidentiality and security. Cyber attacks not only lead
to data and financial loss, but also cause reputational damage and potential client loss
for telecom operators. In the recent times, the top kinds of network attacks are DDoS,
Browser, SSL, Shellshock, Botnet, Brute Force, Backdoors, Moustafa et al. (2019). There
are many instances of cyber-attacks happened in recent years that proves the impact of
it. In the July of 2017, hackers of Equifax data breach stole credit card details of over
200,000 accounts. In the same year, major websites like Spotify, Twitter went unavailable
due to DDoS attacks on their datacenter servers. Year 2017 also witnessed another
major ransomware attack called ”WannaCry” which took control of resources of over
10,000 organizations around 150 countries. Overall, second quarter of 2018 observed 50
percent increase in the DDoS attacks, Kim et al. (2019).Although, there are many reactive
hardware and software solutions like anti-virus, anti-malware, firewalls developed over the
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years to prevent cyber-attacks, the number of incidents of network attack are still high.
And current IDSs generate large number of false alarms in a day, leading to inaccuracy,
Anwar et al. (2017). Pro-active or near real-time detection of threats helps to mitigate
the attack prior hackers exploits the network resources. An IDS which is a combination of
high accuracy predictive model and high computing framework helps to minimize the loss
of intellectual properties for business organizations. Such IDS assist telecom operators
and internet providers to proactively monitor and secure the network effectively.

2.2 Intrusion Detection System

An IDS is a system deployed to monitor and analyze the traffic in the computer networks
for identifying potential threats in terms of CIA (Confidentiality, Integrity and Availab-
ility), Anwar et al. (2017), Inayat et al. (2016). A network-based IDS is set-up across a
specific segment of a network to examine all the traffic. It only monitors for network-
related information and cannot access the process running on host or the data stored
within, Vijay (2017). There are two kinds of approaches for intrusion detection namely:
Deterministic and Stochastic methods. In the deterministic approach, deterministic de-
cision boundary features of connection are partitioned into ’normal’ and ’attack’ regions.
Data mining algorithms like Support Vector Machine (SVM), Random forest, clustering
and many more are adopted to determine the boundary. Whereas in Stochastic method, a
probabilistic model is fitted, with respect to a reference data using Statistical Hypothesis
Testing (SHT), Vijay (2017). This research experiment adopts binary/label-based IDS
that labels a record as ’normal’ or ’attack’ based on historical data.

2.3 Data Mining techniques

Huge amount of data can be extracted, processed and analyzed by employing advanced
data mining techniques, Bouzekri and Idrissi (2016). Data mining technique acts as an
important aspect of IDS that looks for relevant patterns within the traffic. They assist
in the threat analysis and aids system to take intelligent decision, Sangher (2019). Data
mining algorithms namely random forest, bagged tress and ANN gives the best results
in terms of accuracy, model training time and time taken to predict unknown instance,
Sangher (2019). Other techniques like data pre-processing, feature engineering also assists
in optimizing the performance of machine learning models. The most widely used feature
reduction techniques are Association Rule Mining (ARM), Principal Component Analysis
(PCA) and Independent Component Analysis(ICA). Out of these, ARM technique is
employed for feature selection in this paper. ARM determines strongest rules between
the values of the independent variables and calculates the correlation between them,
Moustafa et al. (2019). ARM has been used in many IDS related studies like Nalavade
and Meshram (2014), Moustafa and Slay (2015a), Moustafa and Slay (2015b) to predict
threat with positive results. Decision engine is the most critical part in IDSs. Based on
decision engines, IDSs are classified into six categories namely: clustering-, classification-
, knowledge- , deep learning- , statistical- and combination- based as explained in Bhuyan
et al. (2014), Resende and Drummond (2018) and Moustafa et al. (2018). Based on studies
conducted by Horng et al. (2011),Wagner et al. (2011), Saber et al. (2017), Singh et al.
(2014), Jirapummin et al. (2015), Kang et al. (2012) and Dua and Du (2016), classification
techniques provides high predictive rate with low false positive rate, provided dataset is
labelled correctly. Table 1 shows accuracy achieved by some of the other research studies.
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Table 1: Comparison of IDS classification models on NSL-KDD dataset
Algorithm Accuracy (in percentage) Authors

Logistic Regression 95.1 Moustafa et al. (2019)
Naive Bayes 93.8 Moustafa et al. (2019)

Genetic 94.3 Hasan et al. (2017)
Ramp-ksvcr 98.8 Bamakan et al. (2017)

SVM 92.18 Ambwani (2003)
Random forest 92.30 Zhang et al. (2008)

FSVM 97.14 Gupta et al. (2013)

This paper conducts experiments to study the performance of variety of classification-
based decision engines namely SVM, Decision tree, Random forest and Gradient boosting
with parameter tuning for high predictive accuracy and less false positive rates. Then,
develops an ensemble of these models to enhance the performance.

2.4 Apache Spark

Generally, IDSs needs to process huge amount of data for making intelligent decision.
A distributed framework helps in storage big data effectively and perform computation
efficiently in near real-time.
Apache Hadoop is a open source framework for distributed cloud computing and data
storage. It is scalable and reliable framework that can handle failures at application layer.
The two main components of Hadoop are Hadoop Distributed File System (HDFS) and
Hadoop MapReduce, You (n.d.). HDFS is the distributed file system used by hadoop to
store big data over many machines and provides high-throughput access to the data resid-
ing on clusters, Erraissi et al. (2017). MapReduce is a software that performs functions
such as parallel processing and error-handling, You (n.d.). Hadoop’s working is based on
Master-Workers system. Master controls the global state of computation while workers
execute the task directed by the master. The role of HDFS is to maintain the exchange
of data among workers in shuffling manner, Aldinucci et al. (2019). Organizations like
Facebook, Google, AOL and IBM has made use of Hadoop successfully for research and
commercial purposes. For instance, Facebook stores internal logs and data sources on
hadoop system and using it also for reporting, machine learning and other analytics tasks,
You (n.d.). Apache Spark is an open-source framework for cluster computing that sup-
ports batch and real-time processing with inherent fault-tolerance and data-parallelism.
Spark uses Directed Acyclic Graph (DAG) to process the data. It uses in-memory caching
instead of on-disk to communicate data among processing units to enhance the perform-
ance of iterative processing, Aldinucci et al. (2019). Some of the main tasks of Spark
are submission of jobs, scheduling resource, tracking and communicating between nodes,
operating on data in a parallel manner, Chunduri (2019). Spark integrates with storage
platform like Hadoop to access data while processing them. Additionally, Spark comes
with programming interface for R and Python. The main components of spark that
support machine learning are Spark MLlib, Spark GraphX, Spark SQL, Spark stream-
ing, Chunduri (2019). This research project deploys both apache hadoop and spark for
performing data mining on distributed system to measure and compare the computing
performance.
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3 Research Methodology

This research project follows standard CRISP-DM methodology from ideation till imple-
mentation as shown in Figure 2. CRISP-DM end-to-end data mining life-cycle completes
in six stages. Following are reasons for adopting CRISP-DM methodology, Azevedo,
Ana; Santos (2008). i)The defined stages are not rigid and can be customized as per
data mining project. ii) All the stages are well-defined, structured and organized. iii)
The discrete stages of the project can be easily explained. iv) It covers end-to-end data
mining project.

Figure 2: CRISP-DM Methodology

The six stages of CRISP-DM are Business understanding, Data understanding, Data
preparation, Modelling, Evaluation and Deployment.

3.1 Business understanding

Due to the advent of digital technology, international business and trade has observed
its peak and most of the transactions are happening online. It is of high importance to
protect the sensitive information carried over internet to avoid any intellectual property
theft or financial loss. Telecom operators and internet providers must proactively monitor
the network to provide secure connections to its customers. IDS helps to identify unusual
activities in the network and create alarms against them. IDSs must be able to detect
alerts actively with high accuracy to take immediate action against the threats before it
takes control of the network resources.

3.2 Data Understanding

Historical data essential for predictive analysis must be audited for its significance in
predicting the unknown instances. A through analysis of the data features helps to un-
derstand the patterns and correlations. NSL-KDD dataset has been used for this research
project to benchmark the performance of predictive models. NSL-KDD dataset is an im-
proved version of KDD”99cup dataset which was collected from an intrusion simulated
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military network environment in the year 1999, Alanazi et al. (2010). This dataset does
not contain redundant/duplicate records and hence produces un-biased results. It holds
sufficient number of records for the train and test dataset for experimental purposes,
Azevedo, Ana; Santos (2008). The NSL-KDD dataset has 41 attributes and a label as-
signed to each record, either ’normal’ or ’attack’. The NSL-KDD dataset is downloaded
from UNB (University of New Brunswick) website which is publicly made available. The
dataset contains basic, content-related, host-related and time-related features of network
connections. 3

3.3 Data Preparation

Data preparation is the prerequisite task for data modelling. This involves pre-processing
of independent and dependent variables of the dataset and transform it as per model’s
requirements. In this research experiment, feature selection is also carried out as a part
of data pre-processing. Python and pyspark are the programming languages used for
building models on centralized and distributed environments, respectively. With pys-
park, apache spark can support Python language with machine learning libraries. For
the purpose of exploratory data analysis and data modelling, the four categorical variables
(’class’, ’protocol type’, ’service’ and ’flag’) are transformed into numerical values using
’LabelEncoder’. To avoid over-fitting problem, correlation-based feature reduction tech-
nique is applied, following feature selection based on variable importance graph. After
these feature engineering, dimensionality of the features is reduced from 41 to 10. Two
subsets of datasets are created with only independent variables in one and dependent
variable in another. These subsets are further split into train (80%) and test (20%) for
modelling and validation respectively.

3.4 Modelling

Data mining algorithms are applied on train dataset to learn the patterns from the
historical data and build the data mining models that can predict the outcome of the
unknown instances based on the learning. This paper adopts two-class classification
technique to predict whether a connection on the computer network is ’normal’ or ’attack’.
Following data mining algorithms implemented for modelling to test and compare the
performance: SVM, Decision tree, Random forest, Gradient boosting and hybrid of all
four mentioned algorithms.

• Support Vector Machine (SVM): SVM is a data mining algorithm that plots
training vectors in high-dimensional space and classifies them into different classes.
It draws a hyper plane in the feature space that categories the data. This hyper-
plane is determined by a set of vectors from the training data. It consumes less
time to build the model and hence supports near real-time detection of threats.
It does not require large number of data points and dimensionality does not add
additional complexity, Alanazi et al. (2010). Author Mill (2004) has employed SVM
for network anomaly classification for best results.

• Decision Tree: Decision Tree algorithm branches classification problem into many
sub-problems at every node of the tree Azevedo, Ana; Santos (2008). A node rep-
resents a condition of the attribute by which records must be classified. A decision

3https://www.unb.ca/cic/datasets/nsl.html
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tree consists of root or parent node with high importance predictors, followed by
lesser-important branch nodes and the final leaf nodes that indicates final output
class, when further branching is not possible. Decision trees are considered for IDS
as they work well with big dataset and provides high performance, Peddabachigari
et al. (n.d.), even though it is a time-intensive processing.

• Random Forest: Random forest (RF) is an ensemble of decision trees which is
used for both regression and classification problems. It constructs multiple decision
trees during the training process to improve the accuracy and reduce the false alarm
rate, Thaseen (2013), Chandra (2017). It offers low classification error in compar-
ison to other traditional classification techniques. Its performance does not alter
upon processing large datasets or removal of variables. However, due to the presence
of many decision trees, the process of learning can get interrupted Chandra (2017).
This project employs distributed environment to overcome interruption issue. In
their paper, Farnaaz and Jabbar (2016) used random forest for classification and
observed better accuracy in predicting the classes.

• Gradient Boosting: Gradient boosting is another ensemble machine learning al-
gorithm that can perform both classification and regression, Alqahtani et al. (2019).
It creates a model consisting of many weak learners (like decision trees). It performs
loss function optimization on every weak learner, in an iterative manner. This res-
ults in a low loss function and a high prediction rate, Xia et al. (2017).
Hybrid of techniques is widely experimented by many researchers. In Peddabach-
igari et al. (2007), ensemble of decision tree and random forest is applied for clas-
sification and accurate results were achieved.
In this research, as an extension to traditional models, hyper parameters of the
algorithms are tuned to its best estimators to improve the performance of the mod-
els. Additionally, hybrid of best performing models is build using ’voting classifier’
technique and the improvement in the performance is compared.

3.5 Evaluation

The IDSs are evaluated by means of confusion matrix as they are classification problems.
Confusion matrix provides counts of actual and predicted labels as shown in the Figure 3.
For two-class detection problem, it produces a 2*2 matrix, wherein True positives (TP)
and true negatives (TN) represents correctly predicted ’attack’ and ’normal’ instances,
respectively, and in contrast, false positives (FP) and false negatives (FN) represents
incorrectly predicted ’attack’ and ’normal’ instances, respectively, Bhuyan et al. (2014),
Ahmed, Mohiuddin; Naser Mahmood, Abdun; Hu (2016), Moustafa et al. (2017).

Figure 3: Confusion Matrix
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Performance of the models are evaluated by means of following metrics.
Precision: Precision is the measure of correct positive prediction out of all the pos-

itive prediction made by the model, Chandra (2017) and is calculated using the equation
(1).

Precision = TP/(TP + FP ) (1)

Recall: Also known as Sensitively, recall is the measure of correct positive predictions
made by the model out of the total number of positives in the dataset, Chandra (2017)
and is calculated using the equation (2).

Recall = TP/(TP + FN) (2)

F1 score: F1 score is the harmonic mean of precision and recall Chandra (2017) and
hence, it is a preferred metric for evaluating IDSs in cases where high false positive is not
tolerable. F1 score is calculated using the equation(3).

F1score = 2 (Precision ∗Recall)/(Precision + Recall) (3)

Error Rate: Error rate is the number of wrong prediction divided by total number
of unknown instances. It acts as a measure of quality of classifiers. It ranges between 0
and 1, 0 being best and 1 being worst. Error rate is calculated using the equation(4).

Errorrate = (FP + FN)/(TP + TN + FP + FN) (4)

Mean Squared Error (MSE): Another measure of quality of classification model
is MSE. It is a risk function which is the average squared difference between actual and
predicted values. It is always positive between 0 and 1. Model is better when MSE is
closer to zero.

Execution time: In this research experiment, the machine learning models are run
on both centralized and distributed ( apache hadoop and apache spark set-up) systems
and the execution times are measured to analyse the computing performances.The time
taken to train the models are measured in ’minutes’.

4 Design Specification

Centralized and distributed environments are set-up for the purpose of experiments on In-
tel(R) Core(TM) i7-5500U processor, CPU@2.4GHz, GPU: NVIDIA GeForce, RAM:16GB,
Storage: 1 TB HDD and Operating system: Windows 10, 64-bit.

• Centralized environment is set-up on virtual machine with Ubuntu 64-bit OS, 2
CPU processors and 11GB RAM. Anaconda with Python version 3 is installed.
Using ubuntu shell, jupyter notebook is launched on browser for writing machine
learning codes in python.

• On the second part of research experiment, to check the performance variance in
terms of time-taken to train the models, distributed environment is set-up using
Apache Hadoop and Apache Spark on a linux virtual machine. As prerequisite
steps, Java jdk version 8 and SSH (secure shell) keys are installed on Ubuntu OS.
Apache Hadoop version 2.9.2 is downloaded, installed and configured. And the
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path is set between hadoop and java. Later, Apache spark 2.4.3 is downloaded and
installed. Along with this, anaconda for python 2.7 is downloaded and installed on
spark environment. Dataset is downloaded from University of New Brunswick onto
the virtual machine and is copied into HDFS. Spark, hadoop’s master and worker
nodes are started using command line on ubuntu shell. Once all the services have
started, jupyter notebook is launched on the browser using ubuntu shell.

5 Implementation

Figure 4 depicts the flow chart of research implementation, from data collection to per-
formance visualization of all the models. Firstly, required dataset for experiments i.e,
NSL-KDD dataset is downloaded from the trusted website of University of New Brun-
swick.

Figure 4: Flow Chart

5.1 Data Pre-processing

Following are data pre-processing steps taken prior to building classification models.
These steps are mandatory to enhance the performance of models.

• Exploratory Data Analysis (EDA): A good data understanding can be obtained
by the process of EDA. NSL-KDD dataset used for this research experiments con-
sists of 22545 records and 42 attributes. Out of 42 attributes, 4 are categorical and
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rest 38 are numerical. The two-class output column is balanced. However, there
exists many highly correlated independent variables as depicted in the Figure 5.

Figure 5: Correlation heatmap

• Data transformation: To perform classification modelling, all the attributes with
datatype string are transformed to datatype float using ’LabelEncoder’ function.

• Feature reduction: Correlation heatmap shows many highly correlated independ-
ent variables. These variables can lead to model over-fitting problem. This issue is
solved by removing one of the variables from each of highly correlated pair. After
feature reduction, 31 out of 41 variables are retained. Figure 6 depicts that there
are no highly correlated attributes after feature reduction.
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Figure 6: Correlation heat map after feature reduction

• Feature selection: The significance of each variables in predicting the output
class is determined using random forest’s ’feature importances’ function. Figure 6
depicts variable importance graph. Based on each variable’s importance value, 10
out of 31 attributes are selected. Dropping other lesser significant attributes helps
in reducing the execution time taken to train the data mining models without any
significant difference in accuracy of the model.

Figure 7: Variable Importance Graph

In the next step, a subset of all independent variables and a subset of dependent variable
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are created. These subsets are further split into train (80%) and test (20%) dataset for
training and evaluation of the model, respectively.

5.2 Modelling

Different classification models are trained by tuning hyper parameters of the algorithms.
The algorithms used for modelling are SVM, Decision Tree, Random Forest, Gradient
Boosting and an Ensemble of these models. The models are evaluated and compared to
determine the best performing model for IDS. On the second part of this research, the
models are run on distributed environment (apache hadoop and spark) to compare the
time-taken to train the model with centralized environment..

• Support Vector Model: Python’s SVC() function is used to build support vec-
tor model. The hyper parameters of this function are C, kernel and gamma. C
defines the error penalty. It sets the boundary between smooth decision curve and
to correctly classifying the training points. High C values may cause over-fitting.
Gamma is a non-linear hyper-plane parameter. Higher values of gamma will also
increase over-fitting. Kernel determines the type of the space where the hyper-plane
is drawn. It can be either linear (2D), rbf(non-linear) or poly(non-linear). Since
the dataset is non-linear in nature, ’rbf’ kernel is set. The range of hyper para-
meters are set and then, the function ’GridSearchCV’ selects the best combination
of parameters, that balances the under-fit and over-fit of the training data. The
significant parameters of ’GridSearchCV’ function are n-jobs, CV and refit. The
number of parallel jobs running is indicated by ’n-jobs’. When ’n-jobs’ is set to -1,
all the available processors are utilized. ’CV’ determines cross-validation splitting
criteria. The ’refit’ value is kept to default ’True’ to indicate to fit estimator with
best parameters. The model is trained with best fit hyper parameters and validated
on the test dataset.

• Decision tree: The hyper parameter that is tuned in this algorithm is ’min-
samples-split’. It determines the number of instances required to split an internal
node. When set to maximum, the model fails to learn about the data. Larger values
of other hyper parameters such as max-depth, min-samples-leaf and max-features
may lead to under-fitting or over-fitting of the model and hence, their default values
are retained. A range of 2 to 50 is assigned to min-samples-split and ’GridSearchCV’
is used to choose the best fit value. The model is trained with best fit estimator
and is then, validated using test dataset.

• Random Forest: As mentioned in the earlier section, it is an ensemble of decision
trees and contains additional hyper-parameters. They are: bootstrap, max-depth,
max-features, min-samples-leaf, min-samples-split and n-estimators. Random forest
algorithm learns from drawing random samples from the data instances. When the
bootstrap is set to true, the samples are drawn with the replacement. The number of
trees in the forest is determined by n-estimators. Higher the value of n-estimators,
better is the learning. However, if it is set to too high, the training process becomes
noticeably slow. Hence, at not too high, it is set at a range of 100, 200, 300 and
1000. ’max-depth’ indicates the depth of trees. Higher the value of max-depth,
larger the number of nodes in each decision tree of the forest and hence, more
learning. However, setting the value of ’max-depth’ too high may also cause over-
fitting issue and hence, range is set in between only 80 to 110. As mentioned earlier,
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’min-samples-split’ determines the number of split at each internal node and is set
to values of 8,10 and 12. ’min-samples-leaf’ is similar to ’min-samples-split’ except
that it determines the split only at the leaf nodes. And it is set between 3 to 5,
as higher values may cause under-fitting problems. The number of attributes to be
considered prior to a split is indicated by ’max-features’ and is set to 2 and 3. A
model is fitted for all the combinations of these hyper parameters with its specified
range and a best fit is selected using ’GridSearchCV’. The chosen best fit trains the
random forest model and it is then, validated by means of test data.

• Gradient Boosting: This model also learns by converting weak learners to strong
learners. The three hyper parameters of this algorithm are max-features min-
samples-leaf, max-depth and learning-rate. max-features, min-samples-leaf and
max-depth are same as explained under random forest algorithm. And the learning-
rate decides the contribution made by each tree for the learning of data. Higher
value of learning-rate may cause over-fitting of the model. Graphs are plotted to de-
termine the optimum value of each hyper-parameter for best accuracy of prediction
as shown in Figure 8, Figure 9 and Figure 10

Figure 8: Accuracy Vs learning rate

Figure 9: Accuracy Vs max depth
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Figure 10: Accuracy Vs min samples leaf

• Hybrid model: A hybrid model is built that learns from all the four models, using
the function ’MultiOutputClassifier’ and ’VotingClassifier’. Hard voting method is
adopted since it is a classification problem. Hard voting is a technique wherein,
final prediction is made based on the majority vote from different classifiers. It
is then cross-validated with 3 and 10 folds to ensure that there is no over-fitting
problem.

A confusion matrix is drawn for all the models using the function ’confusion-matrix’.
Precision, Recall, F1 score and Accuracy of the models are also calculated by means of
python’s pre-defined functions.

6 Evaluation

6.1 Experiment 1: Performance of data mining models

The data mining models are evaluated using performance metrics namely: Precision,
Recall, F1 Score, Accuracy and Error rate. Table 2 presents the performance of various
classifiers built for the experimental purpose

Table 2: Performance metrics
Models Precision Recall F1 Score Accuracy Error rate

SVM 97.07% 97.02% 97.04% 97.44% 0.025
Decision Tree 98.07% 96.86% 97.46% 97.82% 0.021
Random forest 98.25% 96.86% 97.46% 98.42% 0.015

Gradient Boosting 98.35% 98.35% 98.17% 98.58% 0.014
Hybrid 98.70% 97.63% 98.16% 98.42% 0.015

All the classifiers perform with high accuracy (above 97%). When compared with
other tree-based algorithms, SVC’s performance is little low, however difference is in-
significant. Random forest and gradient boosting produce almost similar results. With
hybrid of all four models, accuracy is slightly improved to 98.42% and Error rate is 0.015.
The MSE value of hybrid model obtained is 0.015.
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Figure 11, Figure 12, Figure 13, Figure 14 and Figure 15 shows the confusion matrix
heat maps of SVM, decision tree, random forest, gradient boosting and hybrid models,
respectively.

Figure 11: Confusion matrix of SVC model

Figure 12: Confusion matrix of Decision tree model
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Figure 13: Confusion matrix of Random forest model

Figure 14: Confusion matrix of Gradient boosting model

Figure 15: Confusion matrix of Hybrid model
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Table 3: Accuracy after 10-fold cross-validation
Models Validated Accuracy (k=10)

SVM 96.38%
Decision Tree 96.93%
Random forest 97.58%

Gradient Boosting 97.71%
Hybrid 97.84%

Table 3 shows the cross-validated accuracy of all the models. The values assures that
models perform well without any over-fitting.

6.2 Experiment 2: Computing performance of centralized and
distributed environments

Table 4 shows the time taken (in minutes) by centralized and distributed (apache hadoop
and spark) environments to train the machine learning models.

Table 4: Time taken to train models
Models Centralized Environment Distributed Environment

SVM 382.4min 77.6min
Decision Tree 2min 1.4min
Random forest 520.6min 265.6min

Gradient Boosting 2.3min 2.3min

The models are trained much faster in distributed environment when compared to
centralized. For instance, while SVM model takes 382.4min to train in centralized envir-
onment, while it only takes 77.6min in distributed environment.

6.3 Discussion

All the classification models performed well with high accuracy and low error rate. How-
ever SVC model’s performance was slightly less compared to other models. In particular,
all the tree-based models performs well for two-class classification problems. The differ-
ence in the performance between tree-based models is observed to insignificant. Gradient
boosting algorithm’s error rate is the least among all of them. Hybrid model shows some
improvement in the performance. The result of cross-validated accuracies ensure that
there is no over-fitting of the models. MSE values of 0.015 indicates that quality of per-
formance of the classifiers is high. Based on the survey conducted by Moustafa et al.
(2019),other algorithms like EM clustering, logistic regression and naive bayes performed
with only 90.3%, 95.1% and 93.8% accuracy, respectively. ARM (correlation-based) tech-
nique for feature reduction and feature selection based on variable importance plot(using
random forest technique) contributed in enhancing perform without over-fitting prob-
lems. Hence tree-based classification models, with right feature engineering methods are
found to better for intrusion detection system. Another purpose of this project is com-
pare the difference in computing-time taken by centralized and distributed environments.
The results of experiments conducted clearly states that distributed environments using
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file storage system such as apache hadoop and computing framework such as apache
spark performs with high speed, taking significantly lesser time to train the models when
compared to centralized environment. Hence, distributed frameworks are the ideal envir-
onment for intrusion detection systems as it helps to identify the attacks in near real-time.

7 Conclusion and Future Work

Intrusion detection systems plays a vital role in network security. Hence, it is necessary
that data mining algorithms applied in IDSs to perform with high predictive rate and low
error rate. Being one of the objective, this research experiment proves that tree-based
algorithms such as decision tree, random forest and gradient boosting, along with ARM-
based feature engineering techniques performs better for classification problems and a
hybrid of them can enhance the performance further. This research paper also conduc-
ted experiments to compare the time taken by the centralized and distributed (Apache
Hadoop and Apache Spark) environments to train the models. Clearly, distributed envir-
onments performed much faster than centralized environments and hence, this research
suggests tree-based algorithms and distributed environments to develop intrusion detec-
tion systems to identify the threats in computer networks. Although, the proposed IDSs
on distributed environment performs at very a low latency, it still does not aid real-time
detection of threats as apache spark can supports micro-batching only. To detect attacks
in real-time, stream-processing engines like apache storm must be integrated in IDS. This
creates a scope for future research work on IDSs.
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