~

"'—-
\ National
College

Ireland

Configuration Manual

MSc Research Project
MSc. in Data Analytics

Nawagz Sheikh
Student ID: x18134637

School of Computing
National College of Ireland

Supervisor: Dr. Vladimir Milosavljevic

National College of Ireland National

Project Submission Sheet Col]ege of
School of Computing Ireland

Student Name: Nawaz Sheikh

Student ID: x18134637

Programme: MSec. in Data Analytics

Year: 2019

Module: MSc Research Project

Supervisor: Dr. Vladimir Milosavljevic

Submission Due Date: 12th December 2019

Project Title: Identification and Classification of Wildlife from Camera-Trap
Images using Machine Learning and Computer Vision

Word Count: 1223

Page Count: [33]

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature:

Date: 12th December 2019

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). O
Attach a Moodle submission receipt of the online project submission, to | [J
each project (including multiple copies).
You must ensure that you retain a HARD COPY of the project, both for | [J
your own reference and in case a project is lost or mislaid. It is not sufficient to keep
a copy on computer.

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only
Signature:

Date:
Penalty Applied (if applicable):

Configuration Manual

Nawaz Sheikh
x18134637

1 Introduction

Most of the system setup, hardware and software requirements and the implementation
and evaluation along with exploratory data analaysis has been explained in this config-
uration manual.

2 Exploratory Data Analysis

2.1 Mount the Google Drive
Google Drive is mounted so that the files can be accessed[]
[] #Mount the google drive:

from google.colab import drive
drive.mount("/content/drive’)

> Go to this URL in a browser: https://accounts.google.com/o/oauth2/auth?client_id=947318989803-6bnégk8qdgfanag3pfees

Enter your authorization code:

Mounted at /content/drive

Figure 1: Google Drive

[] animals path = "/content/drive/My Drive/Colab Notebooks/Six Classes”

Figure 2: Folder directory

The folder directory is set where the dataset is present so that files can be accessed
from the directory mentioned.

thttps:/ /drive.google.com /drive /folders /1Q6kJBWvVC pdS Avg97jp65C s3 K oU jbY O

2.2 Importing the libraries

[1 #Importing the libraries:
import tensorflow
import keras
import imageai

[] import os
import shutil
import glob
import matplotlib.pyplot as plt
%matplotlib inline

[1 import math
import re
import sys

Figure 3: Importing libraries

Libraries of tensorflow, keras, glob, matplotlib, math are imported so that methods and
functions are used later on for certain tasks

2.3 Distribution of selected classes

[] import pygal
from IPython.display import display, HTML
#Create function to display interactive plotting
base html = """
<IDOCTYPE html>
<html>
<head>
<script type="text/javascript" src="http://kozea.github.com/pygal.js/javascripts/svg.jquery.js"></script>
<script type="text/javascript" src="https://kozea.github.io/pygal.js/2.8.x/pygal-tooltips.min.js""></script>
</head>
<body>
<figure>
{rendered_chart}
</figure>
</body>
</html>

nnn

def galplot(chart):
rendered chart = chart.render(is unicode=True)
plot_html = base_html.format(rendered _chart=rendered chart)
display(HTML(plot_html))

#Compare class distribution
line _chart = pygal.Bar(height=300)
line_chart.title = 'Animals Distribution’
for o in os.listdir(animals_path):
line chart.add(o, len(os.listdir(os.path.join(animals path, 0))))
galplot(line chart)

Figure 4: Setting pygal library

Zhttps://www.tensorflow.org/

Pygal library is used to plot the available classes. The plot is done using bar graph. A
wrapper is created to render the chart inline and data is passed through it so that it can

be displayed.

[Collared_Pecca..

[Ocelot

B White-nosed_Co..

Red_Squirrel
"] Red_Deer
[European_Hare

Animals Distribution

Figure 5: Class distribution

Figure 5 refers to the class distribution obtained for the classes present in the original
dataset. It seems that Red Deer has the highest number of samples making it the majority
class and Red Squirrel has the lowest number of samples making it the minority class as
compared to other 5 classes.

2.4 Confirm Folder Structure

[]

#Confirm Folder Structure

for root, dirs, files in os.walk(animals_path):
level = root.replace(os.getcwd(), '').count(os.sep)

C»

print('{e}{1}/".format("
for f in files[:2]:
print(*{e}{1}".format("’

if level is not @:

print(’{e}{1}".format(’

Six_Classes/

Collared Peccary/

' * level, os.path.basename(root)))
' * (level + 1), f))

CE (level + 1), "...™))

PG

SEQ88200 IMG 0003.
SEQ88200 IMG_©067.
Ocelot/

SEQ75294_IMG_000es5.
SEQ75294_IMG_0003.

White-nosed_Coati/
SEQ84536_IMG_0001.
SEQ84536_IMG_0008.

Red Squirrel/
SEQ75972_IMG_©062.
SEQ76082_IMG_©0061.
Red_Deer/
SEQ80452_IMG_0016.
SEQ80452_TMG_0019.

European_Hare/
SEQ75146_IMG_0004.
SEQ751460_IMG_0001.

Figure 6:

JPG

PG
PG

JPG
JPG

JPG
JPG

JPG
JpPG

JPG
JPG

Folder Structure

Here, the folder structure is verified so that we can go ahead with applying models to
the dataset. The output shows that there are six folders for six different classes. In each
folder, there are sequences of different images.

2.5 Create Train, Validation and Test folders

[] import math
import re
import sys

#Train and Test Set variables

train_val test_ratio = (.7,.1,.2) # 70/10/20 Data Split
test_folder = "test/'

train_folder = 'train/'

val folder = ‘val/'

file names = os.listdir('/content/drive/My Drive/Colab Notebooks/Six Classes')

#Remove Existing Folders if they exist
tor folder in [test folder, train_folder, val folder]:
it os.path.exists(folder) and os.path.isdir(folder):
shutil.rmtree(folder)

#Remake Category Folders in both Train and Test Folders
for category in file_names:
os.makedirs(test_folder + category)
os.makedirs(train_folder + category)
os.makedirs(val folder + category)

Figure 7: Creation of training, validation and test folders

#Split Data by Train Ratio and copy files to correct directory
for idx, category in enumerate(file_names):
file list = os.listdir(animals_path + '/' + category)

train_ratio = math.floor(len(file list) * train_val test ratio[e])
val_ratio = math.floor(len(file list) * train_val_test_ratio[1])
train_list = file list[:train_ratio]

val list = file list[train ratio:train ratio + val ratio]
test_list = file list[train_ratio + val_ratio:]

for i, file in enumerate(train_list):

shutil.copy(animals path + '/' + category + '/' + file, train folder + '/' + category + '/' + file)
sys.stdout.write('Moving %s train images to category folder %s' % (len(train list), category))
sys.stdout.write('\n")
for i, file in enumerate(val_list):

shutil.copy(animals_path + '/' + category + /' + file, val_folder + '/' + category + '/' + file)
sys.stdout.write('Moving %s validation images to category folder %s' % (len(val list), category))
sys.stdout.write("\n")
for i, file in enumerate(test list):

shutil.copy(animals_path + '/' + category + '/' + file, test_folder + '/' + category + /' + file)
sys.stdout.write('Moving %s test images to category folder %s® % (len(test_list), category))
sys.stdout.write("\n")

print(“"Done.™)

Figure 8: Data split

The idea is to create three folders, train, validation and test with the data split ratio
of 70%, 10% and 20% respectively. The directory where the folders should be created
is listed. Also, if there is train, validate and test folder already existing in the listed
directory, then they are removed and the folders are recreated after then the data is split
in the consecutive folders.

> Moving 348 train images to category folder Collared Peccary
Moving 49 validation images to category folder Collared Peccary
Moving 1@1 test images to category folder Collared Peccary
Moving 384 train images to category folder Ocelot
Moving 54 validation images to category folder Ocelot
Moving 111 test images to category folder Ocelot
Moving 9@6 train images to category folder White-nosed Coati
Moving 129 validation images to category folder uWhite-nosed Coati
Moving 260 test images to category folder White-nosed_Coati
Moving 261 train images to category folder Red Squirrel
Moving 37 validation images to category folder Red Squirrel
Moving 76 test images to category folder Red Squirrel
Moving 1980 train images to category folder Red Deer
Moving 283 validation images to category folder Red Deer
Moving 567 test images to category folder Red Deer
Moving 489 train images to category folder European Hare
Moving 7@ validation images to category folder European_ Hare
Moving 141 test images to category folder European_Hare
Done.

Figure 9: Output for data split

2.6 Data Augmentation

This step is carried out to tackle the issue of class imbalance. Minority classes are
augmented with a shift of 45 degrees so that the number of images for the minority class
to train increases.

A check is carried out after the first 45 degrees shift of data augmentation to see the
increase in the number of images for the minority class. The minority classes are again
augmented to balance the classes.

Firstly, an example image is taken to observe the effect of augmentation. Then the
image is displayed. A number of 4 augmentations is done to each image of the minority
class. The augmentation is completed randomly on the minority class images. It is carried
out for the training data only in order to stop the class bias. The validation and testing
images remains the same as passes on originally after segregation.

[T import random
import numpy as np
from keras.preprocessing.image import ImageDataGenerator, array to img, img to array, load img

[» Using TensorFlow backend.

Figure 10: Importing the library for data augmentation

[] #Select a random image and follow the next step
datagen = ImageDataGenerator(rotation range=45,

width shift range=0.2,
height shift range=06.2,
zoom_range=0.3,
vertical flip=True,
horizontal flip=True,
fill mode="nearest")

Figure 11: Image Data Generator

[] #Load example image
file list = glob.glob("test/*/*")
img path = random.choice(file list)
img = load img(img_path)
animal class = img path.split("/")[1]
plt.imshow(img)
plt.axis("off")
plt.title("0Original " + animal class, fontsize=16)

[» Text(e.5, 1.0, 'Original 1.03-Collared Peccary’)
Orlglnal 1 03 Cullared Peccary

Figure 12: Sample image

img_to_array(img)
img.reshape((1,) + img.shape)

[] img
img

Figure 13: Image to array

1 #Apply different augmentation techniques
n_augmentations = 4
plt.figure(figsize=(15, 6))
i=o
for batch in datagen.flow(img,

batch size=1,
seed=21):

plt.subplot(2, int(np.ceil(n_augmentations * 1. / 2)), i + 1)
plt.imshow(array_to img(batch[@]))

plt.axis("off")

plt.suptitle("augmented " + animal_class, fontsize=16)

i+=1
it i »= n_augmentations:
break

Figure 14: Augmentation technique

C Augmented 1.03-Collared Peccary

Figure 15: Augmentation example

[1 #Oversampling Minority Classes in Training Set
def data_augment(data_dir):

list of images = os.listdir(data_dir)

datagen = ImageDataGenerator(rotation_range=45,
horizontal flip=True,
fill mode="nearest")

for img_name in list of images:
tmp_img name = os.path.join(data_dir, img_name)
img = load_img(tmp_img_name)
img = img_to_array(img)
img = img.reshape((1,) + img.shape)

batch = datagen.flow(img,
batch_size=1,
seed=21,
save to dir=data dir,
save_prefix=img name.split(".JPG")[@] + "augmented”,
save_format="JPG")

batch.next()

Figure 16: Oversampling minority class

classes to augment = [
"Red Squirrel”,
"European_Hare",
"Ocelot™,
"Collared Peccary”,
"White-nosed Coati"]

for class_names in classes_to augment:
print("Currently Augmenting:", class names)
data dir = os.path.join(train folder, class _names)
data_augment(data_dir)

Figure 17: Classes to augment

[» Currently Augmenting: Red_Squirrel
Currently Augmenting: European Hare
Currently Augmenting: Ocelot
Currently Augmenting: Collared Peccary
Currently Augmenting: White-nosed Coati

Figure 18: Classes augmenting

Hansson (2002) augmented images before calculating top-1 and top-5 values.

2.7 Resizing of images

[1 from pydrive.auth import GoogleAuth
from pydrive.drive import GoogleDrive
from google.colab import auth
from ocauth2client.client import GoogleCredentials

[] auth.authenticate_user()
gauth = GoogleAuth()

> WARNING:tensorflow:
The TensorFlow contrib module will not be included in TensorFlow 2.@.
For more information, please see:
* https://github.com/tensorflow/community/blob/master/rfcs/20180907-contrib-sunset.md
* https://github.com/tensorflow/addons
* https://github.com/tensorflow/io (for I/0 related ops)
If you depend on functionality not listed there, please file an issue.

[1 gauth.credentials = GoogleCredentials.get application_default()
drive = GoogleDrive(gauth)

[] your_module = drive.CreateFile({"id": "1SLIjmWvYhFEQ6ImUlOzvSrZadeV35eE5"}) # "your module file id" is the part after "id=" in the shareable link
your_module.GetContentFile("six classes utils.py™) # Save the .py module file to Colab VM

Figure 19: File access on google drive

[1 import six classes utils

[] from multiprocessing import Pool

Figure 20: Importing the functions from an external file

Files from google drive are accessed by setting up the gauth function. Shareable link is
used to import functions from a different file. The external file six_classes_utils includes
resizing function for the images.

[1 from functools import partial

#Resize Images
if _name_ == "' main_':
pool = Pool()
image list = glob.glob(train folder + "/*/*")
func = partial(six_classes utils.resize image, size=299)
pool.map(func, image list)
pool.close()

six_classes utils.display images(train_folder)

Figure 21: Resize of the images

six_classes_utils is the file used from google drive to resie the images. Libraries like
c¢v2, random, glob are used and a function for resizing is written in the file]

3https://opencv.org/

import random

import matplotlib.pyplot as plt
import matplotlib.image as mpimg
import glob

from PIL import Image

import cov2

import os

Figure 22: Libraries for the util file

def resize image(file, size=289):
img = Image.open(file)
img = img.resize((size,size))
img.save (file)

Figure 23: Function for resizing

Figure 24: Sample image after resizing

2.8 Look at Distribution of Selected Classes again

Now, the class imbalance issue has been resolved as all the classes are more likely similar
in the number of images that each class possess. Pygal barchart is used for plotting the
distribution graph.

° #Compare class distribution
line chart = pygal.Bar(height=300)
line chart.title = 'Animals Class Distribution’
for o in os.listdir(train_folder):
line chart.add(o, len(os.listdir(os.path.join(train_folder, 0))))
galplot(line chart)

Figure 25: Class Distribution after augmentation

10

Animals Class Distribution

7l Collared_Pecca..

[Ocelot

B White-nosed_Co..
Red_Squirrel

[T Red_Deer

B European_Hare

Figure 26: Bar chart after augmentation

3 Deep Learning Architectures

3.1 Data Generator

[1 from keras.preprocessing.image import ImageDataGenerator

[» Using TensorFlow backend.

[] from keras.applications.inception_v3 import preprocess_input, decode_predictions

[1 #Mount the google drive:
from google.colab import drive
drive.mount('/content/drive")

[» Go to this URL in a browser: https://accounts.google.com/o/oauth2/auth?client 1d=947318989803-6bnégk8qdgfanagipfee6d91ihcebredi.apps.googleusercontent. comdredirect

Enter your authorization code:
Mounted at /content/drive
<+ I ——

[] #Check the directory:
cd /content/drive/My Drive/Colab Notebooks/Six Classes

[» /content/drive/My Drive/Colab Notebooks/Six_Classes

Figure 27: Importing ImageGenerator

[] WIDTH=299
HEIGHT=299
BATCH SI7E=64
test_dir = 'test/'
train_dir = "train/'
val dir = 'val/’

Figure 28: Resizing as per InceptionV3

11

[1 WIDTH=224
HEIGHT=224
BATCH_SIZE=64
test dir = "test/'
train_dir = "train/’
val_dir = 'val/'

Figure 29: Resizing as per VGG16 and MobileNet

Nguyen et al.| (2018) resized the images before applying the deep learning architectures.

[]

#Train DataSet Generator with Augmentation
print("\nTraining Data Set")
train_generator = ImageDataGenerator(preprocessing function=preprocess input)
train_flow = train_generator.flow from_directory(
train dir,
target size=(HEIGHT, WIDTH),
batch size = BATCH STZF

Training Data Set
Found 11289 images belonging to 6 classes.

Figure 30: Train Dataset Generator

'Verma and Gupta (2018) applied DCNN architectures after training and testing data-

set using generator.

[]

#Validation DataSet Generator with Augmentation
print("\nvalidation Data Set")
val generator = ImageDataGenerator(preprocessing function=preprocess input)
val flow = val generator.flow from directory(
val dir,
target size=(HEIGHT, WIDTH),
batch size = BATCH STZE

Validation Data Set
Found 622 images belonging to 6 classes.

Figure 31: Validation Dataset Generator

12

[] #Test DataSet Generator with Augmentation
print("\nTest Data Set")
test generator = ImageDataGenerator(preprocessing function=preprocess _input)
test flow = test generator.flow from directory(
test dir,
target size=(HEIGHT, WIDTH),
batch size = BATCH SIZE

Test Data Set
Found 1256 images belonging to 6 classes.

Figure 32: Test Dataset Generator

The data from the Keras ImageDataGenerator class has been ingested for training
purposesﬂ This will assist in reading the directory structured as per the category of
classes which was done during the training in the exploration phase.

For InceptionV3, the height and width requirement is 299x299. For VGG-16 and
MobileNet, the height and width requirement is 224x224. The generator also resizes
the images as per the architecture before feeding the data into the network so that the
training, test and validation phase works successfully. |Chen et al.| (2014) and
(2018) resized the images before applying the DCNN algorithms.

3.2 Optimization for CPU

[] from keras.models import Sequential, Model, load model
from keras.callbacks import ModelCheckpoint, EarlyStopping, TensorBoard, CSVLiogger
from keras import optimizers, models
from keras.layers import Dense, Dropout, GlobalAveragePocling2D
from keras import applications
from keras import backend as K
import tensorflow as tf
import os

Figure 33: Libraries for optimizers and modelst

“https:/ /keras.io/

13

[] NUM_PARALLEL_EXEC_UNITS = 8

[1 #Set Performance Parameters for MKL and Tensorflow using Keras backend
#TensorFlow
config = tf.ConfigProto(
intra op_parallelism threads=NMUM PARALLEL EXEC UNITS,
inter_op_parallelism threads=1

session = tf.Session(config=config)
K.set session(session)

[1 #MKL and OpenMP
os.environ["OMP_NUM THREADS"] = str(NUM PARALLEL EXEC_UNITS)
os.environ["KMP_BLOCKTIME"] = "1"
os.environ["KMP_SETTINGS"] = "1'
os.environ["KMP_AFFINITY"]= "granularity=fine,verbose,compact,1,@"

Figure 34: Optimization setup

3.3 Selecting Hyperparameters

[] # Initialize InceptionV3 with transfer learning
base_model = applications.Inceptionv3(weights="imagenet"’,
include_top=False,
input_shape=(WIDTH, HEIGHT,3))

Figure 35: Model for InceptionV3

[1 # add a global spatial average pooling layer
x = base_model.output

[] x = GlobalAveragePooling2D()(x)
and a dense layer
x = Dense(1@24, activation="relu')(x)
predictions = Dense(len(train_flow.class_indices), activation="softmax')(x)

[1 # this is the model we will train
model = Model(inputs=base_model.input, outputs=predictions)

[] # first: train only the top layers (which were randomly initialized)
i.e. freeze all convolutional Inceptionv3 layers
for layer in base_model.layers:
layer.trainable = False

[1 # compile the model (should be done *after® setting layers to non-trainable)
model.compile(optimizer-optimizers.Adam(1lr=0.001), metrics=['accuracy', 'top_k_categorical_accuracy'], loss='categorical_crossentropy’)
model. summary()

Figure 36: Layers for InceptionV3

14

Model: "model 1"

Layer (type) Output Shape Param # Connected to

input_1 (InputLayer) (None, 299, 299, 3) @

conv2d_1 (Conv2D) (None, 149, 149, 32) 864 input_1[e][e]
batch_normalization_1 (BatchMor (Mone, 149, 149, 32) 96 convad_1[@][e]

activation_1 (Activation) (None, 149, 149, 32) @ batch_normalization_1[@][@]
conv2d_2 (Conv2D) (None, 147, 147, 32) 9216 activation_1[@][e]

batch normalization 2 (BatchmMor (None, 147, 147, 32) 96 conv2d 2[e][e]

activation_2 (Activation) (None, 147, 147, 32) © batch_normalization_2[e][e]
conv2d_3 (Conv2D) (None, 147, 147, 64) 18432 activation_2[@][e]

batch normalization 3 (BatchmMor (None, 147, 147, 64) 192 conv2d 3[e][e]

activation_3 (Activation) (None, 147, 147, 64) © batch_normalization_3[e][e]
max_pooling2d 1 (MaxPooling2D) (MNone, 73, 73, 64) @ activation_3[@][e]

conv2d_4 (Conv2D) (None, 73, 73, 88) 5120 max_pooling2d_1[@][e]

batch normalization 4 (BatchmMor (None, 73, 73, 80) 240 conv2d 4[e][e]

activation_4 (Activation) (None, 73, 73, 80) @ batch_normalization_4[e][e]
conv2d_5 (Conv2D) (None, 71, 71, 192) 138240 activation_a[e][e]

Figure 37: Model summary for InceptionV3 (1)

activation_93 (Activation) (None, 8, 8, 384) 2] batch_normalization_93[e][e]
batch_normalization_94 (BatchNo (MNone, 8, 8, 192) 576 conv2d_94[e][e]
activation_86 (Activation) (None, 8, 8, 320) 2] batch_normalization_g8e[e][e]
mixed9_1 (Concatenate) (None, 8, 8, 768) 2] activation_sg[e][e]
activation_s8o[e][e]
concatenate_2 (Concatenate) (None, 8, 8, 768) 2] activation_92[e][e]
activation 93[e][0]
activation_94 (Activation) (None, 8, 8, 192) 2} batch_normalization_94[e][e]
mixedl@ (Concatenate) (None, 8, 8, 2048) O activation_ss6[e][e]
mixedo 1[e][e]
concatenate_2[@][0]
activation 94[e][0]
global_average pooling2d 3 (Glo (None, 2048) 2] mixedle[e][e]
dense 2 (Dense) (None, 1@24) 2098176 global_average pooling2d_3[@][e]
dense 3 (Dense) (None, 6) 6150 dense_2[@][@]

Total params: 23,907,110
Trainable params: 2,104,326
Non-trainable params: 21,802,784

Figure 38: Model summary for InceptionV3 (2)

15

[1 # Initialize mobilenet with transfer learning
base model = applications.MobileNet(weights="1imagenet’,
include top=False,
input_shape=(WIDTH, HEIGHT,3))

Figure 39: Model summary for MobileNet (1)

conv_pw 12 relu (RelLU) (None, 7, 7, 1824) %]
conv_dw 13 (DepthwiseConv2D) (None, 7, 7, 1824) 9216
conv_dw_13 bn (BatchNormaliz (MNone, 7, 7, 1©24) 4096
conv_dw 13 relu (RelLU) (None, 7, 7, 1@24) 5]
conv_pw_13 (Conv2D) (None, 7, 7, 1824) 1048576
conv_pw 13 bn (BatchNormaliz (None, 7, 7, 1824) 4896
conv_pw_13 relu (RelLU) (None, 7, 7, 1824) %]
global average pooling2d 1 ((None, 1824) 5]
dense_1 (Dense) (None, 1824) 1049600
dense 2 (Dense) (None, 6) 6150

Total params: 4,284,614
Trainable params: 1,855,750
Non-trainable params: 3,228,864

Figure 40: Model summary for MobileNet (2)

[] # Initialize VGG16 with transfer learning
base model = applications.vGGle(weights="imagenet"',
include top=False,
input shape=(WIDTH, HEIGHT,3))

Figure 41: Model summary for VGG16 (1)

16

block5 convl (Conv2D) (Mone, 14, 14, 512) 23598088

block5 conv2 (Conv2D) (Mone, 14, 14, 512) 2359808
block5 conv3 (Conv2D) (Mone, 14, 14, 512) 23598088
blockS pool (MaxPooling2D) (Mone, 7, 7, 512) %]
global average pooling2d 1 ((None, 512) %]
dense 1 (Dense) (Mone, 1024) 525312
dense 2 (Dense) (None, &) 6150

Total params: 15,246,150
Trainable params: 531,462
Non-trainable params: 14,714,688

Figure 42: Model summary for VGG16 (2)

InceptionV3, VGG16 and MobileNet are the three architectures used for the classification
of animals. Here, transfer learning is used with the weights of imagenet and top layer is
removed as 1001 classes are not predicted in this dataset. The learning rate is set to 0.001
and therefore, the dataset takes a longer time to train for each of the algorithms. Adam
optimizer is used as it adapts to the learning rate according to the parameters. Batch
size of 32 is used and hence, 32 images are used in training the dataset in one iteration.

GlobalAveragePooling2D layer is added to the base model and the Dense layer is added
with a softmax activation to predict the number of classes in the dataset. Layer.trainables
is set to False so that the new layers are trained that are added in this dataset. Since,
we have multiclass classification, we have added loss of categorical crossentropy is used.

3.4 Training Callbacks

Keras Fit Generator Method is used for training. Here, training and validation dataset
is used in order to check if the model is performing well rather than directly working
on the test dataset. Four different callbacks such as ModelCheckkpoint, TensorBoard,
EarlyStopping and CSVLogger. Checkpoints are used to minimize the disk space that is
being used. Also, overtraining and overutilizing the compute is taken care of by callbacks.

[] import math
top_layers _file path="top layers.iv3.hdf5"

[] checkpoint = ModelCheckpoint(top layers file path, monitor='loss’, verbose=1, save best only=True, mode='min")
tb = TensorBoard(log dir='./logs', batch_size=val flow.batch_size, write_graph=True, update_freq='batch")
early = EarlyStopping(monitor="loss", mode="min", patience=5)
csv_logger = CSVLogger('./logs/iv3-log.csv', append=True)

Figure 43: Model checkpoint for InceptionV3

17

[] history = model.fit_generator(train_flow,
epochs=3,
verbose=1,
validation data=val flow,
validation steps=math.ceil(val flow.samples/val flow.batch size),
steps per_epoch=math.ceil(train_flow.samples/train_flow.batch size),
callbacks=[checkpoint, early, tb, csv_logger])

Figure 44: Training for InceptionV3

Epoch 1/3
B T] - ETA: 2:18:17 - loss: 1.8698 - acc: ©.14@06 - top_k categorical_accuracy: @.7812WARNING:tensorflow:From /usr/local/lib/p
176/176 [] - 3637s 21s/step - loss: ©.6@26 - acc: ©.7977 - top_k_categorical accuracy: ©.9909 - val loss: 1.085@ - val_acc: ©8.6929

Epoch @@eel: loss improved from inf to ©.60256, saving model to top_layers.iv3.hdfs
Epoch 2/3
176/176 [] - 3661s 21s/step - loss: 8.2026 - acc: ©.9321 - top_k_categorical_accuracy: ©.9999 - val_loss: 1.4542 - val_acc: ©.6913

Epoch @8002: loss improved from ©.60256 to 6.20270, saving model to top_layers.iv3.hdf5
Epoch 3/3
176/176 [] - 34265 19s/step - loss: 8.1347 - acc: ©.9563 - top_k_categorical_accuracy: 1.8080 - val_loss: 1.6536 - val_acc: ©.6849

Epoch ©0003: loss improved from ©.2027e to ©.13483, saving model to top_layers.iv3.hdfs

Figure 45: Output for training and validation of InceptionV3

[1 dimport math
top_layers file path="top layers.mn.hdfs"

Figure 46: Model checkpoint for MobileNet (1)

[] checkpoint = ModelCheckpoint(top_layers_file path, monitor='loss', verbose=1, save_best _only=True, mode='min")
tb = TensorBoard(log_dir="./logs’, batch_size=val flow.batch_size, write_graph=True, update_freq="batch")
early = EarlyStopping(monitor="loss”, mode="min", patience=5)
csv_logger = CSVLogger('./logs/mn-log.csv', append=True)

Figure 47: Model checkpoint for MobileNet (2)

[] history = model.fit_generator(train_flow,
epochs=3,
verbose=1,
validation_data=val_flow,
validation_steps=math.ceil(val_flow.samples/val flow.batch_size),
steps per epoch=math.ceil(train flow.samples/train flow.batch size),
callbacks=[checkpoint, early, tb, csv_logger])

Figure 48: Training for MobileNet

18

[Epoch 1/3
176/176 [] - 65s 369ms/step - loss:

©

.@518 - acc:

®

.9843 - top_k_categorical_accuracy: 1.0000 - val loss: 1.1926 - val_acc: 8.5965

Epoch @00@1: loss improved from ©.33142 to ©.05163, saving model to top_layers.mn.hdfs
Epoch 2/3
176/176 [] - e64s 362ms/step - loss: ©.0496 - acc: ©.9838 - top_k_categorical accuracy: ©.9999 - val loss: ©.9246 - val_acc: @.7186

Epoch ©0002: loss improved from ©.05163 to ©.04967, saving model to top_layers.mn.hdfs
Epoch 3/3
176/176 [] - B3s 357ms/step - loss: ©.0234 - acc: 0.9928 - top_k_categorical accuracy: 1.0000 - val loss: 8.9338 - val acc: ©.7251

Epoch @00@3: loss improved from ©.84967 to ©.02343, saving model to top_layers.mn.hdfs

Figure 49: Output for training and validation of MobileNet

[1 import math
top_layers_file path="top_ layers.vggl6.hdfs"

Figure 50: Model checkpoint for VGG-16 (1)

[] checkpoint = ModelCheckpoint(top_layers_file path, monitor='loss’, verbose=1, save_best_only=True, mode='min")
tb = TensorBoard(log_dir="./logs’', batch_size=val flow.batch_size, write_graph=True, update_freq="batch")
early = EarlyStopping(monitor="loss", mode="min", patience=5)
csv_logger = CSvLogger('./logs/vggle-log.csv', append=True)

Figure 51: Model checkpoint for VGG-16 (2)

[] history = model.fit_generator(train_flow,
epochs=3,
verbose=1,
validation data=val flow,
validation steps=math.ceil(val flow.samples/val flow.batch size),
steps_per_epoch=math.ceil(train_flow.samples/train_flow.batch_size),
callbacks=[checkpoint, early, tb, csv_logger])

Figure 52: Training for VGG-16

Epoch 1/3
I T 1 - ETA: 2:39:42 - loss: 4.8683 - acc: ©.1562 - top_k_categorical_accuracy: ©.8281WARNING:tensorflow:From /usr/local/lib/y
176/176 [] - 6@63s 34s/step - loss: ©.4321 - acc: 0.897@ - top_k_categorical_accuracy: ©.9899 - val _leoss: 1.9332 - val_acc: 0.5193

Epoch eeeel: loss improved from inf to ©.4331@, saving model to top_layers.vggl6.hdfs
Epoch 2/3
176/176 [] - 6@44s 34s/step - loss: ©.8513 - acc: ©.9847 - top_k_categorical_accuracy: 1.ee@e - val less: 2.4323 - val_acc: 0.5048

Epoch eeee2: loss improved from ©.43310 to ©.05128, saving model to top_layers.vggl6.hdfs
Epoch 3/3
176/176 [1 - 6051s 34s/step - loss: 8.8399 - acc: ©.9875 - top_k_categorical _accuracy: 1.0008 - val loss: 2.5020 - val acc: ©.5161

Epoch @0003: loss improved from ©.05128 to ©.840@@, saving model to top_layers.vgglé.hdfs

Figure 53: Output for training and validation of VGG-16

19

3.5 Evaluate Model

|] model.load weights(top layers file path)
loss, acc, top 5 = model.evaluate generator(
test flow,
verbose = True,
steps=math.ceil(test flow.samples/test flow.batch size))

Figure 54: Evaluation generator for InceptionV3

[1] print("Loss: ", loss)

[Loss: 1.6115237535185116

[1 print("Acc: ", acc)

> Acc: ©.695859872611465

[1] print("Top 5: ", top_5)

> Top 5: ©0.9976114649681529

Figure 55: Loss, accuracy and Topb confidence for InceptionV3

|] model.load weights(top_layers file path)
loss, acc, top 5 = model.evaluate generator(
test flow,
verbose = True,
steps=math.ceil(test flow.samples/test flow.batch size))
print(“Loss: ", loss)
print("Acc: ", acc)
print("Top 5: ", top_5)

m

[> 20/20 [==============================] - 4925 25s5/step
Loss: 1.3548380257977042
ACC: ©.6791401277681824
Top 5: ©.9976114657274477

Figure 56: Loss, accuracy and Topb confidence for MobileNet

20

|] model.load weights(top layers file path)
loss, acc, top 5 = model.evaluate generator(
test flow,
verbose = True,
steps=math.ceil(test flow.samples/test flow.batch size))
print(“Loss: ", loss)
print("Acc: ", acc)
print(“Top 5: ", top_5)

m

[> 20/20 [==============================] - 835s 42s/step
Loss: 1.8602820445018209
Acc: ©.6242038220356984
Top 5: ©.9992038216560509

Figure 57: Loss, accuracy and Topb confidence for VGG-16

3.6 Write Labels File

[] label = [k for k,v in train_flow.class_indices.items()]

[] with open('iv3-labels.txt', 'w+') as file:
file.write("\n".join(label))

Figure 58: Write Label for IV3

[1] label = [k for k,v in train_flow.class_indices.items()]
with open('mn-labels.txt', 'w+') as file:
| file.write("\n".join(label))

Figure 59: Write Label for MobileNet

[] label = [k for k,v in train_flow.class indices.items()]
with open('vggl6-labels.txt', 'w+') as file:
file.write("\n".join(label))

Figure 60: Write Label for VGG-16

The network uses the numerical value to refer to a particular class. The values are saved
in a text file to map the classes to a particular numerical value for future use.

21

3.7 Test Model with Sample Image

|] from keras.preprocessing import image
import numpy as np
import glob
import random

Figure 61: Test Model for InceptionV3 (1)

[] file list = glob.glob("test/*/*")
[] img_path = random.choice(file list)
[] img_cat = os.path.split(os.path.dirname(img _path))[1]

[1 print("Image Category: ", img_cat)

[> Image Category: White-nosed_Coati

Figure 62: Test Model for InceptionV3 (2)

[] 1img = image.load_img(img_path, target size=(299, 299))

>
1]

image.img_to array(img)

>
Il

np.expand dims(x, axis=0)

>
1l

preprocess_input(x)
[] preds = model.predict(x)

[] print("Raw Predictions: ", preds)

> Raw Predictions: [[9.9079716e-81 1.3424299%-10 5.9693298e-06 2.2137892e-06 9.6429358e-05
9.0981722e-03]]

Figure 63: Test Model for InceptionV3 (3)

22

[] top x =3

[] top args = preds[e].argsort()[-top x:][::-1]

[] preds label = [label[p

] for p in top_args]

Figure 64: Test Model for InceptionV3 (4)

print("\nTop " + str(top x) +

confidence: " + " ".join(map(str, sorted(preds[@])[-top x:][::-1])))

Top 3 confidence: ©.99079716 ©.009098172 9.642936e-05

d " non

print("Top " + str(top x) + " labels: " +

.join(map(str, preds label)))

Top 3 labels: Collared Peccary White-nosed Coati Red Squirrel

Figure 65: Test Model for InceptionV3 (5)

from keras.preprocessing import image
import numpy as np

import glob

import random

file list = glob.glob("test/*/*")
img_path = random.choice(file list)

img_cat = os.path.split(os.path.dirname(img_path))[1]

print("Image Category: ", img_ cat)

img = image.load img(img_path, target size=(224, 224))

x = image.img_to_array(img)
X = np.expand dims(x, axis=0)
X = preprocess_input(x)

preds = model.predict(x)
print("Raw Predictions: ", preds)

top x = 3

top_args = preds[@].argsort()[-top x:][::-1]
preds_label = [label[p] for p in top_args]
print("\nTop " + str(top x) + " confidence:

print("Top " + str(top_x) + " labels: " + " "

"

+ " ".join(map(str, sorted(preds[@])[-top x:][::-1])))
join(map(str, preds label)))

Figure 66: Test Model for MobileNet (1)

23

G

Image Category: Red Deer
Raw Predictions: [[6.9340802e-04 1.1363633e-05 1.0804304e-06 9.9020493e-01 5.6083937e-08

9.0891048e-03]]

Top 3 confidence: ©.99920493 ©.009089105 ©.000693408
Top 3 labels: Red Deer White-nosed Coati Collared Peccary

Figure 67: Test Model for MobileNet (2)

[] from keras.preprocessing import image
import numpy as np
import glob
import random

[] file_list = glob.glob("test/*/*")

img_path

img_cat =
print(“Image Category:

= random.choice(file list)
os.path.split(os.path.dirname(img_path))[1]
", img_cat)

img = image.load img(img_path, target size=(224, 224))
X = image.img to array(img)

X
X

np.expand dims(x, axis=0)
preprocess_input(x)

[> Image Category: White-nosed Coati

Figure 68: Test Model for VGG-16 (1)

preds = model.predict(x)
print("Raw Predictions: ", preds)

Raw Predictions:
1.9249023e-01]]

[[9.3152217e-04 5.8856639e-04 1.265303%9e-83 5.9000980e-05 8.0474538e-01

Figure 69: Test Model for VGG-16 (2)

24

[] topx=3
top_args = preds[@].argsort()[-top x:][::-1]
preds label = [label[p] for p in top_args]
print("\nTop " + str(top x) + " confidence: " + " ".join(map(str, sorted(preds[@])[-top x:][::-1])))
print("Top " + str(top x) + " labels: " + " ".join(map(str, preds label)))

G
Top 3 confidence: ©.8047454 ©.19249023 0.0012653039
Top 3 labels: Red Squirrel White-nosed Coati Ocelot

Figure 70: Test Model for VGG-16 (3)

The models are first tested on a sample image after the training. A random image is
chosen from the test dataset and the model is run through the image. Softmax func-
tion returns the confidence values. Top-3 labels and values are predicted by the model.
Norouzzadeh et al.| (2017) calculated and (Gomez Villa et al.| (2017) discussed about the
confidence values to save human labor.

3.8 Transform Keras Model to Tensorflow

|] from tensorflow.python.framework import graph util
from tensorflow.python.framework import graph io

Figure 71: Tranformation from Keras to Tensorflow for InceptionV3 (1)

[] input model path = top layers file path
[] output model name = "top layers.iv3.pb"
[] output _model dir = "tf model”

[] K.set_learning_phase(©)
sess = K.get session()

[] test model = models.load model(input model path)
orig output node names = [node.op.name for node in test model.outputs]

[] constant_graph = graph_util.convert_variables_to_constants(
sess,
sess.graph.as_graph_def(),
orig output node names)

Figure 72: Tranformation from Keras to Tensorflow for InceptionV3 (2)

25

Instructions for updating:

Use “tf.compat.vl.graph util.extract sub graph
INFO:tensorflow:Froze 380 variables.
INFO:tensorflow:Converted 380 variables to const ops.

Figure 73: Tranformation from Keras to Tensorflow for InceptionV3 (3)

[1 graph_io.write graph(
constant_graph,
output model dir,
output_model name,
as_text=False)

> 'tf_model/top_layers.iv3.pb’

Figure 74: Tranformation from Keras to Tensorflow for InceptionV3 (4)

° from tensorflow.python.framework import graph util
from tensorflow.python.framework import graph io

input model path = top layers file path
output_model name = "top nodes.mn.pb”
output _model dir = "tf model™

K.set learning_phase(@)
sess = K.get session()

test model = models.load model(input model path)
orig_output node names = [node.op.name for node in test model.outputs]

constant graph = graph util.convert variables to constants(
sess,
sess.graph.as graph def(),
orig_output node names)
graph_io.write graph(
constant graph,
Dutput_model_diPJ
output_model name,
as_text=False)

Figure 75: Tranformation from Keras to Tensorflow for MobileNet (1)

26

Use "tf.compat.vl.graph util.extract sub graph’
INFO:tensorflow:Froze 139 variables.
INFO:tensorflow:Converted 139 variables to const ops.
'tf model/top nodes.mn.pb’

Figure 76: Tranformation from Keras to Tensorflow for MobileNet (2)

input model path = top layers file path
output_model name = "top layers.vggl6.pb”
output_model dir = "tf model™

K.set learning_phase(@)
sess = K.get session()

test model = models.load model(input model path)
orig _output node names = [node.op.name for node in test model.outputs]

Figure 77: Tranformation from Keras to Tensorflow for VGG-16 (1)

constant graph = graph util.convert variables to constants(
sess,
sess.graph.as_graph def(),
orig output node names)
graph io.write graph(
constant_graph,
output model dir,
output model name,
as_text=False)

Figure 78: Tranformation from Keras to Tensorflow for VGG-16 (2)

27

Instructions for updating:

Use ~tf.compat.vl.graph util.extract sub graph’
INFO:tensorflow:Froze 30 variables.
INFO:tensorflow:Converted 3@ variables to const ops.
'tf model/top layers.vggl6.pb'

Figure 79: Tranformation from Keras to Tensorflow for VGG-16 (3)

This step is followed to convert the .hdf5 file format of Keras to .pb file format of Tensor-
Flow. The files for all the three architectures are saved so that it can be used in the
future if a researcher wants to use TensorFlow instead of Keras.

4 Model Analysis

4.1 Loading the models for evaluation

[] from keras.models import load model
model = load model('top layers.iv3.hdf5")

[] from keras.preprocessing.image import ImageDataGenerator
from keras.applications.inception v3 import preprocess input

Figure 80: Load model of InceptionV3 for evaluation

[] #Test DataSet Generator with Augmentation
test generator = ImageDataGenerator(preprocessing function=preprocess_input)

[] test flow = test generator.flow from directory(
'test’,
shuffle=False,
target size=(299, 299),
batch_size = 32

)

> Found 1256 images belonging to 6 classes.

Figure 81: Test dataset generator of InceptionV3 for evaluation

[] import math
import numpy as np

Figure 82: Importing libraries for InceptionV3 for evaluation

28

[] predictions = model.predict generator(
test flow,
verbose=1,
steps=math.ceil(test flow.samples/test flow.batch size))
predicted classes = np.argmax(predictions, axis=1)

E.; 4@!&6 |:==============================] - 3285 SS!‘Step

Figure 83: Predict generator of InceptionV3 for evaluation (1)

[] true_classes = test flow.classes

[] class labels

list(test flow.class indices.keys())

Figure 84: Predict generator of InceptionV3 for evaluation (2)

from keras.models import load model
model = load model(top layers.mn.hdf5")

from keras.preprocessing.image import ImageDataGenerator
from keras.applications.mobilenet import preprocess input

#Test DataSet Generator with Augmentation
test generator = ImageDataGenerator(preprocessing function=preprocess input)
test flow = test generator.flow from directory(

"test’,

shuffle=False,

target size=(224, 224),

batch_size = 32

)

Found 1256 images belonging to 6 classes.

Figure 85: Load model of MobileNet for evaluation

29

[] from keras.models import load model
model = load model('top layers.vggl6e.hdf5")

|] from keras.preprocessing.image import ImageDataGenerator
from keras.applications import vgglé
#Test DataSet Generator with Augmentation
test _generator = ImageDataGenerator(preprocessing function=preprocess _input)
test flow = test generator.flow from directory(
"test’,
shutfle=False,
target size=(224, 224),
batch_size = 32

)

[» Found 1256 1mages belonging to 6 classes.

Figure 86: Load model of VGG-16 for evaluation

Models for all the three architectures, InceptionV3, MobileNet and VGG-16 are loaded.
Predict generator is used to generate predictions and passed onto the dataset which is

further used by the analysis functions. Batch size is set to 32 and Target size of the
images is 299x299 for InceptionV3 and 224x224 for MobileNet and VGG-16.

4.2 Confusion Matrix

[] import matplotlib.pyplot as plt
#matplotlib inline
import scikitplot as skplt

Figure 87: Code for the confusion matrix (1)

[1 [print(k, ":", v) for k,v in enumerate(class_labels)]

: Collared Peccary
: European_Hare

: Ocelot

: Red Deer

! Red Squirrel

: White-nosed Coati

U B W N @

Figure 88: Code for the confusion matrix (2)

30

[] true_map_classes = [class_labels[x] for x in true_classes]

[] predicted map classes = [class labels[x] for x in predicted classes]

Figure 89: Code for the confusion matrix (3)

o skplt.metrics.plot confusion matrix(
true map classes,
predicted map classes,
labels=class labels,

X _tick rotation=0%e,
figsize=(12,12))

Figure 90: Code for the confusion matrix (4)

500

Confusion Matrix

Collared_Peccary 1 8 0 1 0 9 7
400

European_Hare 8 39 15 76 0 3
300

Ocelot 24 0 65 0 3 19

True label

Red_Deer { 2 B 0 0 23
+ 200
Red_Squirrel T 0 0 9 0 60
100
White-nosed_Coati 63 0 0 1 19 177
g g S B E 3
S £ ® a £]
b e! < ! > ~
a, = T n, b —0
B g = b H
El 2 e <
= 8 E|
: s

Predicted label

Figure 91: Confusion Matrix for InceptionV3

31

True label

True label

Confusion Matrix

Collared_Peccary 28 2 3 17 1 10
European_Hare 0 7l T 60 3 0
Ocelot 1 1 80 0 6 13

Red_Deer 0 % 0 0 2
Red_Squirrel 0 o 0 9 16 51
White-nosed_Coati 4 0 10 3 94 149
= v 8 b o b=

£ & 5 8

= g ¥ 7 H

B & 3 g

o E e &

4 z 3

8 :

Predicted label

Figure 92: Confusion Matrix for MobileNet

Confusion Matrix

400

300

+ 200

100

Collared_Peccary 0 0 26 0 28
European_Hare 0 67 68 0 0
Ocelot 0 1] 2 0 37

Red_Deer 0 144 80 5 1
Red_Squirrel 0 6 9 0 0
White-nosed_Coati 0 0 2 0 8
e z B b T

o] v o E

g o) 8 0, 5
a § E 7,

i g g

a s
Predicted label

Figure 93: Confusion Matrix for VGG-16

32

45

White-nosed_Coati

300

250

200

150

100

4.3 Classification Report

[] from sklearn.metrics import classification report

[] report = classification report(
true classes,
predicted classes,
target names=class_labels)

[1 print(report)

Figure 94: Code for the classification report

G precision recall fi1-score support
Collared_Peccary 0.45 0.83 0.58 101
European_Hare 0.54 9.28 0.37 141

Ocelot 0.80 9.59 0.68 111

Red Deer 9.86 ©.90 ©.88 567

Red_Squirrel 0.00 0.00 0.00 76
White-nosed Coati 8.61 0.68 .64 260
accuracy 0.79 1256

macro avg 0.54 9.55 8.52 1256

weighted avg 0.68 0.70 .63 1256

Figure 95: Classification report for InceptionV3

C precision recall fi1-score support
Collared Peccary 0.85 0.28 0.42 101
European_Hare 2.59 9.50 0.54 141

Ocelot 0.64 9.81 9.72 111

Red Deer 9.85 0.88 9.86 567

Red_squirrel 0.12 8.21 .16 76
White-nosed Coati 9.61 09.57 9.59 260
accuracy 0.68 1256

macro avg 0.61 9.54 8.55 1256

weighted avg 09.71 0.68 0.68 1256

Figure 96: Classification report for MobileNet

33

C precision recall fi1-score support

Collared Peccary 9.67 0.32 9.43 101
European_Hare 0.46 0.96 9.62 141
Ocelot 9.61 9.72 9.66 111

Red Deer 0.99 0.66 9.79 567

Red Squirrel 9.05 0.07 .05 76
White-nosed Coati 9.53 0.60 9.57 260
accuracy 9.62 1256

macro avg 0.55 8.55 9.52 1256
weighted avg 0.72 0.62 0.64 1256

Figure 97: Classification report for VGG-16

(Classification report shows the values of precision, recall, -1 score and support for each
of the classes. Also, it shows the overall f-1 score for each of the models.

4.4 Precision-Recall Curve

[1 skplt.metrics.plot precision_recall(
true_classes,
predictions,
figsize=(12,12))

Figure 98: Code for plotting the precision-recall curve

Precision-Recall Curve

08

| M/,

— Precision-recall curve of class 0 (area = 0.510)
—— Precision-recall curve of class 1 (area = 0.640)
—— Precision-recall curve of class 2 (area = 0.701)
=== Precision-recall curve of class 3 {area = 0.961)
Precision-recall curve of class 4 {area =0.083)
Precision-recall curve of class 5 (area = 0.575)
= = micre-average Precision-recall curve (area = 0.761)

06

Precision

04

02

00 T T T T
00 02 04 06 08 10
Recall

Figure 99: Precision-Recall Curve for InceptionV3

34

Precision-Recall Curve

10
08
06
13
S
n
o
o
04
= Precision-recall curve of class 0 (area = 0.492)
02 1 — Pprecision-recall curve of class 1 (area = 0.655)
= Precision-recall curve of class 2 (area = 0.817)
= Precision-recall curve of class 3 (area = 0.965) =
Precision-recall curve of class 4 (area = 0.120) \-“"—-.
Precision-recall curve of class 5 (area = 0.536)
= = micro-average Precision-recall curve (area = 0.750)
0.0

00 02 04 06 08 10
Recall

Figure 100: Precision-Recall Curve for MobileNet

Precision-Recall Curve

= Precision-recall curve of class 0 (area = 0.053)
Precision-recall curve of class 1 (area = 0.399)

— Precision-recall curve of class 2 (area = 0.184)
= Precision-recall curve of class 3 (area = 0.854)

Precision-recall curve of class 4 (area = 0.063)

10

= Precision-recall curve of class 5 (area = 0.481)
= = micro-average Precision-recall curve (area = 0.255)

Precision

Recall

Figure 101: Precision-Recall Curve for VGG-16

Precision-Recall curve for the architectures InceptionV3, MobileNet and VGG-16 are
plotted.

35

4.5 Receiver Operating Characteristic (ROC) Curve

A graphical plot which shows the binary classifier system as the threshold is varied. True
positive rates is plotted against the fraction of False positive rates from the negatives
at different threshold settings. True positive rate (TPR) is called as sensitivity, whereas
False positive rate (FPR) is one minus the true negative rate.

o skplt.metrics.plot roc(
true classes,
predictions,
figsize=(12,12))

Figure 102: Code for plotting the ROC curve

ROC Curves

10

08

=4
=

True Positive Rate

o
o=

s = ROC curve of class 0 (area = 0.94)

’ = ROC curve of class 1 (area = 0.95)
02 /’ = ROC curve of class 2 (area = 0.89)
’ = ROC curve of class 3 (area = 0.97)
4 ROC curve of class 4 (area = 0.58)
7 — ROC curve of class 5 (area = 0.89)
’/ = = micro-average ROC curve (area = 0.91)
,’ = = macro-average ROC curve (area = 0.87)

00 02 04 06 08 10
False Positive Rate

Figure 103: ROC Curve for InceptionV3

36

08

=
o

True Positive Rate

=
£

02

10

08

=
o

True Positive Rate

o
=

0.2

ROC Curves

= ROC curve of class 0 (area = 0.78)
’ = ROC curve of class 1 (area = 0.96)

’J’ ROC curve of class 2 (area = 0.94)
,l ROC curve of class 3 (area = 0.97)
»” ROC curve of class 4 (area = 0.77)
g — ROC curve of class 5 {area = 0.85)
” = = micro-average ROC curve (area = 0.92)
4 = = macro-average ROC curve (area = 0.88)
00 02 04 06 08 10

False Positive Rate

Figure 104: ROC Curve for MobileNet

ROC Curves

= ROC curve of class 0 (area = 0.28)
’ = ROC curve of class 1 {area = 0.87)

— ROC curve of class 2 (area = 0.74)

—— ROC curve of class 3 {area = 0.88)
ROC curve of class 4 (area = 0.56)
— ROC curve of class 5 (area = 0.85)
= = micro-average ROC curve (area = 0.59)

= = macro-average ROC curve (area = 0.70)

00 02 04 06 08 10

False Positive Rate

Figure 105: ROC Curve for VGG-16

ROC curves for InceptionV3, MobileNet and VGG-16 are plotted.

37

5 Environment Setup

Table 1: Hardware

Hardware Specification
Systemm RAM Processor Speed
8 GB | Tntel CORE i5 | 1.80GHz Intel Core
8th Gen 15825017 CPU and
an AMD Radeon 530
GPU

Table 2: Software

Software Specification
[Google Colab, || OpenCV, MatPlot Lib, |
Pythond, NumPy ScikitPlot,
TensorFlow, Pygal
Keras

Figure 106: Environment Setup

References

Chen, G., Han, T. X., He, Z., Kays, R. and Forrester, T. (2014). Deep convolutional neural
network based species recognition for wild animal monitoring, 201/ IEEE International
Conference on Image Processing, ICIP 2014 pp. 858-862.

Chung, C., Patel, S., Lee, R., Fu, L., Reilly, S., Ho, T., Lionetti, J., George, M. D. and
Taylor, P. (2018). Very Deep Convolutional Networks for Large-Scale Image Recogniz-
ation, [Vgg/ 75(6): 398-406.

Gomez Villa, A., Salazar, A. and Vargas, F. (2017). Towards automatic wild animal
monitoring: Identification of animal species in camera-trap images using very deep
convolutional neural networks, Fcological Informatics 41: 24-32.

Hansson, P. (2002). Fracture Analysis of Adhesive Joints Using The Finite Element
Method, Lund Institute of Technology (February).

Nguyen, H., Maclagan, S. J., Nguyen, T. D., Nguyen, T., Flemons, P., Andrews, K.,
Ritchie, E. G. and Phung, D. (2018). Animal recognition and identification with deep
convolutional neural networks for automated wildlife monitoring, Proceedings - 2017
International Conference on Data Science and Advanced Analytics, DSAA 2017 2018-
Janua(Figure 1): 40-49.

Norouzzadeh, M. S., Nguyen, A., Kosmala, M., Swanson, A., Palmer, M., Packer, C. and
Clune, J. (2017). Automatically identifying, counting, and describing wild animals in
camera-trap images with deep learning, (1): 1-10.

Verma, G. K. and Gupta, P. (2018). Proceedings of 2nd International Conference on
Computer Vision & Image Processing, Vol. 704, Springer Singapore.

38

	Introduction
	Exploratory Data Analysis
	Mount the Google Drive
	Importing the libraries
	Distribution of selected classes
	Confirm Folder Structure
	Create Train, Validation and Test folders
	Data Augmentation
	Resizing of images
	Look at Distribution of Selected Classes again

	Deep Learning Architectures
	Data Generator
	Optimization for CPU
	Selecting Hyperparameters
	Training Callbacks
	Evaluate Model
	Write Labels File
	Test Model with Sample Image
	Transform Keras Model to Tensorflow

	Model Analysis
	Loading the models for evaluation
	Confusion Matrix
	Classification Report
	Precision-Recall Curve
	Receiver Operating Characteristic (ROC) Curve

	Environment Setup

