~

"'—-
\ National
College

Ireland

Configuration Manual

MSc Research Project
Data Analytics

Ratna Pillai
Student ID: x18134297

School of Computing
National College of Ireland

Supervisor: Dr. Muhammad Iqbal

National College of Ireland National

Project Submission Sheet Col]ege of
School of Computing Ireland
Student Name: Ratna Pillai
Student ID: x18134297
Programme: Data Analytics
Year: 2019
Module: MSc Research Project
Supervisor: Dr. Muhammad Igbal
Submission Due Date: 12/12/2019
Project Title: Configuration Manual
Word Count: 1836
Page Count: [26]

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature:

Date: 12" December 2019

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). O

Attach a Moodle submission receipt of the online project submission, to | [J
each project (including multiple copies).
You must ensure that you retain a HARD COPY of the project, both for | [
your own reference and in case a project is lost or mislaid. It is not sufficient to keep
a copy on computer.

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only
Signature:

Date:
Penalty Applied (if applicable):

Configuration Manual

Ratna Pillai
x18134297
MSc Research Project in Data Analytics

12th December 2019

1 Introduction

This configuration manual specifies the hardware, software requirements and the pro-
gramming phases of the implementation of the below research project in detail:

“Optimized Predictive Modelling to Unfold the Links of Crime with Edu-
cation, Safety and Climate in Chicago”

2 System Configurations

2.1 Hardware
e Processor: Intel(R) Core(TM) i5-8250U CPU @ 1.60GHz 1.80 GHz

e RAM: 8 GB

System Type: Windows OS, 64-bit

GPU: Intel(R) UHD Graphics Family, 4GB

Storage: 1 TB HDD

2.2 Software

e Microsoft Excel 2016: This spreadsheet tool offered by Microsoft has been used
for storing the downloaded datasets in flat files as csv (comma separated values).

e Anaconda Distribution-Jupyter Notebook: This is an open source software
which has been downloaded from the anaconda distribution website[] This distri-
bution support platforms like jupyter notebooks, spyder, R studio to run machine
learning models using R or python. Exploratory data analysis, manipulation of
data, pre-processing, transformation and visualizations in this study were done us-
ing Python (version 3.6.5) on Jupyter notebooks using this distribution.

thttps:/ /www.anaconda.com /distribution /

e Google Colaboratory: Also called Colab, this is a free cloud service that aids the
users with free GPU services to run machine learning models on an environment
similar to Jupyter notebooks. For this study, colab is used for modelling and hyper
parameter optimization. For enabling GPU settings, from the Runtime menu on
the notebook screen, select change runtime type to GPU as shown in Figure [I}
There is also an additional option to change it to TPU, which is efficient to use in
cases of high data volume.

Notebook settings

Runtime type
Python 3

Hardware accelerato
GPU @

[J omit code cell output when saving this notebook

CAMNCEL SAVE

Figure 1: GPU Settings: Google Colaboratary

e Power BI Desktop: Part of Visualizations were done using Microsoft Power BI
desktop app. This software is downloaded from Microsoft store Website.ﬂ

3 Project Development

Implementation of this research work is entirely done using Python programming. Initial
stages of the research project development includes data pre-processing, merging all the
datasets in consideration, normalization and one hot encoding. Followed by the data
preparation activities, predictive modelling is done using machine learning techniques in
python using the sk-learn (scikit-learn) and keras libraries.

3.1 Data Preparation

Importing of the datasets and data manipulation is done using the pandas (dataframe)
and numpy (arrays) libraries. Following sections detail the pre-processing steps carried
out in each dataset.

3.1.1 Crime Dataset

Pre-processing of crime data primarily involved fixing the missing latitudes and longitudes
as shown in Figure . Block addresses (which was already clean when the data was
downloaded from the source) of the missing location co-ordinates were passed to the

Zhttps://www.microsoft.com /en-in/p/power-bi-desktop/9Intxr16hnwlt?activetab=pivot:overviewtab

wrapper censusbatchgeocoder. This function contacts the geocodes API (Application
Programming Interface) in the US (United States) and returns a dictionary of address
detail for a particular address. This dictionary is converted in to a new dataframe and
the missing values are filled using lookup and fill_na (Not Applicable) functions.

import censusbatchgeocodeﬂ

18 $Extract only null rows for location & zip codes
184 locnull = narcotics[narcotics['Latitude'].isnull{)]
locnull.shape

I
]

city = '"Chicago'

state = "IL'

address = locnull['Block']

address = address.drop_duplicates()

addressdata = pd.DataFrame (address)
addressdata['city"] = city

addressdata['state'] = state
addressdata.columns = ['address','city','"state']
addressdata = addressdata.reset_index()
addressdata['id'] = np.arange(l,len{addressdata)+l)
addressdata = addressdata.drop(columns=["index'])

01 tprint (addressdata)

D2 #Bearrange columns - addressdata
cols = list (addressdata.columns)

04 a, b = cols.index("address'), cols.index("id")

05 cols[k]l, cols[a]l = cols[a]l, colslk]

13 addressdata = addressdata[cols]

)T addressdata.head ()

08 fetchaddress = addressdata.to_dict("records")

i) results = censusbatchgeocoder.geocode (fetchaddress.to dict ("records") ,zipcode=None)

$Lockup for zipcode
narcotics.Zip Codes.replace('NaN', np.Nal, inplace=True)

$Lookup for latitude
4 narcotics.loc[narcotics['Latitude'].isna(), "'Latitude'] = narcotics['"Block'] .map(locdata.LAT)
$Lookup for longitude

Lo el el
onoin

#Fill missing Zipcodes
18 5 = locdata.set index('Block') ["ZipCode']
narcotics['Zip_ Codes'] = narcotics['Zip Codes'].fillna(narcotics['Block'].map(s))

]

Figure 2: Handling of missing latitudes and longitudes in Crime dataset

3.1.2 High Schools Dataset

Four datasets for high school report (academic years 2015-2018) were downloaded from
Chicago data portal and saved as csv (comma separated values) files. Each year school
data was complex enough with more than 150 attributes and selection of relevant attrib-
utes was a challenge. Also, there were missing values which had to be handled as shown
in Figure [3] Since the data was maintained school wise, the median value was used to
replace the missing values in school data.

narcotics.loc[narcotics['Zip Codes'"].isnull(),"Zip Codes'] = narcotics['Block'].map(locdata.ZipCode)

narcotics.loc[narcotics['Longitude’'] .isna(), "Longitude'] = narcotics['Block'] .map(locdata.LON)

24 #2018 edu data

25 edurefined = edueight[['Long Name','Community Area','School Latitude','School Longitude', 'Primary Category',
26 [H'Teacher Attendance ¥ear 1 Pct','Teacher Attendance Year 2 Peot','Student Attendance ¥Year 1 Pet',

28 'Suspensions_Per 100 Students_Year 1 Pct','Suspensions Per 100 Students Year 2 Fct',

29 'Average_Length_Suspension Year 1 Pct','Average_Length Suspension Year 2 Pct', 'Mobility Rate Pct',

[H'Chronic Truancy Pct', 'One Year Dropout Rate ¥ear 1 Pct',

34 #Compute average misconduct to suspensions rate
35 %edarefined['Avg Misconduct Rate'] = (edurefined['Misconducts To Suspensions Year 1 Pct']
+ edurefined['Misconducts_To_Suspensions_Year 2_Pct'])/2

#Compute average suspension rate

[Hedurefined['Avy Suspension Rate'] = (edurefined['Suspensions Per 100 Students ¥Year 1 Pet']
40 #Compute average attendance rate
41 [Hedurefined['Avyg Student Attendance Rate'] = (edurefined['Student Attendance ¥ear 1 Pct']
43 #Compute average teacher attendance rate
44 %edurefined['hvg_Teacher Attendance Rate'] = (edurefined|['Teacher Attendance Year 1 Pct']

HE + edurefined['Teacher Attendance Year 2 Pot'] /2

46 edurefined['Average_Length Suspension Year 1 Pct'] edurefined|['Average_Length Suspension Year 1 Pct'].astype(str)

4 edurefined['Average_Length Suspension Year 2 Pct'] edurefined['Average Length Suspension Year 2 Pct'].astype(str)

B edurefined['Average_Length Suspension Year 1 Pct'] edurefined['Average Length Suspension Year 1 Pct'].str.replace(' days','')

edurefined['Average_Length Suspension Year 2 Pect'] edurefined['Average Length Suspension Year 2 Pct'].str.replace(' days','')

edurefined['Average Length Suspension Year 1 Pect'] edurefined['Average Length Suspension Year 1 Pct'].astype (float)
edurefined['Average Length Suspension Year 2 _Pct'].astype (float)

1 edurefined['Average Length Suspension Year 2 Pect']
2 %Edarefined['Avg_Suspension Days'] = (edurefined['Average Length Suspension Year 2 Pct']
+ edurefined['Average_Length_Suspension Year_ 1 Pct'])/:2
4 edurefined.head()
= #Replace missing values with median
& [Fledurefined['Avg Misconduct Rate'].fillna((edursfined['Avg Misconduct Rate'].median()), inplace=True)

#Convert location c-ordinates to geochash

B1 import pygechash as pgh

B2 edurefined['gechash'] = edurefined.apply(lambda x: pgh.encode(x.5chool Latitude, x.5chool_ Longitude, precision=3), axis=l)
#Group by gechash

54 edu_df = edurefined.groupby('gechash') .mean().reset_index()

Figure 3: High school education data pre-processing

e Firstly, only numerical attributes were considered from each education dataset.
Suspension days column consisted of ”days” keyword appended to number of days
which was cleaned to retain only the number and ”days” keyword was removed.
Then, a check for missing value was done and filled using median value for that
column.

e Since the misconduct rate, suspension rate, enrollment rate, freshman track rate
were all maintained academic year wise (For eg. academic year 2015-16 data was
stored in the file as suspension days year 1 and suspension days year 2), these
columns were combined together using mean of both the columns and stored as
Average Suspension Days.

e A similar approach was followed for the remaining three years data and the latitude
and longitude of each school was converted to geohash using pygeohash library in
python.

e Lastly, all the pre-processed data are merged and saved in a flat file in a csv format.

3.1.3 Locations Dataset

e Locations dataset identified were three namely, police station, speed camera loca-
tions and red light camera locations in Chicago. As these datasets comprised of
latitude and longitude co-ordinates which were primarily required for this research,
presence of missing values were checked as highlighted in Figure [4]

21 #Extract only required columns from police station, red-light camera and speed camera datasets

22 police = police[["LATITT ', "LONGITUDE"]]
red = red[["'LATITUDE',"

speed = speed[[" .

$Check for N& walues in each

red.isna () .sum()

police.isna() .sum(})

speed.isna() .sum()

#Verify the shape of each dataframe

print ({red.shape)

31 print (speed.shape)

32 print (police.shape)

[ST T O T U TR I N |
0 - e,

Tl

Figure 4: Locations dataset - Missing values check

e Nearest distance of police stations, red light cameras and speed cameras was cal-
culated using the user defined distance function as denoted in Figure |5 for each of
the crime instancel

34 #Calculate distance between two latitudes and longitudes
35 import math
36 Hdef distance{origin, destination):

37 latl, lonl = origin
38 lat2, lon2 = destination
39 radius = 6371 # km

40 dlat = math.radians(lat2-latl)

11 dlon = math.radians(lon2-lonl)

42 = a2 = math.zin(dlat/2) * math.=zin(dlat/2) + macth.cosz(math.radians(latl))
43 - * math.cos(math.radians(lat2)) * math.sin(dlon/2Z) * math.sin{dlon/2)
44 c = 2 * math.atan2 (math.sgrt({a), math.sgrt{l-a))

it d
46 return d

round{(radius * c,2)

Figure 5: Function to compute distance between two latitude and longitude co-ordinates

e Compute nearest speed camera distance from crime location For each speed cam-
era location as highlighted in Figure [0 the latitudes and longitudes were used in
the distance computation with the crime location (latitude and longitude). Then
minimum distance for that crime instance was computed using min() function in
python. Similarly, the code was run for the red-light camera locations and police
stations as shown in Figure [7] and Figure

3https://gist.github.com/rochacbruno /2883505

w

w
ey

)

r

w
w

w
Ty

w
w

w
o

w
=

[s VI VI VY PO O VIR VI I VR |
ol W R e O

]

=]

TR T T o T T BT B T T« BT T o B S (RS e R I & VR RS SR S SR 1

U)

-1 o

o

[o T O S T S, B T s Y O R O S

-1 m

o

import datetime
#Calculate distance between two points and return minimum for speed camera locations
distanceall = pd.DataFrame (columns=['id',"distc"','latitude", 'longicuds"])
distancemin = pd.DataFrame (columns=['id","dist","latituds"," itude'])
distanceall['distc'] = None
distancemin['dist'] = None
print (datetime.datetime.now())
for 1 in range(C,len(crime),l):
print (i)

g

for j in range(0,len(speed),l):
= dist = distance((crime.iloc[i]['Latitu
= (speed.iloc[j] ['LATITU

de

'].astype (float) ,crime.iloc[i] ["Ls

£'].asctype(float) ,speed.iloc[j]["

ude'] .astype (float)).,
JDE'] .astype (float)))

lat = crime.iloc[i] ['Latity
lon = crime.iloc[i] ['Long 1
distanceall.loc[]j,"distc']

distanceall.
distanceall.
distanceall.
d = len{distanceall)

= if j = (len{speed)-1}:

r mindist = distanceall['disc'].min()
distancemin.loc[i,"di=st"'] = mindist
distancemin.loc[i,"latitu] = 1lat
distancemin.loc[i," '] = lon

= distancemin.loc[i,"id"']

print (datetime.datetime.now())

Figure 6: Computation of nearest speed camera distance

e Compute nearest Red-light camera distance from crime location

#Calculate distance between two points and return minimum for red-light camera locations

distanceall = pd.DataFrame (columns=["id","dist",'latitude’','longitud="]})
distancemin = pd.DataFrame {columns=["id"',"dist",'latitude’,'longituds"])
distanceall['diz=zt"] = None
distancemin['dist'] = None

print (datetime.datetime.now ()}
for i in range(Q0,len(crime), Ll):

print (i)
for j in range(0,len(speed),l):
= dist = distance(({crime.iloc[i]['Latitude’'].astype(float) ,crime.iloc[i]['Longitude"].astype{float)),

- {red.iloc[j] ["LATITUDE"'] .astype {float) ,,red.iloc[j]['LO
lat = crime.iloc[i]['Latcitu "1
lon = crime.iloc[i] ['Longitude"]
distanceall.loc[j,"dist'] = dist
distanceall.loc[]j, "latitc "1 = lat

TJDE"'] .astype{float))}

distanceall.loc[]j, "] 'l = 1lon
distanceall.loc[j, "1 = i
d = len{distanceall)

= if § == (len(speed)-1}:

- mindist = distanceall['distc'].min(})

distancemin.loc[i,'dist"] = mindist
distancemin.loc[i,"latci

distancemin.loc[i,’ 1
= distancemin.loc[i,"id"
print (datetime.datetime.now())

Figure 7: Computation of nearest red light camera distance

e Compute nearest police station distance from crime location

$Calculate distance between two points an
distanceall = pd.DataFrame (columns=[=
distancemin = pd.DataFrame (columns=['id","d
distanceall['dist'] = Hone
distancemin['di=t'] = None
print (datetime.datetime.now ())
for 1 in range(0,len{crime),l}):

print (i)

for j in range(0,len(speed), l):

= dist = distance({crime.iloc[i]['Lat "]l.astype{float) ,crime.iloc[i] ["Lon

B (police.iloc[J] ["LATITUDE"].astype (float) police.iloc[j]['LC

lat = crime.iloc[i]['L

lon = crime.iloc[i] [
distanceall.loc[j, "d = dist

distanceall.loc[]j," 1

distanceall.loc[j, "

distanceall.loc[j, "id

d = len{distanceall)

= if § == (len(speed)-1):

- mindist = distanceall['di=c'].min()
distancemin.loc[i,'dist'] = mindist
distancemin.loc[i, 'l 1='] = lat
distancemin.loc[i,' ='] = lon

= distancemin.loc[i, 'id

print (datetime.datetime.now ())

Figure 8: Computation of nearest speed camera distance

3.1.4 Weather Dataset

'].astype (float)),
IUDE'] .astype (float)))

Daily weather data for the period 2015-2018 was scraped using (API) Application Pro-
gramming Interface access from NCEI (formerly known as NOAA) portal. The data was
scraped in 3 steps as followed by many data scientists as outlined in the medium porta]ﬁ

e Gained access to the API using token for authorization from NCEI web token site
and accessed in python using requests library as demonstrated in Figure [11)°)

NATIONAL OCEANIC AND ATMOSPH IC ADMINISTRATION

@ NATIONAL CENTERS FOR
V ENVIRONMENTAL INFORMATION

Home Climate Information Data Access Customer Support Contact Abo

Home > Climate Data Online > CDO Web Services Tokens [[] Datase

B Request Web Services Token

To gain access to NCREG CDO Web Services, register with your email address. An
email will be sent with a unique token which will allow access RESTful services.
For more information about CDO Web Services read the documentation for (RO
Web Services guide.

Please enter your email address

Figure 9: Request the API access token

4https:/ /towardsdatascience.com /getting-weather-data-in-3-easy-steps-8dc10cc5c859
Shttps:/ /www.ncdc.noaa.gov/cdo-web /token

#neesded to maks web reguests

import requests

#store the data we get as a dataframe
import pandas as pd

#convert the response as a strcouctured json

I
[T S P T O B S

import json
#mathematical operations on lists

I I
=1 &

import numpy as np
#par=ze the datetimes we get from NOLRL
from datetime import datetime

$add the access token vou got from HOAR
Token = '"XnvxangwtzCGLacpxEsuVinhUwMHhZkCti!'
#Long Beach Airport station
station id = 'GHCHD:USWOOOS4846

=
[T]

| T S T % T B

(LI O I P

Figure 10: API settings to access weather data

e Identified the relevant weather station for required data collection from the site[f]

B Data Tools: Find a Station

Retrieve weather records from observing stations by entering the desired location, data set, data range, and datz
can be specified as city, county, state, country, or ZIP code.

Enter Location Round
Lake Beach Waukegan
Chicago, IL, USA Grayslake (5]

Volo

x
] STATION DETAILS
Select Dataset

Name| CHICAGO OHARE

Daily Summaries v INTERNATIONAL AIRPORT, IL
us
Select Date Range a ID| GHCND:USW00094846
] Lat/Lon 41.96019, -87.93162
2015-01-01 to 2018-12-31 L 1
Barring
PERIOD OF RECORD
Data Categories | Start/End 1946-10-09 ta 2019-12-05
- Hoff | Coverage NN 5%
Sky cover & clouds Esti
- FULL DETAILS | ADD TO CART Evanston
]
Sunshine - \?iﬁ‘a‘g' - -
E Rosemont
Water g i e

Figure 11: Find the relevant station

e With the help of python requests object, windspeed (wind), average temperat-
ure(avg_temp) and precipitation (prep) values for three years on a daily basis was
scraped. For each of the weather attribute, the datatype id was required to be
modified in the URL of the request command.

e Average temperature data was fetched and stored in a dataframe. Refer Figure
for the python code.

Shttps://www.ncde.noaa.gov/cdo-web/datatools/findstation

#initialize lists to store data - Average tenperature (TAVG)
dates_temp = []
dates_prcp = []
temps = []
prcp = [1
$for =ach year from 2015-2018
Efor yvear in range(2015, 2019):

w

32 year = str(year)
33 print("+year)
34 #make the api call
35 [H r = reguests.get('https://www.ncdc.noaa.gov/cdo-web/api/v2/data?datasetid=GHCND
36 &datatypeid=TAVGE&limit=1000
37 &stationid=GHCHD:USWOO002312S8&startdate=" r+'-01-01
38 - &enddate="+ < I {'token' :Token})
i |#load the api response as a json
40 d = json.loads(r.text)
41 #get all items in the response which are average temperature readings
42 avg_temps = [item for item in d[':c ts'] if item['datat 1="
43 $get the date field from all average temperature readings
44 dates_temp += [item['dzate'] for item in avg temps]
I #get the actual average temperature from all average temperature readings
46 = temps += [item[’ lue'] for item in avg_temps]
47 #initialize dataframe
48 df_temp = pd.DataFrame()
) #populate date and average temperature fields (cast string date to datetime and convert temperature from tenths of Celsius to Fahrenh
L=14] df temp['date'] = [datetime.strptime(d, "$Y-im-3dT3H:%M:%5") for d in dates temp]
51 df temp[’ = [float(v)/fl0.0%1.3 + 32 for v in temps]
Figure 12: Average temperature data scraping
e Average windspeed was fetched and stored in a dataframe.Refer Figure [L3] for the
python code.
g2 #initialize lists to store data — Average Wind Speed (AWND)
83 dates_temp = []
g4 dates_prcp = []
85 temps = []
8 prcp = []

-1 o

#for each year from 2015-2018
[Flfor year in range (2013, 201%9):

year = str(year)
rking on "+year)
$make the api call
= r = reguests.get('https://www.ncdc.noaa.gov/cdo-web/api/v2/data?datasetid=GHCND
&datatypeld=AWND&limit=1000&stationid=GHCHD:USW00023129
E &startdate="+ 2T+ ' —01l-01l&enddate="+y +'-12-31", {"token':Token})

#load the api response as a json

d = json.loads(r.text)

#get 2ll items in the response which are average temperature readings
avg_temps = [item for item in d[1ts"] if item['dataty "]=="RWHD"]
#get the date field from all average temperature readings

dates_temp += [item['date'] for item in avg_ temps]

#get the actual average temperature from all average temperature readings
= temps 4= [item['w.
103 #initialize dataframe
104 df wind = pd.DataFrame ()

1 #populate date and average temperature fields (cast string date to datetime and convert temperature from tenths of Celsius to Fahrenl
df wind[’' ='] = [datetime.strptime(d, " Y-Im-3dTEH:3M:%5") for d in dates_temp]

df_wind['wind'] = [float(v)/10.0%L.3 + 32 for v in temps]

'] for item in avg_temps]

Figure 13: Average windspeed data scraping

e Precipitation was fetched and stored in a dataframe.Refer Figure [14] for the python
code.

#initialize lists to store data - Precipitation (PRCE)

56 dates_temp = []
57 dates_prcp = [1]
& temps = []
i prcp = [1]
0 #for each year from 2015-2018 ...
61 Elfor year in range (2013, 2019):
62 vear = str(year)
63 print ("working on vear '+year)
64 #make the api call
65 [H r = requests.get ('https://www.ncdec.noaa.gov/cdo—web/api/vi/data?datasetid=CHCHND
66 &datatypeid=PRCP&limit=1000&stationid=GHCND :USW00023129
67 - &startdate='"+year+'-01-01l&enddate="+year+'-12-31', headers={'"token':Token})
68 #load the api response as a json
&9 d = json.loads(r.text)
70 #get all items in the response which are average temperature readings
71 avg_temps = [item for item in d['resulcs'] if item['datactyps']=="FRCP']
T2 #get the date field from all average temperature readings
73 dates_temp += [item['date’] for item in avg_temps]
T4 #get the actual average temperature from all average temperature readings

= = temps += [item['wvalu='] for item in avg temps]

3 $initialize dataframe

df prcp = pd.DataFrame ()

l#pop'.:llat,e date and average temperature fields (cast string date to datetime and convert temperature from tenths of Celsius to Fahrent
S df_prcp['date'] = [datetime.strptime(d, "F7-Im-%d %¥5") for d in dates_temp]

0 df_prcpl'p [float(v)/l0.0%1.3 + 32 for v in temps]

Figure 14: Average precipitation data scraping

e After scraping the required weather data in pandas dataframe, these dataframes
were merged to form one dataframe and finally saved to csv. Also, the date para-
meter was split as Year, Month and Day for merging with crime data.

109 $Merge all weather scrapes
110 prfint (df_temp.shape)

111 print (df prcp.shape)

112 print (df wind.shape)

113 df prcp.head()

11 weather = df temp.merge(df prcp,on=['da
weather = weather.merge (df wind,on=["da
weather head /()

#5plit date column to year, month and day
weather['date'] = pd.to_datetime (weather['date'])
weather[' '] = weather['date'].dt.month
weather[' = "].dc.day
weather['Y = weather['d ='].dt.yeax
weather = weather.drop(columns=["d "1
123 weather.to csv('C:\Data Rnalytic 3

Figure 15: Merge average temperature, precipitation and average wind speed data

3.1.5 Data Merging

All the location co-ordinates present in each dataset in the form of latitude and longitude
were converted to geohash. Also, the date parameter was split in to Year, Month and Day
in each dataset. Based on the relevant attribute, each dataset was grouped by geohash
and merged with crime.

e Merge Distances
The nearest distance computed for each crime instance was merged with crime
dataset as shown in Figure

10

| ST T VT S B S 6

-] &

A

EIE]

(oI s VR s VI = VT o T e

w

[] (]

[¥)
e I

w

N b L b

w

L
oLy B O

(")
wn

ol W kOO

o

=]

#Convert latitude & longitude to gechash

import pygechash as pgh

final['geohash'] = final.apply(lambda x: pgh.encode(x.Latitude, x.Longitude, precision=5), axis=l)
dist = final.copv()
final.shape

$Extract distances
distance = dist[['gechash',
distance = distance.groupbv(['c
distance.head()

distance = distance.round(2)

iceDist', "HearestSpeedCamDist', "HearestRedCamDist']]
sh']) .mean() .reset_index()

#5elect required columns from crime dataset

hs = final[['gechash','Primary Type','Year','Month', 'Day', 'WEEKDAY', "Holiday', 'Time']]

hs.shape

#compute the crime rate for a gechash a latitude and longitude belongs to on a monthly basis

school = hs.groupby(['gechash', "Primary Type','Year', 'Month', 'WEEKDAY', 'Holiday','Time']).size() .reset_inde

school.head ()

gchoolrate df = school.rename (columns={0:'crimescount'})
schoolrate_df.head()

schoolrate df = schoolrate df.round(2) #$Rounding to nearest place
#Merge distance data with crime

schoolrate df = schoolrate df.merge(distance,on=['gechash'], how="1left"})
schoolrate_df.shape #34440,11

schoolrate df.columns

schoolrate_df.isna() .sum()

schoolrate_df

Figure 16: Merge nearest distances with crime data

e Merge Red-light and speed camera count
In addition to nearest distance computation, the count of red light and speed cam-
eras in a geohash was done by grouping the location co-ordinates by geohash and
merged with crime using a left join as shown in Figure Left join was used
because there is a possibility of a crime geohash presence with no cameras.

#Merge speed cams and red cams in that gechash area

scamslocs = pd.read csv('C:/Da

rcamlocs = pd.read csv('C:/

scamslocs.head()

rcamlocs.head()

#Convert location co-ordinates to gechash

scamslocs['gechash'] = scamslocs.apply(lambda x: pgh.encode(x.LATITUDE, x.LONGITUDE, precision=:I),
rcamlocs['cs
#Find the count red light cameras and speed cameras in a geochash
slocs = scamslocs.groupby (['gschash']).size().reset_index()
rlocs = rcamlocs.groupby(['gechash']).size().reset_index()
#Renams columns

slocs = slocs.rename (columns={0:"'
rlocs = rlocs.rename (columns={0: 'K
$Merge with crime data

hs = schoolrate df.merge(slocs,on=["'geochash'] how="left")
hs = hs.merge{rlocs,on=["gechash'] how="1lsftL"})

hs.fillna(0,inplace = True) #Fill Speedcams and RedCams with O in case of no cam locations in that area

hs.shape
hs.Year.value_counts()
h=s.head()

Figure 17: Merge safety camera counts with crime data

e Merge high school
As shown in the Figure pre-processed high school data was merged with crime

11

n'] = rcamlocs.applyv(lambda x: pgh.encode (x.LATITUDE, x.LONGITUDE, precision=5), axis=l

(NN

|5 T G T T - I (S ST O8]
[T G T O R % Y U T O 0%]

=1 o

C I N T T O R T O T X T O X VU R

13

[Y S

data based on the year and geohash attributes.

#Merge education data
edu = pd.read csv('C:/Data Analytics/Sem 3/Dataset/LocationData/Distances/EducationMerged.csv')
edu.head ()
list (edu.columns)
#Calculate average columns from Yearl and Year 2 data for each academic year
) 1 Poct']l + edu['Cne_Year |

edu['Avy ge_Pe _F
#5elect only required columns
education=edu[['gechash', 'Year', 'Avg Misco

$Merge with crime data
data = hs.merge (education,on=["'gechash', 'Year'] how="1=fc")
data.shape

Figure 18: Merge high school factors with crime data

Merge Weather

Weather data was merged with crime based on the Year, month and Day attribute

as denoted in Figure |19

$Merge Weather Data

weather = pd.read csv({'C:\Data Analytics\Sem 3\Dataset\LocationData\Distances\w

weather.head ()
#Group by vear and month

weatherm = weather.groupby(['Yeaxr’, "Month']) .mean() .reset_index()
#Merge with the crime data
alldata = data.merge (weatherm,on=["'Year', '"Month'] ,how="1=ft"})

Figure 19: Merge weather attributes with crime data

highlighted in Figure

228 #Check for NA values

228 alldata.izna() .sum()

230 alldata.Year.value counts ()

231 alldata=alldata.dropna()

232 alldata.Year.valus_counts ()

233 alldata.shape #33565,28 LAfter merging all data

Figure 20: Merged Data - Check for NA values

12

m

i}

m

e After merging, there were around 800 missing values which were dropped. The
final dataset after merging activity consists of 33565 rows and 28 attributes as

e The dataset after merging, can be described as represented in the below Table

i1}

i

[¥]

(1]

Table 1: Crime Prediction Dataset Description

Attribute Code Description Domain
crimescount Count of crime incidents re- | 1 - 130
ported
Primaryrype Type of crime Assault, Narcotics, Hom-
icide and Violations
Year Year 2015 - 2018 years
Month Month 1 - 12 months
geohash Representation of nearby || Alphanumeric value with
locations grouped as one | precision 5
area
WEEKDAY Flag indicating whether the || 0 or 1
day is a weekday or not
Holiday Flag indicating whether the || 0 or 1
day is a holiday or not
Time Time of the day Morning, Afternoon, Even-
ing or Night
NearestPoliceDist Distance in kilometers 0.78 - 6.33
NearestRedCamDist Distance in kilometers 0.51-8.04
RedCamCount Distance in kilometers 0-12
Avg_Student_Attendance_Rate Attendance rate of student | 70% - 96%
Avg_Teacher_Attendance_Rate Attendance rate of teacher | 89% - 95%
Mobility_Rate_Pct Mobility rate 2% - 3%
SchoolCount count of schools 1-48
wind average speed of wind in | 34 - 37
km /hr
prep precipitation in mm 32 - 45
avgTemp temperature in celsius de- | 55 - 77
grees

3.2 Feature Engineering

Effective feature engineering before implementing the models on the data help improve

the performance of the models and reduce any possible (Bocca et al.; 2016).

These

engineering techniques were done in three parts namely, one hot encoding to treat the
categorical variables, normalization to treat the numerical features and lastly feature

selection to select the best features.

3.2.1 One Hot Encoding

Using the pre-processing library for one hot encoding as well as pandas get_dummies()
in python as shown in Figure 1] the categorical variables were transformed to binary

encoded attributes.

13

best rf dummies =
best_rf dummies.head()

Lo
oo

pd.get_dummies (best_rf)

columns

Figure 21: One hot encoding using getyummies()

Another way to one-hot encode which gives the output in same format as One Hot
encoder (OHE) library as shown in Figure 22}

42 #0ne hot encoding for only categorical
43 ohe = CneHotEncoder (sparse=False)
best.select_dtypes('ockbisct’)
cat.columns
ohe.fit transform(cat[columns to encode])

columns

44 cat =
45 columns to encode =
46 encoded columns =

Figure 22: One hot encoding using OHE library

Encoded features expressed as binary form (0 and 1) attributes are shown in the below
Figure [23}

narcotics_dumnies = pd.get_dummies(narcotics)
narcotics_dummies.head() #95 columns

geohash_dp3sy geohash_dp3sz geohash_dp3ts5 geohash_dp3t7 geohash_dp3td geohash_dp3te geohash dp3tf geohash dp3tg geohash dp3th geohash dp3tj geohash_dp3tk geohash_dp3tm
1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0

0 0 0

0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0

1
4
4
T
4
4 0 0 0 0

1
1
1
1

Figure 23: Features after One hot encoding

3.2.2 Normalization

Normalization has been done using the MinMaxScalar library in python as highlighted
in the Figure [24]

E2C o] 5 1+ - P
FoCalling only on numerical Ccolumns

I

numericols = ["floated4', "inte4']

numerickest = kest.select_dtypes (include=numericols)

from sklearn.preprocessing import StandardScaler,OmeHotEncoder
40 s2c = MinMaxScaler ()

4] NUM = sc.fit transform(numsericbhest)

[Ta s]

Figure 24: Feature scaling using MinMaXScaler library

3.3 Feature Selection

Feature selection has been done using Recursive feature elimination (RFE) combined
with random forest which has been followed in machine learning implementations in the
past (Granitto et al.; |2006). This technique ranks the features by its importance and
elimination is done by RFE as shown in the code using ranks function in Figure [25] and

14

rfe-rf models as shown in the Figure A function was defined to compute the ranks
using RF Eﬂ

from sklearn.preprocessing import MinMaxScaler

ranks = {}
Create our function which stores the feature rankings to the ranks dictionary
def ranking(ranks, names, order=1l}):

minmax = MinMaxScaler()

ranks = minmax.fit transform{order¥np.array([ranks]).T}).T[O]
ranks = map (lambda x: round(x,2), ranks)

return dict(zip(names, ranks))

Figure 25: Ranks Function for RFE-RF features

3.3.1 Top 20 features with One Hot Encoding

Including the categorical features encoded as binary values, a round of feature selection
was performed and the ranks are listed as shown in the Figure

Construct our Random Forest Regression model
from sklearn.feature selection import RFE

rr = RandomForestRegressor ()

rr,.fic(X,Y)

#3top the search when only the last feature is left

rfe = RFE(rr, n_ features to select=20, wverbose =3)

rfe.fic(X,¥)
261 ranks["REFE_pub"] = ranking(listc(map(float, rfe.ranking }), colnames, order=-1)
262 print (ranks)

Figure 26: Code for fetching top 20 features using RFE-RF

ranks

-

'RFE_pub': {"Avg_CollegeEnrollment_Rate’: ©.93,
"Avg College_Persistence_Rate™: 1.8,
'Avg Dropout_Rate': @.91,

'Avg FreshmanTrack_Rate': @.92,
‘Avg Misconduct_Rate': @.89,
‘Avg_Student_Attendance_Rate": 1.8,
'Avg Suspension_Days': 1.4,
"Avg_Suspension_Rate': 1.0,
'Avg_Teacher_Attendance_Rate': 8.93,
"Holiday False': @.09,
"Holiday_True': 1.4,
"Mobility Rate Pct': 1.8,

"Month_1': @.786,

'Month_l@': @.63,

"Month_11': @.73,

"Month_12": 1.@,

"Month_2': @.88,

‘Month_3': 8.8,

Figure 27: Ranks of top 20 features

3.3.2 Top 10 numerical features

With RFE-RF (Recursive feature elimination-random forest) method, top 10 numerical
features were extracted and their ranks are listed in Figure and for the code, refer

"https://www.kaggle.com /arthurtok /feature-ranking-rfe-random-forest-linear-models

15

Figure [28|

Construct our Random Forest Regression model
from sklearn.feature selection import RFE
rr = RandomForestRegressor ()

rr.fic(X,Y)

#stop the search when only the last feature is
rfe = RFE(rr, n features_to_select=10, wverbose
rfe.fit(X,Y)

ranks["REFE_pub"] = ranking(list(map(float, rfe.
ranks

left

=3}

ranking)}, colnames, order=-1)

Figure 28: Code for fetching top 10 features using RFE-RF

ranks

{'RFE_pub': {'Avg_CollegeEnrollment_Rate’: @.67,

"Avg_College Persistence_Rate': 0.44,
'Avg_Dropout_Rate': 9.11,
‘Avg_FreshmanTrack_Rate': @.56,
"Avg Misconduct Rate': 8.89,
‘Avg_Student_Attendance_Rate’: 1.8,
"Avg_Suspension_Days': @.78,
"Avg_Suspension_Rate': @.33,
‘Avg_Teacher_Attendance_Rate’: 1.8,
"Mobility Rate Pct': 1.8,
"MearestPoliceDist': 1.8,
"MearestRedCamDist': 1.8,
'NearestSpeedCamDist’: @.22,
"RedCamCount’': 1.@,

"SchoolCount': 1.8,
'SpeedCamCount’: @.@,

"avgTemp': 1.8,

‘prept: 1.8,

‘wind': 1.@}}

Figure 29: Ranks of top 10 features

3.4 Modelling

Modelling was done using the python scikit libraries for machine learning. XGBoost
regressor, random forest regressor, keras, tensorflow and linear regression libraries were

used for modelling.

3.4.1 Data Split

The models have been tested for both the versions of the split i.e. with train-test (80:20)
as well as cross validation (k folds:3-30) as highlighted in the Figure . Cross valid-
ation techniques have enabled efficient sampling of data for the models and eventually

generating better results (Ingilevich and Ivanov; 2018) and [Kadar| (2019).

16

Model Data Cross

(6 datasets) Validation

|| Tran

| (80%) | | e

, ,
Test
(20%)

Figure 30: Split of Data

Train test split and k fold libraries were from scikit learn model selection for this task,

refer Figure

best_rf dummies = pd.get dummies (best_rf)
best_rf dummies.head() #86& columns
#list(best_rf_dunmies.ccluﬂns] (Big output cell)
model_data = best_rf dummies.values

#scparate target and independent wvariables

X = model datal[:,1:]

Y = model datal:,0]

$#5et seed

np.random. seed{30)

#5plit train and test data in 80:20 ratio

Figure 31: Code to split data

3.4.2 Random Forest

340 X train, X test, ¥ traim, ¥ test = train test_ splic(X, ¥, test_size=0.20, random state=20)

Random forest was applied with default parameters, optimized parameters and finally

optimized parameters with 10 fold cross validation.

e Refer the code shown in Figure |32] for random forest with default parameters

17

w
e

w

i
n

w

w
moon
=]

"

w
[]
oo

"

w
o

w
o

w
o

w
o
S R

w
o

w
o
(g}

W
oo
e I

w
m

[
T e

=1 W

w

oM
o
[T]

o
tn non
-] @ o

o

L TR Y T TR T T T N & T T A T T T R & Y T 1
e I L I e e I = T T TN o T T T T o T T o Ay
[Y S PR A T S I S s TR R N (Y TR L T A T B e T T TR 31

oy

clf = RandomForestRegressor{n estimators=10, random state=20, n jobs=-1})
¥ Train the classifier

clf.fic (¥ traim, ¥ train)

$Training model accuracy

trainac = clf.predict(X traim)

print {("Train accuracy details of Random Forest™)

print ("EMSE is=",np.sgrt(mean_ sguared error (Y train,trainac)))
print ("REZ ",r2 score(Y train, trainac))

print ("MRE ", mean aksclute error(Y_traim, trainac))

print ("HMSE " ,mean sqguared error (¥ train,trainac))

#Testing model accuracy

y_pred = clf.predict(X_test)

$ View The RAccuracy Of best features (20 Features) Model
print(clf.score (X tesc,¥ _test))

print ('Mean Absolute Error:', metrics.mean absolute error(Y test, vy pred))
print ('Mean Squared r:', metrics.mean sguared error (Y _tesc, y pred))
print {('REoot Mean Sguare rror:', np.sgrt({metrics.mean squared error(Y _test, y pred)))

Figure 32: Random Forest with default parameters

e Refer the code shown in Figure |33| for random forest with optimized parameters

tuned model = RandomForestRegresscor (bootstrap= True,
max depth= 50,
max features= ‘autc’,

min samnples leaf= 4,

min_ samples split= 5,

n_estimators= 377, random state = Z0,n jobs=-1)
$Fit the tuned modesl

tuned model.fic(X train, ¥ train)

trainac = tuned model.predict (X_train)

$#Train accuracy

print("Train accuracy details on the tuned of Random Forest™)
print ("EM i=z",np.sgrt(mean_ squared error(Y_train,trainac)))
print ("E2 ",r2 score(¥ _train, trainac))

print (" ", mean abksolute error(Y train, trainac))

print ("MSE " ,mean squared error (Y train,trainac))

$Predict crime count

¥ _pred = tuned model.predico(X test)

$# View The Lccuracy Of best features (86 Features) Model with tuned parameters
tuned model.score (X test,Y test)

print ("EMSE is",np.sgrt(mean sguared error(¥_test,y pred)))

print ("EZ ",r2 score(¥_test, y_pred))

print ("MAE ", mean aksolute error(Y test, ¥ _pred))

print ("HMSE ",mean squared error (Y test,y pred))

=1

Figure 33: Random Forest - optimized model fit

e Random Forest with 10 fold cross validation

18

$Random Forest
kfold = model selection.KFold(n splits=10, random state=200,shuffle=True)

model kfoldrand = RandomForestRegressor (n_estimators=10, random state=20, n_jobs=-1)
results_kfoldrand = model selection.cross_wval score(model kfoldrand, X, ¥, cwv=kfold)
print ("Rccuracy: %.2£%%" % (results kfoldrand.mean()*100.0))
for train index, test_index in kfold.split(X):

print("TERIN:", train index, "TEST:", test_index)

X trainkf, X testkf = X[train index], X[test_index]
y_trainkf, y testkf = Y[train index], Y[test_index]
clfrfren = model kfoldrand.fit(X trainkf, y trainkf)
print ("R ral sum of sgqu Z: F.2L"
% np.mean | (model kfoldrand.predict (X testkf) - y_testkf) **% 2}
#Explained wariance score: 1 is perfect prediction

kfoldrf
print ("E

model kfoldrand.predict (X testkf)
is",np.sgrt(mean squared error(y testkf, kfoldrf)))
",r2_ score(y_testkf, kfoldrf))

", mean absolute error(y testkf, kfoldrf))

",mean_ sguared error(y_ testkf, kfoldrf))

vy
iy

Figure 34: Random Forest - 10 fold cross validation

3.4.3 XGBoost

print('Explained Variance score: %.2L' % model kfoldrand.score (X testkL, vy testkf))

XGBoost was also applied with default parameters, optimized parameters and finally
optimized parameters with 10 fold cross validation as shown in the codes in Figure

Figure [36| and Figure

e XGBoost with default parameters

#XGBoost

xgk = xgbo.XGBRegressor(n_esstimators=100, learning rate=0.1)
xgk.fic(X_train,¥Y train)

predictions = xgb.predict(X_test)

print("Variance Score i=", explained wvariance score(predictions,¥ test))
print("EZ ",r2 score(Y test, predictions))
print("” ", mean absolute error (¥ test, predictions))
print("” ",mean_squared error(Y_test,predictions))
print("” E 1s",np.sqgrt(mean_ sguared error (Y _test,predictions)))
trainac = xgbh.predict(X_train)
print("Train accuracy details on the tuned - XGBoost™)
print (" i1=",np.sgrt{mean sguared error (Y train,trainac)})
",r2 score(Y train, trainac))

", mean absolute error (¥ train, trainac))
T.mean squared error(¥Y train,trainac))

Figure 35: XGBoost - default parameters

e XGBoost with Optimized parameters

19

—

S [S D I D I D I,
Lo o T T T T Y Y 1

-]

[

=] M

(Y U 5 T P |

oy n

-]

R +]

$#Tuned model for XGB
Eﬂtuned_mﬂdelxgb = xXgbo.XGBRegressor (bootstrap= True,
colsample bytree= 1.0,
gamma= 1.5,
learning rate= 0.05,
max depth= 2,
min child weight= 10,
n_estimators = 200,
- subsample= 0.75, random state = Z0,n joks=-1)

tuned modelxgh.fic(¥X train, ¥ train)

trainac = tuned modelxgk.predict(X train)

print{"Train accuracy details on the tuned - XGBoost™)

print ("EMSE is",np.sgrt(mean squared error (¥ train,trainac)})
print("EZ ",r2 score(¥_train, trainac))

print ("MRE ", mean absclute error (Y _train, trainac))

print ("MSE " ,mean squared error(Y_ train,trainac))

¥ _pred = tuned modelxgb.predict(X_test)

$# View The LAccuracy Of best features (86 Features) Model with tuned paramseters
tuned modelxgh.score (X _test,¥Y test)

print ("EMSE is",np.sgrt({mean squared error(Y_test,y pred)))

print("REZ ",r2 score(¥_test, ¥ _pred))

print ("MRE ", mean absolute error(Y_test, ¥y _pred))

print ("MSE ",mean squared errcor(Y¥_test,y pred))

Figure 36: XGBoost with optimized parameters

e XGBoost with tuning and 10 fold cross validation

20

=]

#kfold on xgboost tuned

from sklearn.model selection import cross wal sScore

Efold = model selection.KFold(n splits=10, random state=200,shuffle=Trune)
Eﬂmndel_kfuldxgb = xgbo.XGEBRegressor (bootstrap= True,
colsample bytree= 1.0,

S T [|
[40 Y =TS B % B S

-]

gamma= 1.5,

e I

learning rate= 0.05,
max depth= 3,
min child weight= 10,

0 o

n_estimators = 200,
- Subsample= 0.75, random state = 20,n jobs=-1)

results_kfoldxgh = cross_wval score(model kfoldxghk, X, ¥, cv=kfold)
print ("Accuracy: %.Z£%%" % (results kfoldxgb.mean()*100.0}))

for train index, test_index in kfold.split(X):
print ("TELAIN:", train index, "TEST:", test_index)
X trainkf, X testkf = X[train index], X[test_ index]
¥_trainkf, y testkf = ¥Y[train_ index], Y[test_index]
clfxgh = model kfoldxgh.fit(X trainkf, y trainkf)
print{"Eesidual sum of sguares: %.2f"
% np.mean((model kfoldxgbh.predict (X testkf) - y testkf) *% 2}
$Explained wvariance score: 1 is perfect prediction
print('Variance score: %.2f' % model kfoldxgh.score (X _testkf, y testkf))
kfoldzxgh = model kfoldxgb.predict (X testkf)
print ("EMSE isz",np.sgrt(mean squared error(y_testkf, kfoldzgk)))
print("EZ ",r2 score(y testkf, kfold=gk))
print ("MAE ", mean absolute error(y_testkf, kfoldxgb))
07 print ("MSE " ,mean squared error(y testkf, kfoldxgb))
#Train accuracy
trainac = model kfoldxgbk.predict (X trainkf)
print ("EMSE iz",np.sqgrt(mean sgquared error(y_trainkf,traimac)))
print("EZ ",r2 score(y_trainkf, trainac))
", mean absolute error(y trainkf, trainac))
print ("MSE ",mean squared error(y_trainkf,trainac))

Nl L B D

=1 M

W o

-]

R ST < S TRV o T Y T O ¥ O W S« Y e O Y = O T e = Y

Mok WMo

[S = I =
SR Y o R)

CO 00 0 €0 o0 £0 00 0 00 C0 C0 00 0 0
1

g B3 =

Figure 37: XGBoost with optimized parameters and 10 fold cross validation

3.4.4 Artificial Neural Network (ANN)
e Refer the code in Figure |38| for implementing ANN without hidden layer

21

e e e
T TS R

&
&
&
&
&
=

1 o

#Define ann layers

model = Seguential()

model.add(Dense (123, input dim=X train.shape[l], kernel initializer='normal', activation='relu'))
model.add(Dense (1, kernel initializer='normal'})

model.compile (loss="mse', optimizer="rmsprop', metrics=['ms="]})

model . summary ()

$#fit the ann model

history = model.fit (X train, ¥ train, batch size=€4, epochs=50, verbose=2, wvalidation split=.2)
#plot loss vs. epoch curve

plt.figure(figsize={10,5))

plt.plot (history.history['] marker="'co' ,color="orange

'
loss'"] ,marker=

plt.plot {history.histoxry['v "t color="klu
plt.title{'Valuse Loss'")

plt.vlakel (" 1l: ")

plt.xlabel ("epoch')

plt.legend(["train', 'test'], loc='upper right')

plt.show(})

$plot the train vs test mse
plt.figure (figsize=(10,5))
plt.plot (history.history["'mesan
plt.plot {history.history['v
plt.title{'Valn
plt.ylabel ('
plt.xlabel('=
plt.legend(["tz
plt.show()
#predict test data with ann

pred crimes = model.predict (X test)

mse_pred score = metrics.mean sqguared error(pred crimes, y test)
print{'mse_pred sc
rmse_pred score = np.sgrt(mse_pred score)

r'],marker="o",color="r=d")

'] ;marker=""",color = 'gresn')

in', 'test'], loc='upper right')

2 {}'.format (mse_pred_ score))

print('rmse pred score {}'.format(rmse pred score))

r2 pred score = r2 score(y_test, pred crimes, multioutput="uniform average')
print{'rZ pred score - Coefficient of Determination {}'.format(r2 pred score})
print ("MRE ", mean absolute error(y test, pred_cximes)”

Figure 38: ANN model with one layer

e Refer the code in Figure [39 for implementing ANN with multiple layers

22

143 model = Sequential ()

144 model.add(Dense (123, input_dim=X train.shape[l], kernel initializer='normal', activation='relu'})
145 model.add(Dense (64, kernel initializer='he uniform', activation='r

146 model.add(Dense (32, kernel initializer='he uniform’, activation='r

147 model.add(Dense(l, kernel initializer='normal'))

143 model.compile (loss="m=se', optimizer='rmsprop', metrics=["'ms="])

149 model . summary ()

150 $5et seed and fit the model

151 np.random. seed (30)

152 history = model.fit(X_train, y_train, batch size=123, epochs=350, wvalidation_split=.2, werbose=2)
153 plt.figure (figsize=(10,5))#Plot loss vs. epoch

iy plt.plot {(history.history['loss'] ,marker="0"' ,color="orange'})

155 plt.plot (history.histoxry[’ _loss'],marker=""",color="bl

156 plt.title('Valus

157 plt.ylabel ("1
158 plt.xlabel ("=
159 plt.legend ([’ . "test'], loc="upper right'
160 plt.show ()
16l #plot the train vs test mse
162 plt.figure(figsize=(10,53))
163 plt.plot (history.history['mean sguar r'] ,marker="c' ,color="red"})
164 plt.plot (history.history[1 =rror'] marker=""",color = 'green')
165 plt.citle ("W S
166 plt.ylabel ("
167 plt.xlabel ("
163 plt.legend(['tc n', "test'], loc="upper right')
169 plt.show()
170 pred crimes = model.predict (X test) #Predict crime count
T1 mse pred score = metrics.mean sguared error (pred crimes, y_test)
2 print{'mse pred = = {}'.format(mse_pred score))
173 rmse_pred score = np.sqgrtc(mse_pred score)
174 print('rmss pred score {}'.format(rmse pred score))
175 r2 pred score = r2 score(y_test, pred crimes, multicutput='uniform averages')
176 print{'rZ pred score - Coefficient of Determination {}'.format(r2 pred score})
177 print ("MRE ", mean absolute error(y test, pred_cximes}”

Figure 39: ANN model with multiple layers

3.4.5 Multiple Linear Regression

e For multiple linear regression, tuning is not applicable and hence 10 fold cross
validation is applied and checked as shown in the code block Figure

23

el X = final .drop({columns="crimescount")

T+ | v = final.crimescount

56 # Splitting the dataset into the Training set and Test set
o7 from sklearn.model selection import train test_splic

X train, X_test, y_train, ¥y test = train test_split(X, ¥y, test_size = 0.2, random state = 20)
Fitting Multiple Linear Regression to the Training set

from sklearn.linear model import LinearRegression

from sklearn.metricg import mean sguared error, r2 sScore, mean absolute error

regressor = LinearRegression()

60

Ul
WM

ol

regressor.fit (X _train, y_train)
Predicting the Test set results

)]
P

@ oo
ooy

y_pred = regressor.predict (X_test)

from sklearn.metrics import rZ_ score
67 #5ccre=r2_5ccre(y_test,y_pred]
68 ",r2 score(y test,y pred))
69 print ", mean absolute error(y test,y pred)})
T print (" ",mean_squared error(y_test,y pred))
print (" is",np.sqgrt(mean sguared error(y test,y pred)))
v_pred
residual = y_test-y pred
residual
fig, ax = plt.subplots(figsize=(10,5))
Te _ = ax.scatter(residual, y_pred)

Set common labels

ax.tick params(axis="x", labelsgize=1%)
g ax.tick params(axis="y", labelsize=1S)
ax.set_xlabel ('R =', fontsize=13)

ax.set_ylabel ('F
#The residual vs predictions is clumped and the behaviour is not random, thus homoscedasticity assumption not satis

ions', fontsize=13%)

import scipy as sp
fig, ax = plt.subplots(figsize=({10,5))

e , ¥} = sp.stats.probplot (residual, plot=ax, fit=True)
ax.tick params(axis="x", labelsize=15)
ax.tick params(axis="y", labelsize=15)

[

88 ax.set_title('Normal Probability Plot for Err U fontsize=;6ﬂ

Figure 40: Multiple Linear regression code

3.4.6 Hyper Parameter Optimization

Tuning has been done using Randomized search cv for each model as shown in the below

Figure 1] and Figure

e Random Forest Tuning

24

#Hyper parameters for Random Forestc
from sklearn.model selection import RandomizedSearchCW
Number of trees in random forest

n_estimators = [int(x) for x in np.linspace(start = 10, stop = 500, num = 5}]
Number of features to consider at every split
max_ features = ['auto', "sgret']

Maximum number of levels in tree

max_depth = [int(x) for x in np.linspace(l0, 50, num = 3)]
max_depth.append (None)

4 Minimum number of samples reguired to split a node

min samples_split = [2, 3, 10]
Minimum number of samples regquired at each leaf node
min_samples_leaf = [1, 2, 4]
610 # Method of selecting samples for training each tree
611 bootstrap = [True, False]
612 4% Create the random grid
€13 random grid = {'n ma n_estimators,
€14 ' = max_features,
615 max_s max_depth,
616 mi t': min_samples split,

't min samples_leaf,

: bootstrap}

print (random grid)

4 Use the random grid to search for best hypsrparamecers

First create the base model to tune

import datetime

print {datetime.datetime.now())

rf = RandomForestRegressor()

Random search of parameters, using 10 fold cross wvalidation,

search across 1000 different combinations, and use all available cores
rf_random = RandomizedSearchCV(estimator = rf, param discributions = random grid, n_iter = 100, cv = 3, verbose=2Z, random state=20, n_jobs = -1)
4 Fit the random search model

€29 rf random.fit(X_train, ¥_train)

Figure 41: Code for tuning Random Forest using Randomized search cv

e XGBoost Tuning

14 $# A parameter grid for XGBoost
15 [Hparams = {

':[0.02,0.05,0.08,0.107,

:[20,50,100,150,200],
: 101,

r

2 [0.&6, 0.75 ,0.8, 1.0],
yLrees [0.&, 0.8, 1.01,
[3, 4, 5,7,8]
xgk = xgko.XGBRegressor()
xgbkf = model selection.KFold(n_splits=10, random state=200,shuffle=True)
random search = RandomizedSearchCV(xgb, param distributions=params, n_iter=100, n jobs=-1,

cv=xgbkf.splic(X,Y), verbose=3, random state=20)
i print (datetime.datetime.now(}))

729 random search.fit(X, ¥)

i print (datetime.datetime.now())

Figure 42: Code for tuning XGBoost using Randomized search cv

References

Bocca, F. F., Henrique, L. and Rodrigues, A. (2016). The effect of tuning , feature
engineering , and feature selection in data mining applied to rainfed sugarcane yield
modelling, Computers and Electronics in Agriculture 128: 67-76.

URL: http://dz.doi.org/10.1016/j.compag.2016.08.015

Granitto, P. M., Furlanello, C., Biasioli, F. and Gasperi, F. (2006). Recursive feature
elimination with random forest for PTR-MS analysis of agroindustrial products, 83: 83—
90.

25

Ingilevich, V. and Ivanov, S. (2018). Crime rate prediction in the urban environment
using social factors, Procedia Computer Science 136: 472—478.
URL: https://doi.org/10.1016/j.procs.2018.08.261

Kadar, C. (2019). Public decision support for low population density areas : An
imbalance- aware hyper-ensemble for spatio-temporal crime prediction, Decision Sup-
port Systems 119(September 2018): 107-117.

URL: https://doi.org/10.1016/5.dss.2019.03.001

26

	Introduction
	System Configurations
	Hardware
	Software

	Project Development
	Data Preparation
	Crime Dataset
	High Schools Dataset
	Locations Dataset
	Weather Dataset
	Data Merging

	Feature Engineering
	One Hot Encoding
	Normalization

	Feature Selection
	Top 20 features with One Hot Encoding
	Top 10 numerical features

	Modelling
	Data Split
	Random Forest
	XGBoost
	Artificial Neural Network (ANN)
	Multiple Linear Regression
	Hyper Parameter Optimization

