ﬁ

\‘
National
Collegeof

Ireland

Configuration Manual

Machine Learning Based Approach in Detection and
Classification of Tomato Plant Leaf Diseases

MSc in Data Analytics

Rajath Ramakrishna
Student 1D: x18130721

School of Computing
National College of Ireland

Supervisor: Dr. Muhammad Igbal

‘-—
National College of Ireland \ National

MSc Project Submission Sheet COllegeOf
c Project Submission Shee
Ireland
School of Computing
Student Name: Rajath Ramakrishna
Student ID: X18130721
Programme: MSc in Data Analytics Year: 2019-2020
Module: MSc Research Project
Lecturer: Dr. Muhammad Igbal
Submission Due
Date: 12/12/2019
Project Title: Machine Learning Based Approach in Detection and Classification

of Tomato Plant Leaf Diseases
Word Count: Page Count:

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author's written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature: Rajath Ramakrishna

Date: 12/12/2019

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple | o
copies)

Attach a Moodle submission receipt of the online project o
submission, to each project (including multiple copies).

You must ensure that you retain a HARD COPY of the project, both | o
for your own reference and in case a project is lost or mislaid. It is not
sufficient to keep a copy on computer.

Assignments that are submitted to the Programme Coordinator Office must be placed
into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

Configuration Manual

Rajath Ramakrishna
Student ID: x18130721

1 Introduction

The configuration manual outlines the steps and procedures to be followed while running the
implemented scripts for the current research project. This will allow for smooth running of
the code without any glitches. This also includes information about the machine's hardware
configuration in which the scripts are executed and provides the same minimum
recommended configuration. Following these steps would help replicate the project's results.
This can then be analysed and is straightforward to conduct future research.

2 System Specification
2.1 Hardware configuration

As mentioned below, the hardware specification of the computer on which the work was
performed is:

Processor: Intel Core i5 — 8250U CPU @ 1.60GHz

RAM: 8 GB

Storage: 256GB SSD

Operating System: 64-bit operating system, Windows 10 Home

2.2 Software configuration

Software used to implement the project is Python based Jupyter notebook IDE (Integrated
Development Environment) which is available within the Anaconda package. Forthcoming
sections illustrates the steps to be followed in executing the developed scripts.

3 Downloads and Installation
- Python

The research project is carried out using Python since it has a significant number of libraries
and supporting models of machine and deep learning. It also comes with several modules that
help make it easier to pre-process and alter images, making it easier to use and implement.
Therefore, the fundamental requirement on the computer running the script is to have

downloaded on it the latest version of Python. This can be done by proceeding to the python
website! download page and installing the downloadable installer of the specified version
based on the OS of the machine running it. Fig 1 illustrates the screenshot of the website
from where the latest version is installed. Once downloaded, file must be installed by
following the installation instructions.

Python

& python’ .

About Downloads Documentation Community Success Stories News Events

Download the latest version for Windows m \ .
|
N

Looking for Python with a different 0S? Python for Windows,
Linux/UNIX, Mac OS X, Other

Want to help test development versions of Python? Prereleases,
Docker images

Looking for Python 2.7? See below for specific releases

Figure 1. Download Page of Python

After the installation is successful it can be verified in windows command prompt by using
‘python —version” command. It provides the version number of the Python installed.

= Anaconda

Anaconda is the next package to be installed. It provides various python-based IDEs that are
user-friendly that can be used for code development and results visualization. Jupyter
Notebook and Spyder are the most common of the IDE's available in Anaconda Navigator on
installation. Anaconda can be downloaded from the official website?. Downloadable installer
is shown in Fig 2. Package comes for different OS hence the OS specific installer needs to be
downloaded

== Windows ‘ d macOS | t,\ Linux

Anaconda 2019.10 for Windows Installer

Python 3.7 version Python 2.7 version
64-Bit Graphical Installer (462 MB) 64-Bit Graphical Installer (413 MB)
32-Bit Graphical Installer (410 MB) 32-Bit Graphical Installer (356 MB)

Figure 2. Download page of Anaconda Installer

1 https://www.python.org/downloads/
2 https://www.anaconda.com/distribution/

https://www.python.org/downloads/
https://www.anaconda.com/distribution/?gclid=EAIaIQobChMI6JWJx6-p5gIV2PhRCh0S_wZdEAAYASAAEgLPbfD_BwE

As shown in Fig 3, upon successful installation of Anaconda Navigator, it will display

multiple IDE that can be selected for development. Of which Jupyter IDE is used in this
research project.

J

{2) ANACONDA NAVIGATOR 50t t0sacondcioe |

o

@ Environments . — -
e P
T - g
|

Figure 3. Anaconda Navigator

= Data Source

This research uses the colored images of tomato plant leaves from the publicly accessible
PlantVillage dataset from GitHub®. This open repository contains color, segmented and
grayscale images of several plants. Thus, only colored images of tomato plants must be
downloaded, and the other images must be removed from the downloaded folder.

» Project Development

Jupyter notebook must be launched from the installed navigator. As shown in Fig 4. new tab
is opened in the browser

3 leetCode @ DataCamp Spotify) HackerRank GeeksforGeeks Quick-R 1 Moodie

Deccan Herald w' NDTV fn Linkedin

Name ¥ ast Modified File size
25 days ago
a year ago
2 months ago
25 days ago

4 months ago

Figure 4. Home page of Jupyter Notebook

3 https://github.com/spMohanty/PlantVillage-Dataset

https://github.com/spMohanty/PlantVillage-Dataset

Coding can be started by clicking the new icon on the top left corner and selecting Python 3
which launches a new page for coding. As the project is being built using machine and deep
learning techniques based on transfer learning, additional python libraries also need to be
installed when required. These can be installed using pip install command in the windows
command prompt as shown in Fig. 5

EM Command Prompt

Figure 5. Command prompt for Python library installations

Firstly, few of the standard libraries that are required to build image classification models
include

TensorFlow 2.0.0

Keras 2.3.1

Keras-Applications 1.0.8
Keras-Preprocessing 1.1.0
Numpy 1.16.5

Scikit-Image 0.16.2
Scikit-Learn 0.21.3

Sklearn 0.0
Opencv-contrib-python 4.1.1.26
Matplotlib 3.1.1

Once the coding has been successfully completed, the script can be executed by running the
jupyter notebook command as shown in Fig. 6 or by running the code individually by blocks.
If there are errors present in the code, they will be shown below the code block that can then
be used to debug.

" Jupyter SVM Last Checkpoint 21 hours ago (autosaved) [

File Edit View Insert Cell Kemel Widgets Help | Python 3 ©
B+ 3 & B 4 + MHRin B C W Code v |e=
rso
3] ® 2 0
-0
[} 1 2 3
predicted latel
In [24]: print("classification report for - \n{}:\n{}\n".format(

classifier, metrics.classification_report(¥_Test, Y_Pred,target_names = types)))

Figure 6. Running the script

Model Development: Basic CNN

In [1]: import numpy as np
import pickle
import cv2
import random
from sklearn.preprocessing import LabelEncoder
from os import listdir
from sklearn.preprocessing import LabelBinarizer
from keras.models import Sequential
from keras.layers.normalization import BatchNormalization
from keras.layers.convolutional import Conv2D
from keras.layers.convolutional import MaxPooling2D
from keras.layers.core import Activation, Flatten, Dropout, Dense
from keras.layers.pooling import GlobalAveragePooling2D
from keras import backend as K
from keras.preprocessing.image import ImageDataGenerator
from keras.optimizers import Adam, SGD, Adamax, Nadam
from keras.preprocessing import image
from keras.preprocessing.image import img_to_array
from sklearn.preprocessing import MultilLabelBinarizer
from sklearn.model_selection import train_test_split
from skimage.io import imread,imshow
import matplotlib.pyplot as plt
from sklearn.metrics impert roc_curve, auc,precision_recall_curve,confusion_matrix
from mlxtend.plotting import plot_confusion_matrix
from datetime import datetime
from sklearn import metrics

Using TensorFlow backend.

In [2]: def timer(start_time=None):

if not start_time:
start_time = datetime.now()
return start_time

elif start_time:
thour, temp_sec = divmod((datetime.now() - start_time).total_seconds(), 3608)
tmin, tsec = divmod(temp_sec, 68)
print(*\n Time taken: %i hours %i minutes and %s seconds.' % (thour, tmin, round(tsec, 2)))

Figure 7

o The first block shows the list of libraries installed for the implementation of this
model

« Second block shows timer function implemented to calclulate the training time of all
the models

In [3]1: EPOCHS = 25
INIT_LR = 0.01
BS = 32
default_image_size = tuple((128, 128))
image_size = 0
directory_root = 'C://NCI/Sem 3/tomato plant disease dataset/PlantVillage/
width=128
height=128
depth=3

In [4]: images=[]
def convert_image_to_array(image_dir):
try:
image = cv2.imread(image_dir
if image is not None :
image = cv2.resize(image, default_image_size)
images.append(image)
return img_to_array(image)
else :
return np.array([])
except Exception as e:
print(f"Error : {e}")
return None

Figure 8

This block shows how the image data is converted to numpy arrays for building models

In [5]: image_list, label_list = [], []
try:
print(" [INFO] Loading images ...")
plant_disease_folder_list = listdir{directory_root)
print (plant_disease_folder_list)

for plant_disease_folder in plant_disease_folder_list:
print(f"[INFO] Processing {plant_disease_folder} ...")
plant_disease_image_list = listdir(f"{directory_root}/{plant_disease_folder}/")

for image in plant_disease_image_list[:]:
image_directory = f"{directory_root}/{plant_disease_folder}/{image}"
if image_directory.endswith(".jpg") == True or image_directory.endswith(".JPG") == True:
image_list.append(convert_image_to_array(image_directory))
label_list.append(plant_disease_folder)
print(" [INFO] Image loading completed")
except Exception as e:
print(f"Error : {e}")

[INFO] Loading images ...

['Tomato_healthy', 'Tomato_Late_blight', 'Tomato_Leaf_Mold', 'Tomato_mosaic_virus', 'Tomato_Septoria_leaf_spot']
[INFO] Processing Tomato_healthy ...

[INFO] Processing Tomato_Late_blight ...

[INFO] Processing Tomato_Leaf_Mold ...

[INFO] Processing Tomato_mosaic_virus ...

[INFO] Processing Tomato_Septoria_leaf_spot ...

[INFO] Image loading completed

In [6]: image_size = len(image_list)
print(image_size)
6595

Figure 9

This block shows the images being loaded into the model

In [7]1: imshow(images[60@])
Out[7]: <matplotlib.image.AxesImage at @x1b37f3d4748>

In [8]: label_binarizer = LabelBinarizer()
image_labels = label_binarizer.fit_transform({label_list)
pickle.dump(label_binarizer,open('label_transform.pkl', 'wb'))
n_classes = len(label_binarizer.classes_)

In [9]: print(label_binarizer.classes_)

['Tomato_Late_blight' 'Tomato_Leaf_Mold' 'Tomato_Septoria_leaf_spot'
'Tomato_healthy' 'Tomato_mosaic_virus']

Figure 10

This block shows the image of sample tomato leaf and the following block is used to encode
the class names.

In [10]: value = []
Tomato_mosaic_virus = Tomato_healthy = Tomato_Late_blight = Tomato_Leaf_Mold = Tomato_Septoria_leaf_spot = @

for i in range(len(label_list)):

if (label_list[i] == 'Tomato__Tomato_mosaic_virus'):
Tomato_mosaic_virus = Tomato_mosaic_virus + 1

elif (label_list[i] == 'Tomato_healthy'):
Tomato_healthy = Tomato_healthy + 1

elif (label_list[i] == 'Tomato_Late_blight'):
Tomato_Late_blight = Tomato_Late_blight + 1

elif (label_list[i] == 'Tomato_Leaf_Mold'):
Tomato_Leaf_Mold = Tomato_Leaf _Mold + 1

else:

TTomate_Septoria_leaf spot = Tomato_Septoria_leaf_spot + 1

value=[Tomato_mosaic_virus,Tomato_healthy,Tomato_Late_blight,Tomato_Leaf_Mold, Tomato_Septoria_leaf_spot]
types = ('mosaic_wvirus','Healthy', 'Late_blight','Leaf_Mold','Septoria_leaf_spot','Two_spotted_spider_mite')
y_pos = np.arange(5)

plt.figure(figsize=(10,10))

plt.bar(y_pos, value, align='center', alpha=0.5)

plt.xticks(y_pos, types)

plt.ylabel('Number of Images')

plt.title('Data Distribution')

plt.show()

Figure 11

This is used to plot bar chart which shows the total number of images in each class

Data Distribution

2000

1750

1500 1

1250

Number of Images
o
[=)
=

750

500 A

250 1

MOsaic_virus Late_blight Leaf Mold Septoria_leaf spot

Figure 12

This is the bar chart plotted showing the total number of images in each class.

In [11]: np_image_list = np.array(image_list, dtype=np.floatl6) / 255.0

In [12]: all_indexes = list(range(len(images)))
random_indexes = random.sample(all_indexes, 4)

In [13]: j =1
plt.figure(figsize=(15, 6))
for i in random_indexes:
plt.subplot(2, 2, j);
plt.grid(False)
plt.imshow(images[i])
plt.title(tomato_dataset.target_names[tomato_dataset.target[i]])

=j+1
plt.show()

[}
20
2
60
80

100
120

Figure 13

This block displays the random set of tomato leaf images

In [14]: print("[INFO] Spliting data to train, test")
x_train, x_test, y_train, y_test = train_test_split(np_image_list, image_labels, test_size=0.2, random_state = 42)

[INFO] Spliting data to train, test

In [15]: y_test.shape
Ooutl15]: (1319, 5)

In [16]: aug = ImageDataGenerator(
rotation_range=25, width_shift_range=0.1,
height_shift_range=0.1, shear_range=0.2,
zoom_range=0.2,horizontal_flip=True,
fill_mode="nearest")

Figure 14

In this block, the data is split into test and train in the ratio of 80:20.

In [22]: model = Sequential()
inputShape = (height, width, depth)
chanDim = -1
if K.image_data_format() == "channels_first":
inputShape = (depth, height, width)
chanDim = 1

model.add(Conv2D(32, (3, 3), padding="same",input_shape=inputShape, activation = "relu"))
model.add(BatchNormalization())
model.add(MaxPooling2D(pool_size=(2, 2)))

model.add(Conv2D(32, (3, 3), padding="same",input_shape=inputShape, activation = "relu"))
model.add(BatchNormalization())
model.add(MaxPooling2D(pool_size=(2, 2)))

model.add(Conv2D(64, (3, 3), padding="same",input_shape=inputShape, activation = "relu"))
model.add(BatchNormalization())
model.add(MaxPooling2D(pool_size=(2, 2)))

model.add(Conv2D(64, (3, 3), padding="same",input_shape=inputShape, activation = "relu"))
model.add(BatchNormalization())

model.add(MaxPooling2D(pool_size=(2, 2)))

model.add(Conv2D(128, (3, 3), padding="same",input_shape=inputShape, activation = "relu"))
model.add(BatchNormalization())

model.add(MaxPooling2D(pool_size=(2, 2)))

model.add(GlobalAveragePooling2D())

model.add(Dense(units=256, activation = "relu"))

model.add(Dropout(@.25))

model.add(Dense(units=128, activation = "relu"))
model.add(Dropout(©.25))

model.add(Dense(units=n_classes, activation = "softmax"))

Figure 15

This block shows the CNN model with 5 convolution layers being built

In [23]: model.summary()

Model: "sequential_2"

Layer (type) Output Shape Param #
conv2d_5 (Conv2D) (None, 128, 128, 32) 896
batch_normalization_5 (Batch (None, 128, 128, 32) 128
max_pooling2d_5 (MaxPooling2 (Mone, 64, 64, 32) 2]
conv2d_6 (Conv2D) (None, &4, 64, 32) 9248
batch_normalization_6 (Batch (None, 64, 64, 32) 128
max_pooling2d_6 (MaxPooling2 (None, 32, 32, 32) [’}
conv2d_7 (Conv2D) (None, 32, 32, 64) 18496
batch_normalization_7 (Batch (None, 32, 32, 64) 256
max_pooling2d_7 (MaxPooling2 (None, 16, 16, 64) [}
conv2d_8 (Conv2D) (None, 16, 16, 64) 36928
batch_normalization_8 (Batch (None, 16, 16, 64) 256
max_pooling2d_8 (MaxPooling2 (None, 8, 8, 64) [/}
conv2d_9 (Conv2D) (None, 8, 8, 128) 73856
batch_normalization_9 (Batch (None, 8, 8, 128) 512
max_pooling2d_9 (MaxPooling2 (None, 4, 4, 128) 2}
global_average_pooling2d_2 ((Mone, 128) a
dense_4 (Dense) (None, 256) 33024
drobout 3 (Dropout) (None. 256) a
Figure 16

The above block gives the summary of different layers

In [24]: model.compile(loss= "binary_crossentropy",optimizer

In [25]: start_time = timer(None)

In [26]: history= model.fit_generator(
aug. flow(x_train,y_train,batch_size=BS),
validation_data=(x_test,y_test),
steps_per_epoch =len(x_train) // BS,

epochs=EPOCHS, verbose=1

)

'Adam' ,metrics=["accuracy"])

Epoch 1/25
164/164 [

val_accuracy: ©.7252
Epoch 2/25
164/164 [

val_accuracy: ©.7180
Epoch 3/25
164/164 [

val_accuracy: 9.8978
Epoch 4/25

164/164 [
val_accuracy: 0.7741
Epoch 5/25

164/164 [

val_accuracy: ©.7886
Epoch 6/25
164/164 [

val_accuracy: ©.9456
Epoch 7/25

B

In [27]: timer(start_time)

Time taken: 1 hours 4 minutes and 53.58

This block shows how the model is trained on the training data

152s

153s

154s

154s

154s

154s

are

925ms/step —

933ms/step —

936ms/step —

936ms/step —

938ms/step -

941ms/step —

seconds.

Figure 17

10

loss:

loss:

loss:

loss:

loss:

loss:

0.

0.

0.

0.

0.

0.

1941

1131

0873

0823

8558

8518

arca

accuracy:

accuracy:

accuracy:

accuracy:

accuracy:

accuracy:

Q.

0.

0.

Q.

Q.

Q.

9215

9573

9683

9706

9785

9811

Anna

val_loss:

val_loss:

val_loss:

val_loss:

val_loss:

val_loss:

—a

3

0.

1388

.2918

3067

8857

8174

1719

araa

In [28]: Y_pred= model.predict(x_test)
In [29]: y_pred = np.argmax(Y_pred,axis=1)
In [30]: y_test_end = label_binarizer.inverse_transform(y_test)

In [31]: label = LabelEncoder(
y_encoded = label.fit_transform(y_test_end)

In []: def plot_accuracy(hist):
plt.plot(hist['accuracy'])
plt.plot(hist['val_accuracy'])
plt.title('model accuracy')
plt.ylabel('accuracy')
plt.xlabel('epoch')
plt.legend(['train’,

'test'l],
loc="upper left')
plt.show()

In []t plot_accuracy(history.history)

In []: def plot_loss(hist):
plt.plot(hist['loss'])
plt.plot(hist['val_loss'])
plt.title('model loss')
plt.ylabel('loss')
plt.xlabel('epoch')
plt.legend(['train’,

'test'],
loc="upper left')
plt.show()

Figure 18

This block shows how the model is being evaluated

In [32]: em = confusion_matrix(y_encoded, y_pred)
print{cm)

[[301 @ 21 66 1]
[@ 94 11 61 4]
[1 1297 42 7]
[@ @ 0338 ol
[@ 8 o 34 40]]

In [33]: fig, ax = plot_confusion_matrix(conf_mat=cm,
show_absolute=True,
show_normed=False,
colorbar=True,

plt.show()
DAIEH!I 0 a 66 1 00
1{ o n 61 4 0
T 200
2
224 1 1 2 7
4 150
B
ER 0 0] 100
50
4{ 0 0 0 3
-] ! T T 0
] 2 3 4

predicted label

Figure 19

This block generates the confusion matrix for the implemented model

11

In [34]: print(“"Classification report for - \n{}:\n{}\n".format(
model, metrics.classification_report(y_encoded, y_pred)))

Classification report for -
<keras.engine.sequential.Sequential object at 8x0000@1B3A2247EB8>:

precision recall fl-score support

(/] 1.00 0.77 0.87 389

1 0.99 8.55 8.71 178

2 8.90 8.85 0.88 348

3 8.62 1.00 8.77 338

4 8.77 6.54 8.63 74

accuracy 8.81 1319

macro avg 0.86 0.74 08.77 1319

weighted avg 8.86 6.81 8.81 1319
Figure 20

This block generates the classification report to evaluate the model using multiple evaluation
metrics

Following blocks of code shows the models defined for various algorithms

Support Vector Machine:

In [13]: support_vector = svm.SVC(kernel='linear', probability=True)
support_vector.fit(x_train, y_train)

Out[13]: SVC(C=1.8, cache_size=208, class_weight=None, coef@=0.0,
decision_function_shape="ovr', degree=3, gamma='auto_deprecated',
kernel='linear', max_iter=-1, probability=True, random_state=None,
shrinking=True, tol=0.081, verbose=False)

Figure 21
Random Forest:

In [13]: random_forest = RandomForestClassifier(n_estimators=10@, probability=True)
random_forest.fit(x_train, y_train)

Out[13]: RandomForestClassifier{(bootstrap=True, class_weight=None, criterion='gini',
max_depth=None, max_features='auto', max_leaf_nodes=None,
min_impurity_decrease=0.8, min_impurity_split=None,
min_samples_leaf=1, min_samples_split=2,
min_weight_fraction_leaf=0.08, n_estimators=1600,
n_jobs=None, oob_score=False, random_state=None,
verbose=0, warm_start=False)

Figure 22

12

VGG16:

In [17]:

#base_model=MobileNet(weights="'imagenet"',include_top=False) #imports the mobilenet model and discards the last 1800
base_model=VGG16(include_top=False, weights='imagenet')

x=base_model.output

x=GlobalAveragePooling2D() (x)

x=Dense(1024,activation="relu')(x) #we add dense layers so that the model can learn more complex functions and class
x=Dense(10824,activation="relu')(x) #dense layer 2

x=Dense(512,activation="'relu')(x) #dense layer 3

preds=Dense(5,activation="'softmax') (x) #final layer with softmax activation

Figure 23

VGG19:

In [17]:

#base_model=MobileNet(weights="imagenet',include_top=False) #imports the mobilenet model and discards the last 1006
base_model=VGG19(include_top=False, weights='imagenet')

x=base_model.output

x=GlobalAveragePooling2D() (x)

x=Dense(1024,activation="relu')(x) #we add dense layers so that the model can learn more complex functions and class
x=Dense(1024,activation="relu'}(x) #dense layer 2

x=Dense(512,activation="relu')(x) #dense layer 3

preds=Dense(5,activation="'softmax')(x) #final layer with softmax activation

Figure 24

XGBoost:

In [15]: classifier = XGBClassifier(probability=True)

classifier.fit(x_train, y_train)

Out[15]: XGBClassifier(base_score=0.5, booster='gbtree', colsample_bylevel=1,

colsample_bynode=1, colsample_bytree=1, gamma=@,
learning_rate=0.1, max_delta_step=0, max_depth=3,
min_child_weight=1, missing=None, n_estimators=100, n_jobs=1,
nthread=None, objective='multi:softprob', probability=True,
random_state=@8, reg_alpha=0, reg_lambda=1, scale_pos_weight=1,
seed=None, silent=None, subsample=1, verbosity=1)

Figure 25

All the scripts of the various models implemented in this project are uploaded as part of ICT
Solution.

13

