“—-
\ National

Configuration Manual

MSc Research Project
Data Analytics

Naumaan Mohammed Saced Kazi
Student I1D: x18130208

School of Computing
National College of Ireland

Supervisor: Dr. Muhammad Iqbal

~

College
Ireland

National College of Ireland National
Project Submission Sheet College of

School of Computing Ireland

Student Name:

Naumaan Mohammed Saeed Kazi

Student ID: x18130208
Programme: Data Analytics

Year: 2019

Module: MSc Research Project
Supervisor: Dr. Muhammad Igbal
Submission Due Date: 12/12/2019

Project Title: Configuration Manual
Word Count: XXX

Page Count: [15

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the

rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary

action.

Signature:

Date:

12th December 2019

PLEASE READ THE

FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). O

Attach a Moodle submission receipt of the online project submission, to | [J
each project (including multiple copies).

You must ensure that

a copy on computer.

your own reference and in case a project is lost or mislaid. It is not sufficient to keep

you retain a HARD COPY of the project, both for | [

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

Configuration Manual

Naumaan Mohammed Saeed Kazi
x18130208
MSc Research Project in Data Analytics
11th December 2019

1 Introduction

This configuration manual would present the software requirement, hardware requirement
and system setup. Along with this the codes that have been used for programming that
is written for the implementation of the research study:

”Using Machine Learning Models to Study Human Error Related Factors in Aviation
Accidents and Incidents”

2 System Configuration

2.1 Hardware

Processor: Intel(R) Core i7-7200U CPUQ2.6GHz GPU: NVIDIA GeForce GTX 1060Ti
RAM:8GB Storage: 1 TB HDD; Operating system: Windows 10, 64-bit.

2.2 Software

* Python using Jupyter notebook: Data analysis, data cleaning, pre-processing and ma-
nipulation. Feature selection and the implementation of machine learning algorithms and
plots were done using libraries in Python.

* Microsoft Excel:Used for saving of data, data exploration, and plots for explorations.

3 Project Development

Steps for project development are as follows: data exploration, data pre-processing (ex-
porting data, handling mull values, removing unused attributes and again calculating
features) and using hyper-parameter for model tuning. Number of codes have imple-
mented during the many steps for analysing such as feature selection using Pearson
Correlation, Carmer’s V Rule and Random Forest for selection. K-fold validation using
both approaches Stratified K-fold and 10-cross fold validation on all the models of ma-
chine learning used in this research. Generating confusion matrix, experimenting models
and creating charts. In the later section codes for the study are shown with detailed
information step by step.

3.1 Data Preparation & Pre-processing

The original data was downloaded from National Transportation Safety Board (NTSB)
[l Which originally consist of a zip file, in which had the data file in MS Access database
type. After which it was extracted to CS file file format to load in Python. After applying
feature selection on the data, we had split the data into two categorizes test and train
data for running the model. A systematic view of this data split is shown in the Figure

NTSE Website

(1)

l

Programming
Language

¥ v v

Testing

Backup Actual Data Data Out

¢—‘—¢

Test Data

Train Data

Figure 1: Data Collection and Splitting

The libraries used for data splitting is ”sklearn.model selection” from Python [As
80% data is used for training purpose and the remaining 20% for testing. The data out
is where the data that is no longer required for analysis i.e. discarded data. In data
pre-processing contains label encoding as the values were "low” and "medium” which is
shown in later. As the data required to be in 0’s and 1’ prior to model fitting. Data also
needs to be normalized prior to fitting model, especially in Neural Network.

4 Code used for Machine Learning Models

The coding for this study has been performed using Jupyter Notebook. As the com-
plete code was executed from correlation, cleaning and model in Python language only.
The layout of this codes for explanation are designed as follows: feature selection, cross
validation, class imbalance, label encoder and experiments on models.

'https://www.ntsb.gov/_layouts/ntsb.aviation/index.aspx
’https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.train_
test_split.html

https://www.ntsb.gov/_layouts/ntsb.aviation/index.aspx
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.train_test_split.html
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.train_test_split.html

4.1 Choosing Method for Feature Engineering

These three types are compared and contrasted against each other on depending which
one best suit our classification techniques. As all these three methods are run on a single
model which is XGBoost to see which gives the best accurate results. In Figure [2] we
have used ”SelectFromModel” function us used for random forest classifier to get the best
feature from our data setf]

Jupyter Human Factor Analysis-Copy2 LatCreckoint Shows s (slssved A | ow

Figure 2: Feature Selection Using Cramer’s V Rule

Cramer’s V Rule is most optimal for categorical data. In our dataset those variables
which are categorical in nature are chosen and on them Carmer’s V Rule is applied using
the XGBoost model to check the accurate selection Figure|3l First, the cramer’s function
is defined using x and y. It used chi2 technique for feature selection[]]

~ Jupyter Carmer's V Rule Last Checkpoint: 24/11/2019 (unsaved changes) [
Fle EGt Viw et Cel Kemel Widgels Help Truste |Pyinon’3 €
&+ s @a[n |+ ¥ [nrn (@ ¢ » oo IE
O
In [10]

n [11]:

metric measure of association in categorical features

%
_xy - conditional_entropy (x,y)

*_counter - Counter (x)

total_occurrences - sun(x_counter.values())

ist(map(lambda n: n/totsl_occurrences, x_counter.values()))
5. entropy(p_x)

=
ation_ratio(categories, measurements):
fcat, _ - pd.factorize(categories)
cat_num - np.max(fcat)+1
y_avg_array - np.zeros(cat_num)
n_array - np.zeros(cat_num)
For 1 in range(e,cat_num):
cat_measures - measurementsnp.arguhere(fcat -= i).flatten()]
n_array[i] - len(cat_measures)
y_avg_array[i] = np.average(cat_measures)
y_total_avg - np.sum(np.multiply(y_avg_array,n_array))/np.sum(n_array)
numerator - np. sum(np.multiply(n_array,np. power (np.subtract (y_avg_array,y_total_avg),2)))
denominator - np.sum(np.power (np. subtract(measurements,y_total_avg),2))
if numerator == @
cta = 0.0
else
eta = np.sqrt (numerator/denominator)
return eta

Figure 3: Feature Selection Using Random Forest Selection

3https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.
SelectFromModel.html.Itisoneoftheverywidelyandreliableselectionmodels
‘https://towardsdatascience.com/the-search-for-categorical-correlation-alcf7£1888c9

https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.SelectFromModel.html. It is one of the very widely and reliable selection models
https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.SelectFromModel.html. It is one of the very widely and reliable selection models
https://towardsdatascience.com/the-search-for-categorical-correlation-a1cf7f1888c9

Correlation was accomplished using Pearson’s correlation matrix. As the value above
0.8 is extreme correlation and above 0.4 is medium correlations Figure [20]

~'Jupyter Human Factor Analysis-Copy2 Last Checksoint & hours ago (autosaved) a Logout
File Edit Viev Insert Cell Kemel Nidgets Help Trusted |:.-'\':7 3¢
B+ 5@ B 4 ¥ HRn | B[C » coe v||l=

In [20]: | #Plot Corela
corrmat =

n tatrix for smaller number of attributes

df.corr()

£, ax = plt.subplots(figsize =(9, 8))
sns.heatmap(corrmat, ax = ax, cmep ="Y1GnSu”, linewidths = 8.1)

Figure 4: Feature Selection Using Correlation Matrices

4.2 Cross Validation

Cross validation (CV) is used in Zhang and Mahadevan| (2019), the two approaches were
opted first is the Stratified K-Fold and second is 10-fold CV. For all the models CV is
used in the Figure 20| has shown for XGBoost. CV is helpful for problem like over-fitting
& selection bias, as it gives meaningful insight about model. Using ”Cross_val_score”
function we implemented CV [}

:’ Jupyter Human Factor Analysis-Copy2 Last Checkpoint: & minute ago (autosaved) a Logout
File Edit Viev Insert Cell Kemel Widgets Help Trusted ‘ Python 3
B+ & @ B 4+ ¥ HRn B C P cos v =

XGBoost with Stratified
In [205]: from sklearn.model_selection import StratifiedKFold

In [206]: | #stratified 19-Fold
skf = StratifiedkFold(n_splits-18)
skf.get_n_splits(train, test)

out[206]: 10

In [207]: | print(skf)

stretifiedkFold(n_splits=1, random_statetone, shuffle=False)

In [208]: | #slipt st ed in test and train
for train_index, test_index in skf.split(x, y):
print("TRAIN:", train_index, "TEST:", test_index)
X_train, X_test = X.iloc[train_index], X.iloc[test_index]
y_train, y_test = y.iloc[train_index], y.iloc[test_index]

TRAIN: [8574 8575 8576 ... 87036 87@37 87038] TEST: [@ 1 2 ... 8843 BB44 8B45]

TRAIN: [2] 1 2 ... 87036 §7@37 87038] TEST: [8574 8575 8576 ... 17724 17725 17727]
TRAIN: [e 1 2 ... 87036 §7@37 87038] TEST: [17029 17031 17832 ... 26682 26601 26885]
TRAIN: [e 1 2 ... 87036 §7@37 87038] TEST: [25611 25613 25617 ... 34931 34932 34933]
TRAIN: [2] 1 2 ... 87036 57037 57033] TEST: [34620 34632 34633 ... 43722 43723 43724]
TRAIN: [2] 1 2 ... 87036 §7037 57033] TEST: [43400 43419 43411 ... 52736 52737 52738]
TRAIN: [] 1 2 ... 87036 87037 B87038) TEST: [51930 51932 51934 ... 61375 61381 61385]
TRAIN: [] 1 2 ... 87036 87037 B7038) TEST: [6@672 68673 6@675 ... 69681l 69683 69684]
TRAIN: [2] 1 2 ... 87036 §7@37 87038] TEST: [69593 69594 69595 ... 78336 78337 78338]
TRAIN: [2] 1 2 ... 78336 78337 78338] TEST: [78329 78330 78331 ... 87036 57037 87038]

In [209]: | #Fitting for XGBoost with Stratified
model. fit(X_train, y_train)

0ut[289]: XGBClassifier(base_score=8.5, booster='gbtree', colsample_bylevel=1,
colsample_bynode=1, colsample_bytree=l, gamma=g,
learning_rate=.1, max_delts_step=8, max_depth=3,
min_child_weight=1, missing=None, n_sstimators=108, n_jobs=1,
nthread=None, objective='binary:logistic', random_state=0,
reg alpha=e, reg lambda=l, scale pos_weight=1, seed=None,
silent=Hone, subsample=1, verbosity=1)

In [21@]: | # make predictions for test data
y_pred = model.predict(X_test)
predictions = [round(value) for value in y_pred]

Figure 5: Stratified K-Fold for XGBoost

The CV which is very effective with model improvement is stratified k fold. The
function ”StratifiedKFold” function is used setting the n splits to 10. As the train and
test would be split as per the CV Figure [20]

Shttps://scikit-learn.org/stable/modules/generated/sklearn.model_selection.cross_
val_score.html

https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.cross_val_score.html
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.cross_val_score.html

~ Jupyter Human Factor Analysis-COpy2 Last Checkpoint & few seconds ago (autosaved)

File Edit View Insert Cell Kemel Widgets Help

B+ 3 & B 4+ ¥ MHRn B C » Coe v | =

XGBoost with 10 fold Cross Validation

In [263]: import time
start_time = time.time()
from xgboost import XGBClassifier
xgb = XGBClassifier(tree method = 'gpu_hist')
xgb.Fit(X_train, y train)
Predicting the Test set results
y_pred = xgb.predict(X_test)
end_time = time.time()
eta = end_time - start_time
#10-fold cross validation score
from sklearn.model selection import cross val score

accuracy = cross_val_score(estimator = xgb, X = X_train, y = y_train, cv = 18)

xgb_cross = accuracy.mean()

print("18-Fold Cross Validstion Score of XGBOOST:", xgb_cross)
print('Time Elapsed:', eta)

#printing the output using the model report function

18-Fold Cross Validation Score of XGBOOST: ©.9397632857528499
Time Elapsed: 1.310115098353247

In [204]: model_report(y_test, y_pred)

Figure 6: 10-Fold Cross Validation for XGBoost

4.3 Experiment 1: ANN

':. jupyter Human Factor Analysis-Copy2 Last Checkpoint: an hour ago (autosaved)

File Edit View Insert Cell Kemel Widgets Help

B+ 32 8 B 4 ¥ MRun B C W Coe v| | =

ANN Model without Hyper Parameter Tuning

In [263]: from sklearn.preprocessing import StandardScaler

sc = StandardScaler()
X_train = sc.fit_transform(X_train)
X_test = sc.transform(X_test)

In [264]: | #Load Llibraries
from keras.models import Sequential
from keras.layers import Dense
import pandas as pd
from sklearn.model selection import train_test split
import matplotlib.pyplet as plt
plt.style.use(fivethirtyeight'})

Figure 7: Experiment on ANN

[Logout

Trusted | Python 3 C

? Logout

Trusted | Python 3 C

As observed from the Figure [7] before data is split and fitted into the model the data for
ANN needs to be scaled. Using ”StandarScaler” function this scaling is achieved in ANN
H We have used Keras library for this implementation as the optimizer chosen is Adam
and the activation function would be 'relu’. ANN was applied in Burnett and Si (2017)

Shttps://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.

StandardScaler.html

https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html

:‘ Jupyter Human Factor Analysis—Copy2 Last Checkpoint: an hour ago (autosaved) ﬂ Logout

File Edit View Insert Ccell Kernel Widgets Help Trusted | Python 3 ¢

®m 4+ & éa B 4+ ¥ HRun B C W code v | =

#splitting

from sklearn.model_selection import train_test_split

split data into train and test sets

seed 20

test_size = 0.20

X_train, X_test, y train, y test = train_test_split(X, y, test_size-test_size, random_state-seed)

In [268]: import keras
from keras.models import Sequential
from keras.layers import Dense
classifier = Sequential()

#Add Sequential Layers

classifier.add(Dense(output_dim = 6, init="uniform' , activation = 'relu’, input_dim = 5))
classifier.add(Dense(output_dim = 6, init="uniform' , activation = 'relu’))
classifier.add(Dense(output_dim = 1, init="uniform’ , activation = 'sigmoid’})

C:\python\lib\site-packages\ipykernel launcher.py:3: UseriWarning: Update your "Dense” call to the Keras 2 API: “Dense(activatio
n="relu”, input_dim-5, units=6, kernel initializer="uniform")"
This is separate from the ipykernel package so we can avoid doing imports until
Ci\python\lib\site-packages\ipykernel launcher.py:4: UseriWarning: Update your 'Dense” call to the Keras 2 API: “Dense(activatio
n="relu”, units=6, kernel_initialize i
after removing the cwd from sys.path
C:\python\lib\site-packages\ipykernel_launcher.py:

UserWarning: Update your "Dense’ call to the Keras 2 API: ~Dense(activatio

sigmoid”, units=1, kernel_initializer="uniform")"
In [270 Le the ANN

classifier.compile({optimizer = 'adam’, loss= 'binary_cressentropy’, metrics = [accuracy’])
In [272]: | #fit

hist = classifier.fit(X_train, y train, batch_size- 32, nb_spoch- 5@)

Ci\python\lib\site-packages\ipykernel_launcher.py:2: Useriarning: The “nb_cpoch® argument in “fit" has been renamed °cpochs

Epoch 1/5@
69631/69631 [] - 45 S2us/step - loss: ©.6466 - accuracy: 9.596@
Epoch 2/58
£9631/69631 [] - 3s 44us/step - loss: B.4185 - accuracy: 8.8211
Epoch 3/58
69631/69631 [1 - 3s 45us/step - loss: 9.3768 - accuracy: 9.5281
Epoch 4/5@
69631/69631 [] - 3= 49us/step - loss: ©.3493 - accuracy: ©.8453
Epoch 5/5@
69631/69631 [] - 4s S@us/step - loss: ©.3951 - accuracy: 9.3898

Ennch &/50

Figure 8: Experiment on ANN

The epoch is run for 10, 50, 100, 150 Burnett and Si (2017). on which the optimal
performance was achieved at 50 for non-hyper parameter ANN Figure

In [273]: | #predict
y_pred= classifier.predict(X_test)

In [274]: |#Confusien Matrix
from sklearn.metrics import confusion_matrix
cm = confusion matrix(y_test, y_pred>a.s)

In [275]:

out[275]

array([[7545, 343],
[1044, 5476]], dtype=int&a)

In [276]: y_pred

Out[2 array([[1. 1
[0.99999976],
[1. 1s

[0.25144965],
1. .
[0.99999994]], dtype=float32)

In [277]: from keras.callbacks import History

In [278]: plt.plot(hist.history[loss'])
plt.title('Model loss')
plt.ylabel('Loss')
plt.xlabel('Epoch’)
plt.legend(['Train', 'val'l, loc='upper right')
plt.show()

Figure 9: Experiment on ANN

Classifier compile function is used for training the model of ANN as seen in Figure [J]

4.4 Experiment 2: ANN Using Hyper-Parameter Tuning

Hyper-Parameter tuning is used to make the model better in terms of exploring more
depths of the data and finding new hidden layers in the dataset. As observed from the
Figure [10| we have defined only neurons for the Adam optimizer ANN function. It would
run in the batches of 32 which the learning rate.

: Jupyter Human Factor Analysis—Copy2 Last Checkpoint: an hour ago (autosaved) ﬁ Logout
File Edit View Insert Cell Kemel Widgets Help Trusted | Python 3 ¢
B+ = am e+ 4/ e B »wcoe v =

ANN Model with Hyper Parameter Tuning

In [281]: | pip install -U scikit-learn

Requirement already up-to-date: scikit-lesrn in c:‘python\lib\site-packages (@.22)

Requirement already satisfied, skipping upgrade: numpy»>=1.11.@ in c:‘\python‘lib\site-packages (from scikit-learn) (1.16.2)
Requirement already satisfied, skipping upgrade: scipy»>=@.17.@ in c:\python'lib‘site-packages (from scikit-learn) (1.2.1)
Requirement already satisfied, skipping upgrade: joblib»=8.11 in c:\python\lib\site-packages (from scikit-learn) (2.14.8)
Mote: you may need to restart the kernel to use updated packages.

WARNING: You are using pip version 19.2.1, however version 19.3.1 is available.
You should consider upgrading wia the ‘python -m pip install --upgrade pip' command.

In [282]: from keras.models import Sequential
from keras.layers import Dense, Dropout
from keras.wrappers.scikit_learn import KerasClassifier
from cklearn.model_selection import GridSearchcCv

In [283]: |def DL_Model(activation= 'relu’, neurons= 5, optimizer="Adam®)
model = Sequential()
model.add{Dense(neurons, input_dim= 5, activation= activation))
model.add({Dense(neurons, activation= activation))
model.add{Dropout(@.3))
model.add{Dense(1, activation='sigmoid'))
model.compile(loss="binary_crossentropy', optimizer= optimizer, metrics=["accuracy'])
return model

In [284]: | # Definying grid parameters

activation = ["relu’]
neurons = [5, 18, 20, 25]
optimizer = ['Adam’]

param_grid = dict({activation = activation, neurons = neurons, optimizer = optimizer)
In [285]: | c1f = KerasClassifier(build_fn= DL_Model, epochs= 158, batch_size=32, verbose= @)
In [286]: | model = GridSearchCV(estimator= clf, param_grid=param_grid, n_jobs=-1)
In [287]: | histo = model.fit(X_train,y_train}
In [288]: | print("Max Accuracy Registred: {} using {}".format({round(model.best_score ,3),

model.best_params_))

Max Accuracy Registred: ©.93 using {'activation’: ‘relu’, ‘neurons’: 1@, "optimizer’': 'Adam'}

Figure 10: Experiment on ANN using Hyper-Parameter Tuning

4.5 Experiment 3: SVM

SVM was build using the ”sklearn” library in python as this was the slowest performing
algorithm Kumar et al| (2016). the function used here is the SVC() function were the
kernel defined is linear Burnett and Si (2017). Based on this the prediction is done.
Figure (11}

“~ Jupyter Human Factor Analysis-Copy2 Last Gheckpoint: an hour age (autosaved)

File Edit View Insert Cell Kemel Widgets Help
B |+ 2 & B |4 | MRun B C B cCode v | =
Support Vector Machine

In [290]: import pandas as pd
import numpy as np

Scik rary: For S
£rom preprocessing
£rom s import confusion matrix

from sklearn import svm
import itertools
Matplotlib Library to plot the charts

import matplotlib.pyplot as plt
import matplotlib.mlab as mlab

Library for the statistic data vizualisation
import seaborn

%matplotlib inline
In [279]: classifier = svm.SvC(kernel="linear')

In [280]: | classifier.fit(X_train, y_train)

Out[286]: SVC(C=1.0, break_ties=False, cache_size=200, class weight=None, coefe=0.0,

decision_function_shape='ovr', degree=3, gamma='scale’, kernel='linear’,

max_iter=-1, probability=False, random_state=Hone, shrinking=True,
tol=0.801, verbose=False)

In [281]: prediction_SVM_all = classifier.predict(X_test)

In [282]: class_names=np.array(['0","1"])

Figure 11: Experiment on SVM

:' Jupyter Human Factor Analysis-Copy2 Last Checkpeint: an hour ago (autosaved)

Fle Edit View Insert Cell Kemel Widgets Help
B o+ @B A 4 HRn B C B coe v||=
In [283]: def plot_confusion matrix(cm, classes,

title='Confusion matrix',
cmap=plt.cm.Blues)

plt.inshou(cm, interpolation='nearest’, cmap=cmap)
plt. title(title)

plt.colorbar()

tick_marks = np.arange(len(classes))
plt.xticks(tick_marks, classes, rotation-45)
plt.yticks(tick_marks, classes)

ot = “d"
thresh = cm.max() / 2
for 1, j in itertools.product(range(cn. shape[@]), range(cm.shape[1])):
plt.text(j, i, format(em[i, i
horizontalalignment
color="white" if cm[i, j

> thresh else "black”)

plt.tight_layout()
plt.ylabel('True labe
plt.xlabel('Predicted label')

In [284]: cm = confusion_matrix(y_test, prediction SV all)
plot_confusion_matrix{cm,class_names

Confusion matrix

194

True label

&
g2

Predicted label

In [285]: | print(“the accuracy is : "sstr((cm[@][@]+cm[1][1]) / (sum(cm[e]) + sum(cm[1]))))

the accuracy is : 0.9204963235284118

Trusted

4.6 Experiment 4: SVM using Cross Validation

P

wsted| | Python3 1

Figure 12: Experiment on SVM Confusion Matrix

A

Logout

| Python 3 ¢

Using the ”Confusion_Matrix” function the plot is sets and the prediction has been
achieved. The model very precisely makes a very good results on the confusion mat-
rix. Figure Using estimator as svc we are able to get set that CM for the SVM.

There has been 10 folds for the SVM Burnett and Si (2017)), Management et al.| (2014).

Figure [I3]

= is- ast Checkpoint: an hour ago (autosave Logout
—_ Jupyter Human Factor Analysis-Copy2 vast Checkpoint an (autosaved) [o
File Edit View Insert Cell Kemel Widgels Help Trusted | & ‘P‘_v'honst
B+ B 4+ | HRw B C|W|coe e
In []: start_time = time.time()
from sklearn.swm import SVC
sve - SVC(kernel - 'linear’, random_stste - 9)

sve.fit(X_train, y_train)

y_pred = rf.predict(X_test)
end_time = time.time()

eta = ime

#10-fc validation score

accuracy _score(estimator = svc, X = X_train, y = y_train, cv =2)

svc_cross = accuracy.mean()
print("10-Fold Cross Validation Score of SVC”, svc_cross)
print('Time Elapsed:', eta)
#printing the output
model_report(y_test,

the model report function

red)

from sklearn metrics import roc_auc_score from sklearn metrics import roc_curve logit_roc_auc =roc_auc_score(y_test, logreg predict(X_test)) fpr. tpr,
thresholds = roc_curve(y_test. logreg.predict_proba(X_test)[:,1]) plt.figure() plt.plot(fpr. tpr, label="Logistic Regression (area = %0.2f)’ % logit_roc_auc)
pltplot([0, 1], [0, 1].'r-"} pltxlim{[0.0, 1.0]) plt.ylim([0.0, 1.05]} plt xlabel('False Positive Rate') plt ylabel('True Positive Rate’) plt title('Recsiver operating
characteristic’) plt.legend{loc="lower right"} pit.savefig(Leg_ROC") plt.show()

Figure 13: Experiment on SVM using Cross Validation

4.7 Experiment 5: Logistic Regression

The most simplest form of model it was implemented using the ”sk.learn.linear_model”

for the LR model Bazargan and Guzhval (2007)), Bazargan and Guzhva| (2011). Here the

log.reg.predict is set for prediction. As observed from Figure [I4 As the 10-Fold CV is

implemented with cross val score function Mathur et al. (2017)), Kharoufah et al.| (2018]).

: Jupyter Human Factor Analysis-Copy2 Last Checkpoint: an hour ago (autosaved)

File Edit View Insert Cell Kemel Widgets Help Trusted

B+ ¥ & B M % MR B C W Cod v =

Logistic Regression

In []: from sklearn.linear_model import LogisticRegression
from sklearn import metrics
X_train, X_test, y_train, y_test = train_test_split(train, test, test_size=8.2, random_state=42)
logreg = LogisticRegression()
logreg.fit(X_train, y_train}

In []: y_pred = logreg.predict(X_test)
print('Accuracy of logistic regression classifier on test set: {:.2f}'.format(logreg.score(X_test, y_test)))

In []: from sklearn.metrics import classification_report
print(classification_report(y_test, y_pred))

In []: | #Confusion Matrix
from sklearn.metrics import confusion_matrix
confusion_matrix = confusion_matrix(y_test, y_pred)
print(confusion matrix)

Logistic Regression with 10 fold cross validation

In []: start_time = time.time()
from sklearn.linear model import LogisticRegression
1r = LogisticRegression()
1r.fit(X_train, y_train)
end_time - time.time()
eta = end_time - start_time
#18-fold cross validation score
accuracy = crass_val_score(estimator = 1r, X = X_train, y = y_train, cv =18)
1r_cross = accuracy.mean()
print("1@-Fold Cross Walidation Score of LogisticRegression”, lr_cross)
print('Time Elapsed:’, eta)

In []: model_report(y_test, y_pred)

? Logout

| Python 3 ¢

Figure 14: Experiment on Logistic Regression and using 10 Fold Cross Validation

As observed from the Figure we have implemented the Stratified fold with 10
CV using the function ”StratifiedKFold” using the sciki learn |Z| It helps in explor-
ing the data and finding better outputs |Christopher and Appavu (2013). The SMOTE
on data the model of Lr is run to handle the class imbalance using the library ”im-
blearn.over_sampling”. As the number of states for random synthetic sampling are re-

stricted to 42Hofmann (2019).

- Ju pyter Human Factor Analysis-Copy2 Last Checkpoint: an hour ago (autosaved) P Logout
File Edit View Insert Cell Kemnel Widgets Help Trusted | Python 3 ¢
B+ 22 & B 4+ | MRin B C W | Code v | =

Logistic Regression with Stratified

In []: | #logistic Region Stratifed 18-fold
skf = StratifiedKFold(n_splits=1@)
skf.get_n_splits(X, y)

In []:|print(skf)

In []: | for train_index, test_index in skf.split(X, y}):
print(“TRAIN:", train_index, "TEST:", test_index)
X_train, X_test = X.iloc[train_index], X.iloc[test_ index]
y_train, y_test = y.iloc[train_index], y.iloc[test_index]

In []: | logreg.fit(X_train, y_train)
In []:|y_pred = logreg.predict(X test)

print(‘Accuracy of logistic regression classifier on test set: {:.2f}'.format(logreg.score(X_test, y_test)))
In []: | model report(y_test, y _pred)

Logistic Regression with SMOTE

In []: from imblearn.over_sampling import SMOTE
sm = SMOTE(random_state = 42)
X_train_res, y_train_res = sm.fit_sample(X train, y_train.ravel())

In []: | logreg.fit(X_train, y_train)
In []: y_pred = logreg.predict(X_test)
print(‘Accuracy of logistic regression classifier on test set: {:.2f}'.format(logreg.score(X_test, y_test)))

In []: | model_report(y_test, y_pred)

Figure 15: Experiment on Logistic Regression Stratified K-Fold and SMOTE

4.8 Experiment 6: XGBoost

It is one of the best performing models as the implementation was done using the ” XG-
BClassifier” function ﬂ So were the SimpleImputer function being imported from sk-
learn.impute as it handles if any missing values, which in this study has been deal in the
initial stages of this research. Prediction were rounded of using the round() of the values
for the predictors. As observed in the Figure [16]

"https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.
StratifiedKFold.html
Shttps://xgboost.readthedocs.io/en/latest/python/python_api.html

10

https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.StratifiedKFold.html
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.StratifiedKFold.html
https://xgboost.readthedocs.io/en/latest/python/python_api.html

~ Jupyter Human Factor Analysis-Copy2 Last Checkpoint an hour ago (autosaved)

File Edit View Insert Cell Kemel Widgets Help
B+ |3 @ B 4+ % MHRin B C W code v =
XGBoost
In [1: # First XeBoost model

from numpy import loadtxt
from xgboost import XGBClassifier

from sklearn.model selection import train test_split
from sklearn.metrics import accuracy_score

from sklearn.impute import SimpleImputer

import matplotlib.pyplot as plt

- finall 'DEATH']

split data into X and y
= final.drop(['DEATH'], axis=1)

y
X
In [1: | # split data into train and test sets

seed = 20
test_size = 6.20

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=test_size, random_state=seed)

In [1: # Fit model training data
model = XGBClassifier()
model.fit(X_train, y_train)

In []: # make predictions for test data
y_pred = model.predict(X_test)
predictions - [round(value) for value in y_pred]

In [1: | # evaluate predictions
from sklearn.metrics import precision_score
from sklearn.metrics import recall_score
sccuracy - precision_score(y_test, predictions,aversge='micro’)
print("Accuracy: %.27%%" % (sccuracy * 100.8))

In []: import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns

In [1: #Evaluation Metrics
model_report(y_test, y_pred)

Figure 16: Experiment on XGBoost

o Logout

Trusted | Python 3 ¢

The evaluation of CV in XGBoost is done using the function cross_val_score which is
imported from scikit-learn. The folds are set to 10 and for experiment purpose it was set
to 5 folds and 15 folds too. In which the best output was received with 10-folds. The

function and model fit is seen in theFigure

~ Jjupyter Human Factor Analysis-Copy2 Last Checkpoint an hour ago (autosaved)

File Edit View Insert Cell Kemel Widgets Help

B+ %@ B 4 ¢ HRin B C P coe v|[=

XGBoost with 10 fold Cross Validation

In []: | import time
start_time = time.time()
from xgboost import XGBClassifier
xgb - XgBClassifier(tree method - 'gpu hist')
xgb.fit(X_train, y_train)
Predicti the Test set results
y_pred = xgb.predict(X_test)
end_time = time.time()
eta - end_time - start_time
#10-fold cross validation score
from sklearn.model_selection import cross_val score
accuracy = cross_val_score(estimator = xgb, X = X_train, y = y_train, cv = 18)
xgb_cross = accuracy.mean()
print("1@-Fold Cro Validation Score of XGB
print('Time Elapsed:’, eta)
#printing the output using the model report function

T:", xgb_cross)

In [1: model report{y test, y pred)

e Logout

Trusted | Python 3 ¢

Figure 17: Experiment on XGBoost with 10 Fold Cross Validation

A similar approach has been taken for the stratified as the other models to explore
the data, using stratified k fold function with the splits of 10 as observed in the Figure
XGBoost is one of the best performing models using CV we managed to get a very

accurate result. The data is spilt and the trained and tested.

11

:‘ Jupyter Human Factor Analysis-Copy2 Last Checkpoint an hour ago (autosavad) ? Logout

File Edit View Insert Cell Kemel Widgeis Help Trusted | Python 3 ¢

B+ & @B 4+ % MR B C P Coe M

XGBoost with Stratified

In []: from sklearn.model_selection import StratifiedkFold

In []: #strotified 16-rFold
skf = StratifiedkFold(n_splits-18)
skf.get_n_splits(train, test)

In [1: print(skf)

In [Lipt 5t ied in test and train
for train_ est_index in skf.split(X, y):
print("T train_index, * *, test_index)
X_train, X_test - X.iloc[train_index], X.iloc[test_index]
y_train, y_test = y.iloc[train_index], y.iloc[test_index]
In []: #Fitting for XGBoost with Stratified
model. Fit(X_train, y_train)
In [1: # moke predi for test data
y_pred = model.predict(X_test)
predictions = [round(value) for value in y_pred]
In []: # evolugte predictions
ccuracy_score(y_test, predictians)
uracy: %.27%%" ¥ (accuracy * 100.8))
In [1: model_report(y_test, y_pred)

Figure 18: Experiment on XGBoost with Stratified K-Fold

4.9 Experiment 7: Gaussian Naive Bayes

:‘ Jupyter Human Factor Analysis-Copy2 Last Checkpoint: an hour ago (autesaved) ; Logout
File Edt View Inset Cell Kemel \idgels Help Trusted | Python 3 ¢
B+ 3 @B 4+ + HRn B C B coke v e

Gaussian Naive Bayes

In []: | #Import Guussian Naive Bayes model
from sklearn.naive_bayes import Gaussianng

In []: | #function of GaussionWg Classifier
gnb - GaussianNB()

In []: #Model Fitting
gnb. Fit(X_train, y_train)

In [1: #Predict the response for test dataset
y_pred = gnb.predict(X_test)

In [1: #Import scikit metrics module for accuracy calculation
from sklearn import metrics

In [1: # Model Acc
print("Accuracy:

how often is sifier correct?
,metrics.accurscy_score(y_test, y_pred))

In [1: model_repart(y_test, y_pred)

Gaussian Naive Bayes with 10 fold Cross Validation

In []: start_time = time.time()

from sklearn.naive_bayes import GaussianhB

gn - GaussianNs()

gn.fit(x_train, y_train)

end_time = time.time()

eta = end_time - start_time

ross validation score

cross_val_score(estimator = lr, X = X_train, y = y_train, cv =1a)
gn_cross = accuracy.mean()
print(“10-Fold Cro validation Score of Gaussian Naive Bayes", gn_cross)
print('Time Elapsed:', eta)

In [1: model_repart(y_test, y_pred)

Figure 19: Experiment on Gaussian Naive Bayes and with Using 10-Fold Cross Validation

in Figure[I9 the model is a linear classifier which is best fit for supervised learning. As our
data is big it is very much the best consideration. Using the function ”GaussianNB()”

12

function for predictions. The library is from sklearn. And also the 10-Fold CV is im-
plemented in this research using the cross val score() and also the
stratified fold Figure

~ Jupyter Human Factor Analysis-Copy2 Last Checkpoint: an hour ago. (autosaved)

File Edit

B +|s

: | #Import sciki

]: | # Model

View Insert Cell Kemel Widgets Help

& B 4 ¥ MR B C P cCcode v =

Gaussian Naive Bayes with Stratified

]: skf = StratifiedkFold(n_splits=18)

skf.get_n_splits(X, y)

: | print(skf)

: for train_index, test_index in skf.split(X, y):

print("TRAIN:", train_index, "TEST:", test_index)
X_train, X_test = X.iloc[train_index], X.iloc[test_index]
y_train, y_test = y.iloc[train_index], y.iloc[test_index]

1: gnb.fit(X_train, y_train)

: | #Predict the response for test dataset

y_pred = gnb.predict(X_test)

Learn metrics module for accuracy calculation
from sklearn import metrics

v, how often is the classifier correct?

print(” cy:",metrics.accuracy_score(y_test, y_pred))

]: model_report(y_test, y_pred)

implementation of

a Logout

Trusted | Python 3 ¢

Figure 20: Experiment on Gaussian Naive Bayes and with Using Stratified K-Fold

4.10 Experiment 8: Random Forest

One of the model common and widely used models is the random forest as observed
from the Figure the model uses the ensemble approach which is used from the ”sk-
learn.ensemble” to get the ”RandomForestClassifier” function as the number of classifier
decision trees and it would take an average in order to improve the accuracy and have
control over the model being over-fit ﬂ We have not defined any max depth as we wanted
the model to learn on all the basis and not be restrictive in nature Burnett and Si| (2017)).

~ Jupyter Human Factor Analysis-Copy2 Last Checkpoint: an hour aga (autosaved)

File Edit

B+ 2

View Insert Cell Kernel Widgets Help

@B |4 + MRin B C W code T =

Random Forest

1: | #Import Random Forest Model

from sklearn.ensemble import RandomForestClassifier

1: #Create a Random Forest Classifier

clf-RandomForestClassifier(n_estimators=108)

clf

the model using the training sets y pred=clf.predict(X_test)
+(X_train,y_train)

1: y_pred=clf.predict(X_test)

1: #Import scikit-learn metrics module for accuracy calculation

from sklearn import metrics

y. how often is the classifier correct?
i, metrics.accuracy_score(y_test, y_pred))

i model_report(y_test, y_pred)

Figure 21: Experiment on Random Forest

Ynttps://scikit-learn.org/stable/modules/ensemble.html

13

[Logout

Trusted ‘ Bython 3 (

https://scikit-learn.org/stable/modules/ensemble.html

As seen in the Figure 22| stratified fold would create a test set in way that each of the
class would have same class distribution and would be close connection. It is invariant
to the class [Li| (2014]). Using both the approaches of fold i.e. 10-Fold CV and stratified
fold.

:' Jupyter Human Factor Analysis-Copy2 Last Checkpoint: an hour ago (autesaved) P Logout
File Edit View Insert Cell Kemel Widgets Help Trustes |:",-'\':'v 3ic
B+ 3 H B[4 ¥ HRn B C P coke v| =

Random Forest with Stratified

In [1: skf = StratifiedkFold(n_splits-10)
skf.get_n_splits(X, y)

In [1: print(skf)

In [1: for train index, test_index in skf.split(X, y):
print("TRAIN:", train_index, "TEST:", test_index)
X_train, X_test = X.iloc[train_index], X.iloc[test_index]
y_train, y_test = y.iloc[train_index], y.iloc[test_index]

In []: #Create o Gaussian Classifier
clf-RandomForestClassifier(n_sstimators=100)

In [1: #Train the modsl using the training sets y_pred=clf.pradict(x_test)

<1f.fit(X_train,y_train)
In [1: y_pred=clf.predict(X_test)

In [1: #Import scikit-learn metrics module for accuracy calculation
from sklearn import metrics

In [y, how often is the cl er correct?
:",metrics.accuracy_: _test, y_pred))
Random Forest with 10 Fold Cross Validation
In []: start_time = time.time()

from sklearn.ensemble import RandomForestClassifier

rf = RandomForestClassifier()

rf.fit(X_train, y_train)

Pr the Test set results

rf.predict(X_test)

R = time.time()

eta - end time - start_time

#10- cross validation score

accuracy = cross_val score(estimator = rf, X = X_train, y = y_train, cv =18)
rf_cross = accuracy.mean()

print("1e-Fold Cross Validation Score of Random Forest", rf_cross)
print('Time Elapsed:', eta)

Figure 22: Experiment on Random Forest using Stratified and 10-Fold Cross Validation

References

Bazargan, M. and Guzhva, V. S. (2007). Factors contributing to fatalities in General
Aviation accidents, World Review of Intermodal Transportation Research 1(2): 170.

Bazargan, M. and Guzhva, V. S. (2011). Impact of gender , age and experience of pilots
on general aviation accidents, Accident Analysis and Prevention 43(3): 962-970.
URL: http://dx.doi.org/10.1016/5.aap.2010.11.023

Burnett, R. A. and Si, D. (2017). Prediction of Injuries and Fatalities in Aviation Acci-
dents through Machine Learning, pp. 60—68.

Christopher, A. B. and Appavu, S. (2013). Data mining approaches for aircraft accidents
prediction: An empirical study on Turkey airline, 2013 IEEE International Conference
on Emerging Trends in Computing, Communication and Nanotechnology, ICE-CCN
2013 (Iceccn): 739-745.

Hofmann, M. (2019). Analysis of aviation accidents data, (October 2018).

14

Kharoufah, H., Murray, J., Baxter, G. and Wild, G. (2018). Progress in Aerospace
Sciences A review of human factors causations in commercial air transport accidents
and incidents : From to 2000 — 2016, 99(March): 1-13.

Kumar, P., Gupta, S., Agarwal, M. and Singh, U. (2016). Categorization and stand-
ardization of accidental risk-criticality levels of human error to develop risk and safety

management policy, Safety Science 85: 88-98.
URL: http://dx.doi.org/10.1016/5.ss¢i.2016.01.007

Li, G. (2014). Pilot-Related Factors in Aircraft Crashes : A Review of Epidemiologic
Studies, (November 1994).

Management, E.; College, S. E. and Force, A. (2014). Study on the Aviation Accidents
Due to Human Factors Based on Improved Support Vector Machine 2 The selection of
key indicator based on Analytic Hierarchy Process (AHP), pp. 278-283.

Mathur, P., Khatri, S. K. and Sharma, M. (2017). Prediction of Aviation Accidents using
Logistic Regression Model, pp. 1-4.

Zhang, X. and Mahadevan, S. (2019). Ensemble machine learning models for aviation
incident risk prediction, Decision Support Systems 116(October 2018): 48-63.
URL: https://doi.org/10.1016/j.dss.2018.10.009

15

	Introduction
	System Configuration
	Hardware
	Software

	Project Development
	Data Preparation & Pre-processing

	Code used for Machine Learning Models
	Choosing Method for Feature Engineering
	Cross Validation
	Experiment 1: ANN
	Experiment 2: ANN Using Hyper-Parameter Tuning
	Experiment 3: SVM
	Experiment 4: SVM using Cross Validation
	Experiment 5: Logistic Regression
	Experiment 6: XGBoost
	Experiment 7: Gaussian Naïve Bayes
	Experiment 8: Random Forest

