~

N\ National
College
Ireland

Configuration Manual:Lung cancer detection
using machine learning techniques and image
Processing

MSc Research Project
Data Analytics

Sumit Jadhav
Student ID: 18129633

School of Computing
National College of Ireland

Supervisor: Dr. Mohammad Igbal

National College of Ireland National

Project Submission Sheet Col]ege of
School of Computing Ireland
Student Name: Sumit Jadhav
Student ID: 18129633
Programme: Data Analytics
Year: 2018
Module: MSc Research Project
Supervisor: Dr. Mohammad Igbal
Submission Due Date: 20/12/2018
Project Title: Configuration Manual:Lung cancer detection using machine
learning techniques and image processing
Word Count: 788
Page Count: 2]

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature:

Date: 12th December 2019

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). O
Attach a Moodle submission receipt of the online project submission, to | [J
each project (including multiple copies).
You must ensure that you retain a HARD COPY of the project, both for | [J
your own reference and in case a project is lost or mislaid. It is not sufficient to keep

a copy on computer.

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only
Signature:

Date:
Penalty Applied (if applicable):

Configuration Manual:Lung cancer detection using
machine learning techniques and image processing

Sumit Jadhav
18129633

1 Introduction

This configuration manual will help to replicate the research “Lung Cancer Detection
Using Classification Algorithms” from scratch. This configuration manual gives detailed
information of the required prerequisite to set up and successfully build, run and test this
research using suggested framework.

This manual is divided into following sections: Section 2 gives the details of the en-
vironment setup. Section 3 discusses about the libraries required for implementing this
project. Section 4 gives all the details regarding the dataset. Section 5 explains how the
models are implemented and contains the information regarding code repository.

2 Hardware Specification

e Operating System: Windows 10 Home Single Language (10.0, Build 18362)
e Processor: Intel(R) Core (TM) i5-3317U CPU @ 1.70GHz (4 CPUs)
e Installed RAM: 8.00 GB

e System Type: 64-bit OS, x64-based processor

2.1 Software Specification
e Anaconda Navigator for Windows (Version 1.9.7)
e Jupyter Notebook (Version 6.0.2)
e 2.3 Programming Requisites

e Python (Version 3.7.5)

2.2 Python Environment Setup

The project was completely implemented using python language, so Anaconda framework
was selected. In Anaconda framework there are several preinstalled environments like
Jupyter lab, Jupyter Notebook, Spyder, Glueviz, Orange 3, R Studio and VS Code.
Figure 1 explains the launch of Jupyter Notebook environment. Jupyter provides an
interface to write the code, build the models and testing of it.

1

) Anaconda Navigator
file Help

{D ANACONDA NAVIGATOR ETyy——

Applications on @ iz

Environments. -~
L o o & o
.t
. _— AWy
N Learning Jupyter A
o=
s JupyterLab Notebook Spyder Glueviz
0 (TS A 033t As1s Asss 0152
An extensible environment for interactive Web-based, interactive computing Scientific Python Development Multidimensional data visualization across.
and reproducible computing, based on the notebook environment. Edit and run EnviRonment. Powerful Python IDE with Files. Explore relationships within and
Py ok and i h dable docs while describing the advanced editing, interactive testing, among related datasets.
data analysis. debugging and introspection features
el
&] &
Documentation 5 @ J
Orange 3 RStudio VS Code
Developer Blog 3231 11.456 1.40.2
Component based data mining framework. Aset of integrated tools designed to help Streamlined code editor with support for
ysis . you be more productive with R.Includes R | development operations lie debugging,
v o o novice and expert. Interactive workFlows essentials and notebooks, Eask running and version control. -
- g

Figure 1: Classification models Evaluation Score

3 Libraries required

All the libraries which were required to build this research project are mentioned below
in the table 1 along with the commands which can be used to import them. Also, some
of the libraries are required to download before using them.

Table 1: Library and Command

Pandas import pandas as pd

numpy import numpy as np
matplotlib import matplotlib pyplot as pit
sklearn import sklearn

from sklearn import metrics

from sklearn.ensemble import RandomForestClassifier

from sklearn import svm, metrics, datasets

from sklearn.ensemble import AdaBoostClassifier
skimage from skimage import io

from skimage.io import imread

from skimage.transform import resize

o5 import os

o2 import cv2

tqdm from tgdm import tqdm

tensorflow from tensorflow keras.callbacks import TensorBoard
import tensorflow as tf

from tensorflow_keras.models import Sequential
from tensorflow keras.layers import Dense, Dropout,
Activation, Flatten, Conv2D, MaxPooling2D,
BatchMormalization

time import time
Path from pathlib import Path
Xgboost from xgboost import XGBClassifier

4 Dataset

The dataset for this research can be accessed from ? https://www.kaggle.com/kmader/
lungnodemalignancy The dataset has This dataset is completely available on the pub-
lic domain named Kaggle and was created by Kevin Mader. This dataset has a total

of 6,691 images in which 4,165 images are labeled as benign and 2,562 images are
labeled as malignant. This dataset was extracted from The Cancer Imaging Archive
(TCIA): https://wiki.cancerimagingarchive.net /display /Public/LIDC-IDRI and was con-
verted into a multipage Tagged Image File Format (TIFF) format. This image can be
viewed with a specific software specified by the author which are ImageJ or KNIME.
These images were split and converted into jpg as TIFF does not supports compression
and for neural network full resolution images can cause memory operation errors.

4.1 Data Pre-processing

As the dataset was present in a multipage tiff it was split into an individual image and
converted to a Joint Photographic Experts Group (JPEG) format. This was done using
TIFF Splitter tool. As all the images should be in same dimensions the reshaping of
the images was done to the dimension of 64x64 by using Python Jupyter and further
antialiasing filter was applied. Figure 2 explains the steps taken in data preprocessing.

- Resize o
Split TIFF file Antialising

Figure 2: Image Pre-processing and Transformation

For splitting the TIFF file, a tiff splitter application was used. This tool can be
downloaded from https://tiff-splitter.windows10compatible.com/ . After downloading
this tool is ready to install and after installation following interface can be seen. In
this interface selection of the input TIFF file and destination folder is required. For the
conversion of the image in checkbox is required to be clicked on.The interface of the tool
is explained in figure 3.

4.2 Loading the Dataset

After this further preprocessing of image in done where these images and stored in an
array and then resize and grayscale conversion operation is performed with the help of
the following code mentioned in figure 4:

S TiFf Splitter -] X
Getimages from 5 Splitimages to
Select 71':5', ith tifFinages Register! SE'DE(: o .::r for spiittes images New folder

Mugiwara (Ex) ~ 1§ videos ~
Gomu Gomu No (F:) windows (C:)

Dataset = Trafalgar (0:)

DB - Muginara (E:)

DB2 E Gomu Gomu Mo (F:)
B2 || lungnodemalignancy Dataset

i i 08

Output D82

B3 lungnodemalignancy

LcTse o

LungCTDiagnosis D83

Sem 1Downloads LCTsC

SEM 2 Downloads LungCT Diagnosis

Video Sem 1Downloads

Virtual Machine VMware MOL SEM 2 Downloads

VirtualBox YMs . Video .
o A P) b 1 b, VB 1 A

> >

[Process subfolders —— ~ Convert to JPEG

Rotate: |None
|
L] keep directory structure usage help

Overwrite mode: | Ask for overarite |~

Figure 3: Image Pre-processing and Transformation

DATADIR = "F://DB3"

=

: CATEGORIES - ["Benign”, “Malignant”]

: for category in CATEGORIES:
path - os.path.join(DATADIR, category) # create
for ing in os.listdir(path): # iterate over each

ing_array = cv2.imread(os.path.Join(path, img))

path to benign or malignant

read image array

Figure 4: Python code for loading the dataset

5 classification Model Implementation

5.1 Convolution Neural Network (CNN)

Implementation process for CNN is done completely from the scratch and the model can
be explained further with the help of comments present in the code.

Create Training Dataset
training_data = []

def create_training_data():
for category in CATEGORIES:

path = os.path.join(DATADIR,category) # create path
class_num = CATEGORIES.index(category) # get the classification

(@ oral)

for img in tqdm{os.listdir(path)): # iterate over each image per dogs and cats
img_array = cv2.imread(os.path.join(path,img) ,cv2.IMREAD_GRAYSCALE) # convert to array
new_array = cv2.resize(img_array, (IMG_SIZE, IMG_SIZE)) # resize to normalize data size
training_data.append([new_array, class_num]) # add this to our training data
create_training_data()

160%| | 4165/4165 [00:01<09:00, 3046.47it/s]
100%| | 2526/2526 [@@:01<00:08, 2482.67it/s]

To rondomize the dota before feeding it to the model
import random
random. shuffle{training_data)

spliting the data on the bosis of jfeatures and Lobels
X =[]

¥y = [1

for features, label in training_data:

¥X.append(features)
y.append(label}

ks
I

np.array(X).reshape{-1, IMG_SIZE,IMG SIZE, 1)}
Y = np.asarray(y)

1nput shape for the convolution
¥.shape

(6691, 64, 64, 1)

4 convolution model
start = time.process_time()
your code here

X = ¥f255.8

model = Sequential()

model.add({Conv2D(1&5, kernel_size-&, input_shape = (&4,84,1)))
model.add(Activation("relu"))
model.add(MaxPooling2D{pocl_size = (2,2}))

model.add({Conv2D(32, (2,3)}))
model.add{Activation(relu'))
model.add(MaxPooling2p({pocl_size = (2,2)}))

model.add{Conv2D(64, (3,3}))
model.add{activation(relu'}))
model.add(MaxPooling2p({pocl_size = (2,2)}))

model.add({Conv2D(128, (3,3}))
model.add{activation(relu'}))
model.add(MaxPooling2p({pocl_size = (2,2)}))
model.add({Flatten())
model.add{Dense(&4))
model.add{Dense(1)})
model.add{activation(sigmoid'))
model.compile{loss = "bimary_crossentropy™,
optimizer = "adam”,
metrics = ['accuracy'])

model.fit{x,y, batch_size = 1, epochs = 18, validatien_split = 8.3, callbacks = [tensorboard])

print{time.process_time() - start)

In [22]:

Train on 4583 sam
Epoch 1/18
1/4682 [......
batch_end) is slo
4583/4532 |

model. sumsary |

Model: "sequential®

Layer {tvpe)} Output Shape Param #
convad (ConvaD) (none, 59, 52, 18) &2
activation {activation) {Mone, 5%, 59, 18}]
max_poocling2d (MaxPooling2D} (None, 29, 23, 16) 2
conv2d_1 (ConvaD) (Mone, 27, 27, 32} 2548
gctivation_1 (activation) (Mone, 27, 27, 32)]
max_poocling2d_1 (MaxPooling2 (None, 13, 13, 32) 2
conv2d_2 (ComvaD) {Mone, 11, 11, &4) 12495
activation_2 (activation) {Mone, 11, 11, &4) 2
max_pooling2d_2 (MaxPooling2 (Ncne, 5, 5, &4)]
conv2d_3 (ComvaD) {Mone, 3, 2, 128} 73856
activation_z (activation) {Mone, 3, 3, 128) 2
max_pooling2d_3 (MaxPooling2 (None, 1, 1, 128)]
flatten (Flatten) {Mone, 128) 2

dense {Dense) (Mone, &4) 8256
dense_1 (Dense} {Mone, 1) 85
activation_#£ (Activation) {Mone, 1) 2

Total params: 185,985
Trainable params: 125,985
Mon-trainable params: @

ples, validate cn 2888 samples

tasssasssssssansssennaas] - ETAD 2:34:18 - loss: 8.5118 - accuracy: 1.8022WARNING:tensorflow:Method (on_train
w compared to the batch update (@.329812). Check
1 - 122s 2Ims/sample - loss: @.5566 - aCCuracy: 9.5482 - val_loss: @.6878@

cy: 8.7087
Epoch 2/18
4583/4532 |

v: 8.7216
Epoch 3/18
4583/4532 |

1 - 12es

cy: B.7445
Epoch 4/12

4583/4532 |
cy: B8.7371
Epoch 5/18

1 - 12es

4583/4532 |
cy: B8.7759
Epoch &/18
4583/4532 |

1 - 1ezs

1 - 1ezs

cy: B.7334
Epoch 7/18
4583/4532 |

1 - 1e1s

cy: B.7334
Epoch 2/18
4583/4532 |

1 - 1ess

cy: 8.7913
Epoch 9/18
4583/4532 |

1 - 1e1s

cy: 9.8893
Epoch 18/12
4583/4532 |

1 - 1e1s

cy: 8.8122
3195, 648625

21ms/sample

21ms/sample

22ms/sample

22ms/sample

22ms/sample

22ms/sample

22ms/sample

22ms/sample

loss: 8.5671

loss: ©.5@26

loss: @.4521

loss: @.4851

loss: @.3558

loss: @.31&2

loss: @.2844

loss: ©.2524

your callbacks.

accuracy.

accuracy.

accuracy.

accuracy.

accuracy.

accuracy.

accuracy.

accuracy.

8.7135 -

8.7588 -

@.7858 -

9.8893 -

9.8292 -

2.8518 -

9.8742 -

9.8943 -

1 - 985 2ims/sample - loss: @.6874 - accuracy: ©.5867 - val_loss: 2.3881 -

val_loss: @,5413

val_loss:

val_loss:

val_loss:

val_loss:

val_loss:

val_loss:

val_loss:

L3414

4827

L4618

L4551

5277

5199

4812

wal_accura

val_accurac

wal_accura

wal_accura

wal_accura

wal_accura

wal_accura

wal_accura

wal_accura

wal_accura

y_pred = model.predict_classes(X)

print{y_pred)

[[e]
[2]
[2]
[2]
[1]
[2]]

print{"Precision:",metrics.precision_score(y, y_pred)})
print{"Recall:" ,metrics.recall_score{y, y_pred))
print{"F1 score:",metrics.f1_score(y, y_pred))

Precision: @.9331787317873171
Recall: B.7573238321456849
=1 SCore: @.8361813986813986

5.2 Support Vector Machine (SVM)

For applying SVM following code was used for implementation:

from pathlib import Path

import matpletlib.pyplot as plt

import numpy as np

from sklearn import svm, metrics, datasets
from skimage.io import imread

from skimage.transform import resize
import time

start = time.process_time() # To calculate time
def load_image files(container_path, dimension=(&4, &4)): # poth and dimensions

image_dir = Path({container_path) # storing the image directory
folders = [directery for directory in image dir.iterdir{) if directory.is_dir{)] # cotegory folder molignont and benign
categories = [fo.name for fo in folders]

descr = "syM"

images = []
flat_data = []
target = []

for i, direc in enumerate(folders):
for file in direc.iterdir(}:

#img = skimage.io.imread{file)
img = imread(file,plugin="matplctlib’)
img resized = resize(img, dimension, anti_aliasing=True, mede='reflect'} # imoge preprocessing
flat_data.append({img_resized.flatten(})
images.append(img_resized) # new resiize imoges appended
target.append(i)

flat_data = np.array(flat_data)

target = np.array(target)

images = np.array{images)

return Bunch{data=flat_data,
target=target,
target_names=categories,
images=images,
DESCR=descr)

image_dataset = load_image files{"F://DB3") # dotaset poth

¥_train, X _test, y_train, y_test = train_test_split(
image_dataset.data, image dataset.target, test_size-8.1,random_state-=183) # datg split in test ond train

sve = swm.SVWC({kernel="rbf", gamma = "autc') # model Implementaiion
swe. fit(X¥_train, y_train)

y_pred = syC.predict(X_test)

print{"classification report for - “n{}:wn{}wn".format(
swe, metrics.classification_report(y_ftest, y_pred))) # metric report

print{time.process_time{) - start)

Classification report for -

SWC(C=1.8, cache_size=288, class_weight=None, coefe=0.8,
decision_function_shape="ovr', degree=3, gamma='zute', kernel='rbf’',
max_iter=-1, probability=Fzlse, random_state=None, shrinking=True,
tol=8.221, verbose=Falze):

precision recall fl-score support

2 2.69 a.97 A.81 411

1 2. 86 a.32 .45 259

accuracy a.72 578
macro avg 2.73 @54 A.54 578
weighted avg 2.76 a8.72 B,57 578

568.2099625

5.3 Random Forest (RF)

For applying RF following code was used for implementation:

from pathlib import Path

import matplotlib.pyplet as plt

import numpy as np

¥matplotlib notebook

from sklearn import swm, metrics, datasets

from skimage.io import imread

from skimage.transform import resize

from sklearn.ensemble import RandomForestClassifier

import time

start = time.process_time()} # To colculate time

def load_image_files(container_path, dimension=(&4, 64)): ## path and dimensions
image_dir = Path(container_path)
folders = [directery for directory in image_dir.iterdir({) if directory.is_dir{)}]# cotegory folder molignant and benign
categories = [fo.name for fo in folders]

deser = "Random Forest”

images = []
flat_data = []
target = []

for 1, direc in enumerate(folders):
for file in direc.iterdir():

img = imread(file,plugin="matplotlib”)
img_resized = resize{img, dimension, anti_aliasing=True, mede='reflect'}# image preprocessing
flat_data.append(img_resized.flatten())
images.append(img_resized) # new resiize imgges oppended
target.append(i)

flat_data = np.array(flat_data)

target = np.array(target)

images = np.array(images)

return Bunch{data-flat_data,
target-target,
target_names=categeries,
images=images,
DESCR=descr)

image_dataset = lcad image files("F://DB3") # dotaset path

¥_train, X_test, y_train, y_test = train_test_split(
image dataset.data, image_dataset.target, test_size-8.3,random state-183) &£ doto split in test ond troin

clf = RandomForestClassifier(n_estimstors=18a)

fit the troining data to the model
clf.fit(x_train, y_train)

clf_pred = clf.predict(X_test)

print{"Classification repert for - ‘\n{}:\n{}wn".format{
clf, metrics.classification_report(y_test, clf_pred)}) # metric report

print{time.process_time() - start)

Classification report for -

RandomForestClassifier(bootstrap=True, class_weight=Ncne, criterion="gini',
max_depth=None, max_features='auto', max_leaf_nodes=None,
min_impurity decrease=8.8, min_impurity split=none,
min_samples_leaf=1, min_samples_split=2,
min_weight_fracticon_leaf=8.2, n_estimatcrs=18¢,
n_jobs=None, ccb_score=False, random_state=None,
verbose=8, warm_start=False}:

precision recall fil-score support

2 2.81 8.23 B8.87 1266

1 2.85 B8.83 8.72 742

accuracy 8.82 2203
macro avg .83 8.78 6.8@ 2808
weighted avg 2.82 2.82 B8.81 2208

65,5625

5.4 Adaptive Boost (ADABost)

For applying ADABost following code was used for implementation:

import time

start = time.process_time() # To colculate time

from pathlib import Path

import matplotlib.pyplet as plt

import numpy as np

from sklearn.utils import Bunch

from skimage.io import imread

from skimage.transform import resize

from sklearn.ensemble import AdaBocstClassifier

def load_image files(container_path, dimension=(64, 62)): | # path and dimensions

image_dir = Path{container_path)
folders = [directory for directory in image dir.iterdir() if directory.is dir{)] # category folder malignaont and benign
categories = [fo.name for fo in folders]

descr = "ADABOOST"

images = []
flat_data = []
target = []

for i, direc in enumerate(folders):
for file in direc.iterdir():

#img = skimage.io.imrecd{file)
img = imread(file,plugin="matplotlib’}
imz resized = resize(img, dimemsion, anti_aliasing=True, mode="reflect') # image preprocessing
flat_data.append{img_resized.flatten())
images.append(img_resized) # mew resiize images appended
target.append(i)

flat_data = np.array(flat_data)

target = np.array(target)

10

return Bunch{data=flat_data,
target=target,
target_names-categories,
images=images,
DESCR=descr)
image_dataset = load_image_files("F://DB3") # dotaset path
dota split in test and train
¥_train, X _test, y_train, y_test = train_test split(image dataset.data, image_dataset.target, test size-8.1,random state-1a9)
y_test.shape
classifier = AdaBoostClassifier()
classifier.fit(x_train, y_train) # model Implementation
preds = classifier.predict{X_test)
print({"Classification report for - ‘n{}:\n{}n".format(
classifier, metrics.classification_report(y_test, preds))) # metric report

print{time.process_time() - start)

Classification repert for -
AdaBoostClassifier(algorithm="5AMME.R", base_estimator=Mone, learning_rate=1.2,
n_estimators=58, random_state=none):
precision recall fl-scere support

2 2.78 2.85 .77 411

1 e.54 8.41 .58 259

accuracy 8,58 578
macro avg 8.67 8.63 a.64 &78
weighted avg 2.68 8,68 B.57 578

238.125

5.5 Extreme Gradient Boost (XGBoost)

For applying XGBoost following code was used for implementation:

1 import time

start = time.process_time() # To calculate time

from pathlib import Path

import matpletlib.pyplet as plt

import numpy as np

from sklearn import swm, metrics, datasets

from sklearn.utils import Bunch

from skimage.io import imread

from skimage.transform import resize

from xgboost import XGBClassifier

def load image_files(comtainer_path, dimension=(g%, £4)): # path and dimensions
image_dir = Path{container_path)
folders = [directeory for directory in image dir.iterdir{) if directory.is_dir{)] category folder malignant and benign
categories = [fo.name for fo in folders]

descr = "XGBOOST"

images = []
flat_data = []
target = []

for i, direc in enumerate(folders):
for file in direc.iterdir(}:

#img = skimage.io. ead(file)
img = imread(file,plugin="'matplctlib®}
img resized = resize(img, dimension, anti_aliasing=True, mode="reflect'} # image preprocessing
flat_data.append({img_resized.flatten())
images.append{img_resized) # new resiize images agppended
target.append(i)

flat_data = np.array(flat_data)

target = np.array{target)

images = np.array{images)

11

return Bunch(data=flat_data,
target-target,
target_mames=categories,
images=images,
DESCR=descr)
image_dataset = load image files("F://DB3") # dataset poth
dato split im test and troin
¥_train, X _test, y train, y test = train_test split(image dataset.data, image dataset.target, test_size-8.1,random state-1&9)
y_test.shape
classifier = XGBClassifier()
classifier.fit(x_train, y_train) # model Implementation
preds = classifier.predict{X_test)
print{"cClassification report for - ‘\n{}:wn{}\n".format(

classifier, metrics.classification report{y test, preds))) # metric report
print{time.process_time{) - start)

Classification repert for -

¥GBClassifieribase_score=a.5, booster='gbtree', colsample_bylevel=1,
colsample_byncde=1, colsample_bytree=1, gamma=2,
learning_rate=e.1, max_delta_step=8&, max_depth=3,
min_child weight=1, missing=Nome, n_estimators=1e2, n_jobs=1,
nthread=None, cbjective='binary:logistic', random state-8,
reg_alpha=2, reg lambda=l, scale_pos_weight=1, seed=Ncne,
silent=None, subsample=1, verbosity=1):
precision recall fl-score support

a 8.75% 8.93 B8.83 411

1 8.83 §.48 8.82 259

SCCUFECY a8.76 &78
macro avg 8.79 8.71 8.72 &7@
weighted avg 8.78 8.78 8.7% &78

2456.5625

6 References

e Dataset Source : https://www.kaggle.com/kmader/lungnodemalignancy

e Code Reference for CNN : https://pythonprogramming.net/loading-custom-data-
deep-learning-python-tensorflow-keras/

e Code Reference for Other CLassification Models: https://github.com/Abhishek-
Arora/Image-Classification-Using-SVM /blob /master /src/imageClassifier.py

e Code Reference for Tensorflow Learning: https://www.tensorflow.org/api_docs/python /tf

e Code Reference for Learning Keras : https://www.tensorflow.org/api_docs/python/tf/keras/

12

	Introduction
	Hardware Specification
	Software Specification
	Python Environment Setup

	Libraries required
	Dataset
	Data Pre-processing
	Loading the Dataset

	classification Model Implementation
	Convolution Neural Network (CNN)
	Support Vector Machine (SVM)
	Random Forest (RF)
	Adaptive Boost (ADABost)
	Extreme Gradient Boost (XGBoost)

	References

