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Improvement in auto scaling mechanism of cloud
computing resources using Composite ANN

Ashish Ekhande
x18148221

Abstract

In cloud computing, auto scaling has attracted considerable attention from re-
searchers and organizations for acquiring and releasing resources based on real-
time demand from large data centers. Elasticity enables auto scaling resources
on-demand; thus, a pay-as-you-go model can be implemented. Auto scaling suf-
fers from various complexities and challenges because allocation and de-allocation
of resources is dynamic as per the workload demand. The false prediction of re-
source allocation may lead to reduced quality of service and violation of service
level agreements. For predicting resource requirements, various machine learning
and deep learning (DL) technologies have been used. Although DL methods are
accurate with predictions, they require Big Data. With increase in the size of input
data, the model’s complexity increases, which leads to overhead on the system. In
this study, an artificial neural network (ANN) with linear regression is used to effi-
ciently predict resource requirements. Aim is to achieve optimal resource allocation
for systems with limited computing capacity and minimum overhead on the sys-
tem. To minimize the input and utilize less hardware resources for prediction while
retaining accuracy in the output that was produced, ANN with optimized linear
regression is used. The results demonstrate that linear regression optimally minim-
izes weights on the nodes through each layer. Furthermore, when this minimized
output is allocated to an ANN, it produces an ameliorated output with minimum
overhead on the system.
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1 Introduction

1.1 Cloud computing at a glance

Cloud Computing provides virtual resources which are accessible almost anytime any-
where. It is broadly bifurcated into SaaS, IaaS and PaaS. Each form having its own
unique usage. Businesses have greatly boomed over the years due to the upsurge of
Cloud Computing technology. In the Cloud technology, we use remote resources which
in turn prove to be beneficial for the organizations in saving costs for servers and other
hardware equipment. Dynamic provisioning of IT services is employed and carried out
in a faster, cost effective manner.

There are plethora of reasons to deploy this mechanism, one of them being reduced
costs where hardware implementation is least as everything is stored on the cloud servers.
Secondly, it is quite secure as the information stored on cloud is encrypted and regular
backups are initiated at defined intervals. The best part comes in terms of storage, where
the end user gets tremendous amount of storage virtually which is the need of the hour
in today’s world especially for any kind of data handling.

Cloud computing provides scalable yet flexible solutions to customers. It is quite
elastic and ubiquitous in nature and from there we can derive auto-scaling, where users
can literally have as much or as little as they require at a given time. Workload resili-
ence is implemented for better performance. It ensures efficient utilization of resources,
minimizes rent expenditures, and ensures sufficient capacity for processing.

1.2 Challenges in deploying cloud techniques

Employing Cloud Computing alone also comes with a few drawbacks. We need more
understanding of the complex, diverse and unstructured data lying around. There is
a high chance where this data is quite inter connected but not understandable to the
human brain at a glance. We need more powerful computational tools to assess this
data with combinations, patterns and working algorithms persuaded by human brains
to configure the “unseen hidden” data. This is achieved by interlinking the concepts of
Deep Learning in Cloud Computing. The big cloud computing companies are venturing
on democratizing artificial intelligence on a much larger scale.

One of the drawbacks in cloud computing is managing the variable resources and
allocation. This creates a set back to the system and cannot be used to its maximum
efficiency. With the auto scaling technique that I have proposed to use in my work, this
drawback is eradicated and cloud resource management is used at its fullest through auto
scaling. Load balancing is maintained without causing any issues to the live users.

Required resources should not be over-provisioned As it leads to increase in cost;
however, when under-provisioned, the resources will definitely not have the capacity to
meet the customer’s requirements (Nikravesh et al.; 2015). Because the workload demand
of customers is volatile, the automatic scaling provision is essential to scale resources on
demand. This provision also ensures that human intervention is completely eliminated
and overall cost is reduced while simultaneously fulfilling the quality of service (QoS) Qu
et al. (2018).

The on-demand pricing model is a strategy in which customers can be provided with

2



real-time cloud resources for a fixed cost. Amazon S3 and Microsoft Azure are well-
renowned cloud service providers that have been offering services using this model Evan-
gelidis et al. (2018). Many scaling architectures have been used for both horizontal and
vertical scaling, and researchers are trying to resolve problems in scaling the resources
using machine learning (ML) techniques and strategies. In fact, threshold mechanisms
have been used the researchers, but they have proven to be inadequate.

1.3 Motivation to use ML for Auto scaling

Auto scaling is being used to scale resources because it propose solutions to the ever-
growing demand along with performance. To implement auto-scaling for dynamic alloc-
ation of resources, certain rules are required. In the literature, the two major approaches
for auto-scaling are proactive and reactive approaches Gajjar and Shah (2015). In the
proactive approach, auto-scaling makes use of ML and predicts the future utilization of
resources; however, in the reactive approach, it focuses on to the current state of the
system and allocates resources accordingly.

Artificial neural networks, are a combination of outer layers with interconnecting
neurons .The layers help in understanding the complex patters of the objects. I believe
that with this technique, the workload prediction in cloud computing can be improved
to a great extent. If a model is implemented with ANN linear regression, it is capable
to produce an appropriate mutation strategy coupled with an optimum crossover rate.
With the proper input and feedbacks given to these models, we can imagine what great
heights we can achieve with the computations.

Many researchers have attempted to address auto scaling using proactive approaches
and artificial intelligence, ; however, it lead to overhead on the system and performance
degradation. Therefore, in this study, I have used linear regression to accurately predict
time series-based inputs of data and then resources are allocated by passing minimized
weights to ANN.

It is quite positive to believe that Cloud Computing coupled with ANN linear re-
gression will achieve the goals predefined. Over the next few decades this technology is
prone to emerge among IT decision-makers and business leaders are likely to invest and
use the benefits offered by this model. This technology will prove to be a top picked
destination to operate on the higher cloud platform providers. To continue to supply
unlimited services on demand, auto scaling is pre-eminent with the help of such modified
tools and makes the platform an “Intelligent Cloud”.

1.4 Research objectives

• How efficiently can composite learning (i.e., ANN with linear regression)
perform auto-scaling as compared to other techniques?

• Does minimizing the system overhead impact the model’s accuracy?

The aim of this research is to implement a ANN with linear regression to improve the
auto scaling mechanism of cloud resources for different workloads.
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2 Literature Review

Many studies have studied the development of efficient auto-scaling systems for cloud
computing. In this section, I am going to review some of the relevant studies in this area.

2.1 Previous work in auto-scaling

Singh and team Singh et al. (2019) reviewed the existing techniques in the literature and
categorized the challenges in auto scaling multi-tier web applications. They addressed
all existing techniques of auto-scaling that tend to maintain service level agreements
(SLAs) while simultaneously improving the QoS. Qu et al. (2018) surveyed auto-scaling
of web applications with resource estimation performed using auto scaling techniques such
as rule-based strategies, fuzzy inference, analytical modeling, artificial intelligence, and
hybrid techniques. Gajjar and Shah (2015)reported that hybrid techniques that use the
strength of ML techniques and analytical modeling are successful in resource estimation.

In Guan et al. (2017) ,authors have introduced the strategy to efficiently train deep
learning model with asynchronous inputs. When compared with Fazayeli (2014) indi-
vidual Adagrad and RMSProp algorithms, demonstrated strategy accelerates training
process with low consumption of memory. From results of the proposed model, it is evid-
ent that almost linear speedup is achieved when model is trained with multiple inputs.

2.2 Threshold based traditional systems for Auto-scaling

Liao et al. (2015) ) consider that workload demands in cloud computing are compromised
to reduce the operating of cost of virtual machines. They mitigated increased cost and
improved the response time of the system by proposing a dynamic threshold adjustment
strategy. Biswas et al. (2015)introduced a broker that acquired resources as per demand
from the cloud and ensured that QoS is maintained and cost is reduced. The results were
obtained by analyzing the impact of the load factor, arrival rate, laxity factor, service
time, and user charge.

Fallah et al. (2015) proposed a novel auto scaling approach based on learning auto-
mata (NASLA). They proved that the proposed approach tends to minimize overhead of
scaling procedure and outperforms threshold-based algorithms. Mahmud et al. (2015)
proposed an algorithm called budget-constrained auto scaling (BATS). For performance
evaluation, the method was implemented on Microsoft Azure with a decrease in delay
by 34%. Furthermore, the budget was evenly distributed and cost was reduced to 10%
compared with threshold-based systems.

T. Chen (Chen and Bahsoon; 2015) worked on self-aware and self-adaptive cloud auto-
scaling systems and achieved maximum throughput and minimized the cost. They offered
a solution for optimal trade-off using ant colony algorithms. Similarly,(Biswas et al.;
2015) reported that the proposed technique transcends other techniques when making
a quality trade-off decision. However, with this trade-off, there is considerable violation
of requirements. Evangelidis et al. (2018) used a probabilistic model and proposed an
approach that amends the time and cost of testing the cloud-based applications while
maintaining accuracy in results.

Tseng et al. (2018) introduced the fog platform using a hypervisor and confirmed with
help of their proposed technique that an enhanced service scale can be achieved. Guo et al.
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(2018)worked on auto-scaling of applications using a shadow routing-based approach to
minimize the use of physical machines. Han et al. (2012) ) introduced a light-weight and
cost-effective scaling approach using LSU and LSD algorithms.

Figure 1: Auto Scaling Taxonomy

2.3 Proactive approaches for Scaling

According to Arabnejad et al. (2016),ML techniques can provide improved solutions
to resolve problems associated with auto scaling compared to the traditional threshold-
based techniques. This algorithm is a combination of fuzzy control that is responsible
for mapping auto-scaling variables and fuzzy Q-learning algorithm responsible for the
learning process and for allocating policies at run time. Hwang et al. (2015) reviewed
approaches such as implementation of proactive scalability in hybrid clouds using ML
and proactive memory scaling. They claimed to have increased accuracy of predictions
and improved resource allocation; however, the results produced were not promising, and
the detailed report of the events and experiments was missing and trade-off was unclear.

Benifa and Dejey (2019) proposed reinforcement learning-based pro-active auto-
scaler (RLPAS) algorithm that learns from the parallel operating environment and al-
locates resources. The algorithm provides the optimized solution as resource utilization
and the throughput is improved with reduction in response time. Parekh and Pandi
(n.d.)proposed a ML-based auto-scaling approach for a cloud environment that helps in
predicting accurate workloads. They used a broker management that handles incoming
requests using a match-making algorithm.

In dynamic traffic changes, a series of experiments were performed by Rahman
et al. (2018) to observe response. The algorithms used include random forest (RF), J48,
REPtree, decision layer, multilayer perceptron and Bayesian network. They confirmed
that the RF technique outperforms all other techniques. Qu et al. (2018) classified ML
approaches for auto-scaling web applications.Souza and Netto (2015) proposed a load
algorithm that computes the distribution of delays and an adaptation algorithm that
handles the peaks. These algorithms were compared to the state-of-the-art threshold
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algorithm. The results demonstrate that the load algorithm consumes fewer resources
compared to others, whereas the threshold algorithm performs better when a large set of
data is used.

Biswas et al. (2015) proposed a hybrid auto-scaling algorithm that works on SLS-
driven architecture that caters advanced reservations and on-demand requests. They
used various workload parameters such as load factor, MST, MAR, laxity factor, user,
and broker cost rate. All of these parameters studied with each other and confirmed
that higher profits can be achieved. Islam et al. (2012) worked on empirical prediction
models, and the proposed approach uses error correction neural network (ECNN) and
linear regression combined with a sliding window technique for the effective forecasting
of resource utilization.

Nikravesh et al. (2015) worked on proactive auto scaling and combined it with time-
series prediction algorithms. To predict the future characteristics of a virtual system, they
used neural networks and support vector machines. Moreover, three types of workloads
were considered such as growing workload, periodic workload and unpredicted workload.
After establishing the parameters for multi-layer perceptrons, both support vector ma-
chine (SVM) and NNs were trained for learning for prediction. The proposed method
confirmed that when there are predicted workload patterns, the SVM provides improved
accuracy compared to NNs, although in an unpredicted environment a NN performs
better than SVM. Table 2.3 shows a comparative analysis for different auto scaling ap-
proaches.

2.4 Review on Gaps in Literature

Many researchers have come up with very innovative ideas to the automatic scaling mech-
anism for computing resources. We discussed this technique previously in 2. However,
traditional systems with threshold based auto-scaling mechanism fail to accommodate
fluctuating demand of workload which ultimately results in over or under-provision of re-
sources. Machine Learning based techniques uses large volume of historical data generated
from the different sensors of the system. As the number of input increases, complexity
of the model also increases and this may result in increasing system overhead. Adam
algorithm Guan et al. (2017), which is used to train model faster using asynchronous
inputs can be utilised to reduce the model complexity while maintaining good accuracy.
Linear regression coupled with ANN can be used to achieve these results. The proposed
work is divided into various stages, and each section will be discussed in detail in the
upcoming sections.

The comparative analysis for different auto scaling approaches is shown in Table 2.4
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Paper Title Method Advantages Gaps in Literature
An auto-scaling
frame-work for con-
trolling enterprise
resources on cloud

Threshold based
broker

Variety of factors are
considered for auto-
scaling

Real-time provision
of resources can not
predict fluctuating
demands.

An Efficient Ap-
proach for Resource
Auto-Scaling in
Cloud Environments

Reinforcement
Learning with
Markov Decision
Process (MDP)

Cost Aware model
is better in terms
of SLA violation and
system stability.

High Vectorial spa-
tial complexity.

Auto-Scaling Net-
work Resources using
Machine Learning
to Improve QoS and
Reduce Cost

Random forest,
Decision Tree,
J48, MLP, Bayes-
Net, Decision
table and Ran-
dom tree

ML classifier learns
from historic VNF
auto-scaling de-
cisions and accuracy
of 96.5%.

Computing resources
are not considered in
experiment

A Reinforcement
Learning Based
Auto-Scaling Ap-
proach for SaaS Pro-
viders in Dynamic
Cloud Environment

Q-Learning based
self adaptive
method (Im-
plemented in
Matlab)

Performed Optimal
resource allocation
in dynamic cloud
environment by con-
sidering different VM
pricing mechanism

learning process is
expensive to cover
optimal policy.

Towards an Auto-
nomic Auto-Scaling
Prediction System
for Cloud Resource
Provisioning

Support vector
machine (SVM)
and Neural
Network (NN)

SVM predicted
better results for
growing and periodic
workloads, while
the neural network
Focused only on the
predicted workloads.

Performed better
for unperiodic work-
loads. Accuracy
depends upon the
nature of workload.

Table 2 : Comparison of Different Works for Auto Scaling Mechanism
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3 Methodology

The key step while performing auto scaling tasks is the scaling controller component.
In this section, methodology for an ANN and linear regression is discussed to provide
efficient solution by maximizing the accuracy.

3.1 Artificial Neural Network

Based on a biological neural network, an ANN is a computing system that has the ability
to learn from data to perform a specific set of tasks without applying any rule-based
methods. ANNs are called as multi-layer perceptrons, and nodes in the ANN that are
connected to each other are neurons. The connection with each neuron is called edges,
and a weight is associated with both neurons and edges, which changes itself as learning
proceeds. A Neural network comprises three layers: input layer, hidden layer, and output
layer. In the Neural network, except the input node, each node has the weighted sum of
inputs, which is forwarded using a non-linear activation function. The direction of signals
is in the forward direction from left to right.

Figure 2: Simple ANN architecture

3.1.1 Tunning of Hyper Parameters

A manual tuning of hyper parameters is essential to efficiently train the model. It involves
the selection of activation function, optimization algorithm, input size, output size, num-
ber of hidden layers, number of nodes in hidden layers, input format, and output format.
A rectified linear unit (ReLU) activation function is responsible for determining weights
and hidden neurons associated. In our experiment, the input size is 9, the size of output
layer is 1, and two hidden layers are being used. The number of hidden layers primarily
depends on the input. If the number of nodes in the hidden layer is more than the input
size, the model may suffer from over-fitting. To overcome this limitation, different num-
ber of nodes were used for both models, and both models of ANN were trained over 200
epochs. Moreover, to optimize the algorithm with training data, the Adam optimization
algorithm has been used. Adam optimization combines the property of adaptive gradient
algorithm (AdaGrad) and root mean square propagation (RMSProp).
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3.2 Linear Regression

Linear regression is the linear modelling approach for performing forecasting and predic-
tions. The model can then be trained with datasets containing explanatory variables,
which either can be independent or dependent in nature. Linear regression is useful for
identifying a relationship between predicted and actual values by fitting a linear equa-
tion. It can be used for classification, regression, and for time series prediction analysis.
A simple linear regression can be written as follows:

y = b0 + b1 ∗ xj (1)

where y is the dependent variable, b0 is constant, b1 is the coefficient and xj is the
independent variable.
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4 Design Specification

The proposed framework has been used to dynamically allocate resources as per the
requirement. The development of this system involved various steps such as data gener-
ation, task queue, virtual machine of processing tasks and, most importantly, a scaling
controller that required to dynamically allocate the resources as per the system’s require-
ment and the number of tasks that are allocated to the system. All histories were plotted
with the help of an activity plotter.

4.1 Data Generation

To perform any predictive analysis historical To perform any predictive analysis, historical
data are required. In this work, time-series based synthetic dataset is generated with the
help of a task generator, which is a class that can generate random work load in a
system. It has the ability to generate M new tasks in a second and uses the sine function
to manipulate load according to the sine wave. The generated tasks will be stored in
a task queue. To randomly generate tasks with different workloads, mathematical sine
function is used with a randomization feature.

4.2 Task Queue

The task queue simulates a virtual task storage system. After generating random tasks,
all tasks will be temporarily stored in a task queue. Task queue is a place where all tasks
can be stored and later will be used to process tasks in machine.

4.3 Machine

Machine simulates the working of any computing resources such as GPU, CPU, or RAM
within a cloud environment. It fetches tasks from a task queue and processes them. Before
the tasks are fed, the machine has a processing capacity of N, which can be dynamically
changed depending on the work load of the machine. Moreover, machine maintains the
history about the changes of its resources.

4.4 Scaling-Controller

Scaling Controller is an important component of the proposed system; it scales the re-
sources up or down based on the predicted future requirements. To have a comparative
analysis between different architectures of simple ANN and proposed ANN (Composite
ANN), two types of controllers; simple scaling controller (SSC) and composite scaling
controller (CSC) are simulated. Architecture and results for both systems are discussed
in subsequent section.
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Figure 3: Flow Diagram of Proposed Work

The primary difference between SSC and CSC is that SSC uses a simple ANN to
process data and perform predictive analysis. However, the CSC uses the combination of
linear regression and ANN to process data. Here, the linear regression is used to reduce
the number of inputs; subsequently, the reduced inputs will be processed into an ANN.
This change can reduce complexity to a considerable extent and will result in reducing
system overhead and improve predictions.

4.5 Activity Plotter

Activity Plotter collects information from the machine and task queue, and then provides
a graphical representation to analyze system activities in an efficient manner. It contains
the time-series data and has information about current execution and predicted require-
ments. The result section shows the graphical representation of Activity Plotter.
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5 Implementation

In this work, a virtual system is demonstrated to incorporate the auto scaling mechan-
ism. To implement the proposed system described in 3 Python programming language
is used. Python is high level language equipped with extensive libraries which can take
advantage of machine learning capabilities. The mentioned system has been run on a
virtual machine with specifications.

• Operating system : Ubuntu 18.04 LTS (64 bit)

• CPU : 4 CPU’s

• RAM : 4 GB

• Storage : 10 GB

• Language used : Python

• Libraries Required : Numpy, sklearn, tensorflow 2.0, matplotlib

Virtual tasks were generated with the concept of threading. Classes such as task queue
and machine are defined to process these threads, which were randomly generated and
used to manipulate the system’s load. Two ML approaches: linear regression and ANNs
are used for predictions and resource consumption. To perform mathematical operations,
NumPy was used. As ANN is being used to train the model, Tensorflow 2.0 is a ML library
for python which is leveraged to efficiently train the model. To plot the comparison graph
in Activity Plotter, Matplotlib was used. 200 epochs are used to train both models. ReLU
was used as an activation function. Then, to optimize the algorithm with training data,
Adam optimization algorithm was used. Adam optimization combined the property of
AdaGrad and RMSProp to develop an optimized algorithm.
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6 Results and Discussion

In this section, the comparative analysis between both methods is discussed.

6.1 Experiment 1 / Simple Scaling Controller

SSC uses the simple ANN to process data and perform predictive analysis. However, with
increase in the input size of the model, there is a considerable increase in the number of
weights, which increases the model’s size. If the input size is 9 and two hidden layers
are being used, i.e. one with eight nodes and another with six nodes, respectively, with
output layers of one node; Then, the total number of trained weights is 9 * 8 + 8 * 6 +
6= 126. Here, 126 are the total number of trained weights, and Figure 4 shows the result
for SCC.

Figure 4: Graphical representation for Simple Scaling Controller

Here the orange line shows the predicted requirements and blue line shows the pro-
cessed tasks.

6.2 Experiment 2 / Composite Scaling Controller

CSC combines linear regression and ANN to process data. In CSC, linear regression is
used to simplify the number of inputs, and then the reduced inputs are processed into
the ANN. Now Suppose, if the input size is 5 and 2 hidden layers with 5 nodes each are
used respectively with output layers of 1 node. Then, the total number of trained weight
is 5 * 5 + 5 * 5 + 5 = 55. Here, 55 is the total number of trained weights, and the size of
input is reduced. Therefore, Using the proposed method, model’s complexity is reduced
to a considerable extent. Figure 5 shows the result for CSC.
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Figure 5: Graphical representation for Composite Scaling Controller

Here, in Graph 5, the orange line shows the predicted requirements and the blue line
shows the processed tasks. This will affect the model’s accuracy but provides an auto
scaling mechanism with minimum overhead on the system.

6.3 Critical Analysis & Discussion

In this section, the results are being critically analyzed. ANN identifies the amount of
resources based on predicting the previous time-series data. After observing the results
of both models, SSC’s accuracy is analyzed and ANNs have more accuracy compared to
composite controllers. As the size of input increase, the complexity of ANN exponentially
increases. To reduce the complexity, linear regression is used and then simplified the
number of inputs using linear regression. Subsequently, this input was forwarded to
an ANN and will be trained over 200 epochs. The proposed approach was simple but
very effective to reduce the complexity to a considerable extent. Simplifying the inputs
with linear regression reduces the model’s accuracy to small acceptable extent; however,
by compromising with little accuracy, a considerable amount of reduced complexity is
achieved.

7 Conclusion and Future work

The proposed system (CSC) can correctly predict the resource requirements and accur-
ately allocate or de-allocate resources with limited computing capacity and minimum
overhead on the system. This method is more useful when the number of inputs are
enormous. The model’s complexity can be reduced to a considerable extent, and the
advantage of the proposed system is that it can be on CPU and a less-powerful GPU.
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The model can be helpful for startups or small companies where they have limited in-
frastructure and computing capabilities and want to provide auto scaling to customers.
We always strive to optimize solutions and in future, an attempt to combine multiple
AI algorithms to obtain the best cost-effective performance can be made. The proposed
model can then be extended to any time-series data such that it can be useful for various
applications.
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