~

\" National
College
Ireland

Flow Optimization in Multipath Network
using Maximum Flow Algorithm to Improve

the Bandwidth Usage in SDN

MSc Research Project
Cloud Computing

Vivek Medleri Hire Math
Student ID: x18147062

School of Computing
National College of Ireland

Supervisor: Dr. Muhammad Igbal

National College of Ireland National

Project Submission Sheet Col]ege of
School of Computing Ireland

Student Name: Vivek Medleri Hire Math

Student ID: x18147062

Programme: Cloud Computing

Year: 2020

Module: MSc Research Project

Supervisor: Dr. Muhammad Igbal

Submission Due Date: 23/04/2020

Project Title: Flow Optimization in Multipath Network using Maximum
Flow Algorithm to Improve the Bandwidth Usage in SDN

Word Count: 5806

Page Count: 7]

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

I agree to an electronic copy of my thesis being made publicly available on TRAP the
National College of Ireland’s Institutional Repository for consultation.

Signature:

Date: 26th May 2020

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). O

Attach a Moodle submission receipt of the online project submission, to | [J
each project (including multiple copies).
You must ensure that you retain a HARD COPY of the project, both for | O
your own reference and in case a project is lost or mislaid. It is not sufficient to keep
a copy on computer.

Office Use Only
Signature:

Date:
Penalty Applied (if applicable):

Flow Optimization in Multipath Network using
Maximum Flow Algorithm to Improve the Bandwidth
Usage in SDN

Vivek Medleri Hire Math
x18147062

Abstract

Traditional network architecture is distributed and complicated compared to
the Software Defined Networking (SDN) that modifies the distributed network ar-
chitecture to a centralized one and makes the management of the network easy.
The problem arises in the network flow of the multipath network and finding the
maximum flow among the source node and destination node. But, the present
network situation in the data centers which uses the multipath topology needs a
maximization in the flow to improve the bandwidth usage. This research presents
to find the maximum flows and avoiding augmented paths (where we can call this
as finding the path barrier) in the multipath network and forwarding the network
traffic low from source to the destination. In this project, a Dinic’s max flow al-
gorithm is used to find the maximum flows and maximize the bandwidth usage in
the software defined network. The Mininet network emulator and RYU controller
is used in the implementation. The outcome from the investigation of this research
removes network congestion and complications which improves the network band-
width usage.

1 Introduction

The next generation of network infrastructure can be defined as Software defined net-
working (SDN), it gives the network more control over the flexibility and efficiency. The
software defined network has two planes, the control plane and the data plane. These
two planes are separated from each other, the network operators will have the ability
to control which packets are transmitted over the paths in the network |Yoshioka et al.
(2017). To simplify and improve the management and programmability of the networks, a
lot of attention has been given to SDN and this has led in real deployment. For example,
Google have implemented in their data center. They have used SDN OpenFlow-based
network to interconnect all of its data centers all over the world which eases in the per-
formance and flexibility in traffic engineering functions, this gives them nearly 100 percent
link utilization. These aspects provide a great benefit in migrating to software defined
networks (Hu et al.; [2015)).

Generally, a SDN will have number of OpenFlow-enabled switches (OF-switches) and
SDN centralized controllers. From various networks the OF-switches will forward the
traffic, like the cellular networks and IP data networks. To the assigned SDN controller

the responsible OF-switch will send the routing request when there is a newly generated
data flow. The control message is received by the controller and the optimal path routing
to the destination OF-switch is calculated and along the optimal path the routing tables
of switches is set up. Dedicated in-band control and out-bound control are the two types
of control channels. The out-band control creates links between its responsible controllers
and each OF-switch using a dedicated network. On the other hand, the in-band control
shares the same forwarding infrastructure which allows data messages and control. The
in-band control is cost effective compared to the out-bound control (Lin et al.; 2018]).

The SDN controller are defined by the flow-rules and are installed at the switches
used by ternary content-addressable memory (TCAM). Due to more energy consumption
and high cost the availability of TCAM at a switch is limited. Due to the limited TCAM,
the number of flow rules that are inserted are also limited to a switch. Three different
strategies were proposed by the researches like exact-match, hybrid and wildcard to place
flow rules at the switches. These three strategies serve for different purposes, in exact-
match, an individual rule is associated with each flow and therefore there is an increase in
network visibility. The wildcard-based strategy has few flow rules and are associated with
multiple rules. The last strategy called the hybrid strategy is considered as a combination
of both the exact-match and the hybrid. Accordingly, to generate the packet messages,
more flow rule installations are requested, which makes the controller overhead to increase
(Bera et al.; 2019).

Application
Layer

Business Applicstions

¥ F Y A

API API API

Y v Y

SDN

conte Cor)
Layer
‘ Metwork Services

L
Confrol Data Plane Inferface
(2.0.. Open-Flow)

Infrastructure
Layer
Metwork Device Metwork Device Metwork Device
Metwork Device Metwork Device

SDN Architecture

Figure 1: SDN Architecture

As shown in above Figure [I] software defined architecture contains the application
layer, control layer and infrastructure layer (Liu et al.; 2019).

Basically, in Software Defined Network (SDN) control-plane and data-plane are sep-
arated. Transfers the control-plane to the central location, runs on generalised purpose
computer which permits the network-control to be direct programmable and the fun-
damental infrastructure to be abstracted for network and application services. software
defined networking provides support for software program to control the network.SDN
mechanism is a method for cloud computing that eases the network administration and
allows programmable effective network configuration to achieve better performance with
monitoring.

Research Question: Can Software Defined Network controller assist to
monitor the entire topology and find the maximum flow in the multipath net-
work to increase the network bandwidth usage by using Dinic’s maximum-
flow algorithm?

This question arises because network service providers have many number of topo-
logy which is connected through the cities with link bandwidth, and also which contains
multipath connectivity across the topology so, Often some links are occupied and some
are idle which distress the client/customer traffic, which may leads to bad quality of
service and network congestion. So, in order to keep the network without overcrowding,
maximization of flow is required to improve the bandwidth.

The rest of the paper is divided into following sections. Section 2 with the related
work, section 3 with the Methodology, section 4 with the Design specification, section 5
with the implementation, section 6 with the evaluation and section 7 with the conclusion
and future work.

2 Related Work

In this segment we first see how the multipath network architedture are used in traditional
scheme.Also, analysing the SDN multipath routing with flow maximization.

2.1 Analysis of Multi-path Network

A technology of choice which emerged was known as multipath provisioning and offers
many advantages which are as follows:

e Traffic Engineering which is described in the internet and the issue it deals with
is the performance optimization and performance evaluation of IP networks which
are operational.

e The main aspect of traffic engineering is load balancing and congestion control and
it can be achieved by the use of multipath provisioning. To avoid network hot-
spots, the links which are optimally loaded over multiple concurrent paths will be
distributed by the traffic flows in the network.

e With the aspect of multipath provisioning a reliable communication can be made
without any effort needed with the implicit fault tolerance. An alternate path is
used by the routing protocols when a path fails inside a single path routing.

e The deployment of multipath routing can be improved by including another aspect
such as the network resource utilization. To get higher network throughput there
has to be higher resource utilization like bandwidth.

e Security is one of the most important aspect when it comes to a single-path routing
and it is vulnerable to the security threats like denial of service attacks caused by
overloading a particular node, path or a link, greater security can be provided by
multipath routing by the dispersion of data in multiple paths between end-hosts,
between a source-destination pair where each of the path can carry a portion of
data (Singh et al.; [2015)).

For path p,
traffic rate is 4, < 4

Path 1
Aggregated traffic

with arrival rate 1 Traffic units Path 2

Traffic D DD |:| HD Path
splitting selection
component component

Path K

Input Forwarding Multlple

queues roCessors { . oiing

Multipath forwarding mechanism paths

Figure 2: Multipath Forwarding Mechanism

Figure 2| describes the traffic splitting and path selection of the functional components
of multipath forwarding. The splitting of the traffic into traffic units is done by the traffic
splitting components, where each of the path is taken individually, and the path selection
component is determined. In the path selection if the forwarding processor is busy then
the output link will be attached by each traffic unit in the input queue. Each of the
different models of multipath forwarding will perform the load distributions in numerous
manners. Due to the internal functional components there are different shortcomings and
advantages that each of the models exhibit, like the path selection and traffic splitting
(Prabhavat et al.; 2012).

The mechanism that is required for differentiating elephant flows from mice flows is
scheduled by the mechanism of elephant flows. Previously there were few problems over
the detection of elephant flow and it has been thoroughly researched and there are many
solutions available. To detect the elephant flows, the most effective way is at the end-
hosts. Our mechanism relates to the multipath and flows in our network. To monitor
the end-hosts it uses a shim layer which is integrated with the mechanism of TCP socket
buffers. Identification of the flows is done by the shim layer and it determines if it is an

elephant flow or any other flow in the network when the buffer exceeds and the number of
bytes is predefined and the threshold rate is given by the time window. In our project we
will simplify the multipath and the flow of which the network can improve its bandwidth
(Liu et al.j 2014)).

Sehery and Clancy| (2017)) illustrates how the flow optimization in data centers works
with Clos networks. The Clos network can be formulated with a detailed example of how
the routing is carried on the Binary Multicommodity Flow Problem. This has been done
by the simulation of using a general integer linear programming solver that optimizes the
optimal flow routing without collisions in the flow, in polynomial time it can be achieved,
but this is not practical |Ai et al. (2019). investigated how to deal with the problem of
passive attacks in the network coding-based resilient multipath routing. To measure the
passive attacks a novel metric is used for resilience and snooping the ratio. For solving
this problem, a simulation is designed for annealing-based algorithm to solve it efficiently.

2.2 Analysis of SDN Multipath Routing

Software defined network (SDN) growth is very much aggressive over the years and many
SDN controller mechanisms and products are released{Woo et al. (2018) investigates
on the SDN and provides the resourceful on important services provided by the SDN
controllers, because services help users to implement network virtual functions through
programmable technique and validates and provides some vulnerable situations in soft-
ware defined networking.

Adaptive Multipath Routing (AMR) contains an OpenFlow centralized controller-
based application intended to learn topology, with maximum flow capacity calculate mul-
tiple paths among the nodes, and dynamically modify the forwarding table of switches
to set up loop-free multipath forwarding and routing.Subedi et al.| (2015)presented Ad-
aptive Multipath Routing (AMR), which is capable of proactively adapting to network
changes based on link capacity and latency, but their approach heavily relies on Link
Layer Discovery Protocol (LLDP) as the discovery mechanism. Basically, resolution in-
creases network utilization of the data-centers and combined bandwidth is accomplished
per flow by using multiple paths.

For high mobility and throughput, multi-connection virtual access point is proposed to
enable multiple transmission paths simultaneously over a set of access points for users,Xu
et al| (2017)presented novel Multipath-Transmission supported Software-Defined Wire-
less Network (MP-SDWN) architecture, with the aim of achieving seamless handover,
throughput enhancement, and flow-level wireless transmission control as well as pro-
grammable interfaces.

Rezende et al.| (2019) proposes an SDN-based framework which gives an interface for
the applications and specifies multi-stream rules so that the framework can use the ser-
vices given by the software defined networking controller to guarantee that the multiple-
stream work on the multipath network.

Sheu et al. (2016)proposes a heuristic algorithm for solving the polynomial time in
a network. The main focus is on the Multipath TCP (MPTCP). It is an extension of

the TCP where the TCP communication with throughput significantly uses the multiple
paths instead of the single path for transmission. A simulation is carried out to show
that, the proposed algorithm performs better with an increase in the average throughput
and hop count.

Benson et al.| (2011)) proposed micro-TE, and they have implemented micro-TE within
the open-flow framework with minimal changes in destination hosts. And micro-TE is a
centralized system that adapts to traffic variations by leveraging the short-term predictab-
ility of the DCN (Data-Center-Network) traffic, to achieve fine grained TE. It constantly
monitors traffic variations, determines which Top-of-Rack (ToR) pairs have predictable
traffic, and assigns the predicted traffic to the optimal path. Similar to Hedera, the
remaining unpredictable traffic is then routed using weighted ECMP (Equal-cost Multi-
path), where the weights reflect the available capacity after the predictable traffic has
been assigned.

Guillen et al.|(2017)) present a pragmatic approach for multipath routing in Distributed
Storage Systems (DSS), which is based on Software Defined Networking (SDN) that uses
parallel links at the edge-side. Path discovery is calculated by finding the k-maximum
disjoint paths in a multi-graph.(Guillen et al.f 2018) also proposes a hybrid approach
combining server and link load balancing for multipath routing in DSS. The approach is
Software Defined Networking (SDN) based, and uses a process called on-demand inverse
multiplexing.

2.3 Analysis of SDN in Maximizing the Flows

The main problem in hybrid SDN (Software Defined Network) network is the traffic en-
gineering problem which concentrates on how to satisfy the global objectives of network
performance. By the set of given SDN nodes, the SDN devices main goal is to find the
maximum flow by tuning the forward behaviours in the network. Through partial SDN
deployment, the maximum flow problem can be formulated within the networks, to de-
velop and solving a fast Fully Polynomial Time Approximation Scheme (FPTAS). The
performance of hybrid SDNs are better compared to the traditional OSPF networks and
this is proved by the results gained the extensive simulation using the real network topo-
logies. The network maximum flow can be demonstrated by the impact of node numbers
in SDN, and conclude that by deploying almost 50 percent of the SDN can lead a near
gain in the optimal performance. (Hu et al.; 2015).

In SDN, only a few works have been dealt with the SDN network utilization with
limitation of forwarding table size. A problem known as path-degree max flow problem
has been used. Each node in a network has limited sizes of forwarding tables that has the
maximum number of paths that can pass through a network. It is known as the forwarding
table size of the node or the path degree. There is a difference in the formulation of
forwarding table and we can guarantee that a certain QoS and the performance of the
individual flows are not considered. (Yao et al.; 2016)).

3 Methodology

The outline of the multipath software defined networking is designed by experimentation
and simulation which exhibits the benefits and challenges of this methodology and support
to make suitable selections. This section defines the architecture of the research-project
and express the reason behind the decisions that are taken during the experimentation.

3.1 Architecture of Multipath

This section describes the approach and design of this research project. For this approach
because of the programmable networking software defined network has been preferred
which has the enormous propositions to support. And software defined network can eas-
ily be installed on commodity-hardware and further helps for implementation and testing.
And this can be easily used in the data-center network.

The architecture of the flow optimization in the multipath network contains a cent-
ralized software defined network (SDN) controller with the information of the topology
which dynamically sets up loop forwarding-rules on the switches. The controller doesn’t
have real time information of the network as it is for experimentation and use the primary
structure as a directed graph where the capacity of the link among the nodes are pre-
defined. From this information optimal multipath is computed and sends the data from
one node to all other nodes. With a max flow algorithm based on Dinic’s algorithm max-
imizes the bandwidth usage to solve the maximum flow problem. In the circumstances of
network congestion, failure, or block of paths software defined controller will re-route by
computing the new configuration and forward it to the switches. From this multi-path
are manipulated for increased bandwidth and also over-all data-throughput is increased
due to the traffic acceleration through the multi-paths. And this is the situation of data-
center topology of multipath where the nodes are controlled and traffic initiates from the
hosts connected, for instance please refer the architecture in Figure 3| below. And this
approach achieves the main aim of this research project.

SDN - RYU - Controller

A
O — g Link - Connection

--- Centralized - Control

Control - Flow

Switch-1 Switch-11

y A
=a =]
B ||
— —
Host -1 Host -2

Figure 3: Multipath Architecture

4 Design Specification

In this section we will describe the high-level-diagram of this research implementation.
To start the maximum-flow approach we need all the paths of the network as input.
When the maximum-flow approach starts BFS (Breadth-First-Search) checks the level of
multipath network graph, by doing this we will get to know the value of every node to
find the short distance from source node. And the edges from the level graph do multiple
iterations of DFS (Depth-First-Search) approach from source to destination until there
are no augmented paths possible, then the maximum flow is found. Once we received
the maximum flow-value RY U-Controller sets that as constant value for maximum paths
which is used for multipath routing. Through this approach we can improve the through-
put(bandwidth). The below Figure |4] defines the high-level execution of this project.

Start Start f End

F'roces_s !
Input - All the Instruction
Paths of the Metwork
T Maximum Flow Approach |

¥
Checks the Graph
Level (Network-
Graph) by using BFS
approach

Agumented Faths are
checked using
DFS Approach

Maximum Flow is
Calculated

Figure 4: Flow Chart

5 Implementation

This section deliberates the resolution for research question which is defined earlier. The
proposed max flow algorithm is developed by modifying the RYU controller. For eval-
uating this algorithm multi-path topology is created and used for the implementation.
Below section 5.1. provides an outline of experimental setup. Followed by section 5.2
which defines network emulation setup and the specifics of the RY U-controller algorithm.

5.1 Outline of Experimental Setup

The subsequent software and hardware components are used to perform this experiment.
In Table (1| provides the list of the software with description.

Table 1: Software used for implementation.

Software Software-Tool Version
OS Ubuntu-Desktop 18.04
Test Bed Mininet 2.3.0d6
Controller RYU 4.4
Switch Open-v-switch 2.9.5
Traffic Generator IPerf 2.0.10
Virtual Box Oracle VM Virtual Box Manager 6.1

In Table [2| provides the list of the hardware specification.

Table 2: Hardware specifications used for implementation..

Hardware Version
CPU - Processor Intel Core - 15 - 2.3Gz
RAM 4 GB
Hard-Disk-Capacity 40 GB

5.2 Network Emulation Setup

Mininet is python based and open-Source network emulator which lets scholars to generate
simulated networks with hosts and switches in a machine. It offers an easy going and
low-cost test-bed of network for generating the open-flow applications and permits to test
the complex topologies without wiring up the physical network. It consists of Command-
Line Interface (CLI) for debugging and executing the network-wide trials. And mininet
gives the easy way for getting accurate performance results and to test with topology [l
And mininet can be installed anywhere in a cloud machine, desktop or a server.

5.2.1 Implementation of Multipath-Topology in Mininet

To implement the methodology that we have discussed in the section 3, we have used
Mininet-version-2.3.0d6 SDN (software defined network) simulation tool to run the net-
work topology (Multipath-Topology). We have executed Multipath-Topology which has

'http://mininet.org/overview/

http://mininet.org/overview/

2 hosts and 11 Open-vSwitches which represents in the below Figure 5] And Figure [6] de-
notes the network i.e., hosts, switches are established. We have used the pingall command
to check the connectivity among the switches and host. When we do pingall command it
should result in zero percent dropped with all the packets received and this defines hosts
are active and up. And this happens when we have connected topology to the controller.
And we have used one RYU controller with the mininet which we have discussed RYU
controller deployment in the below section 5.2.2. To transmit the data-packets, 1Mbit
bandwidths are set between the switches and the hosts.

Links Hosts

DGOODﬁJOJGGGGDDg

D
N

1000000000000006
0000000000000003 ,ﬁl
Switches | 42

>
3

0000000000000002 nrnnnnnng (00005

0000000000000008

I

T
000y0000000Ba00L

0000000000000004

.E’-,-.
“r
T
000Lp00000000000

000000000000000a

B

0000000000000007

= ne

= -

00:00:00:00:00:01 ==
00:00:00:00:00:02
Multipath-Topology-Through-RYU-Manager

Figure 5: Multipath-Topology

x181: 18 x ... X Bo... * | x A Bo... * |x a Box: ~ x
X18147062-vivek@x18147062vivek-VirtualBox:~/Research_Project_Thesis_x18147062/Multipath_Topology/1_Controller$ 1s
Multipath_Topology 14 Links_1C.py Multipath_Topology_22_Links_1C.py
x18147062-vivek@x18147062vivek-VirtualBox:~/Research_Project_Thesis_x18147062/Multipath_Topology/1_Controller$ sudo python
Multipath_Topology_14 Links_1C.py

*** Adding switches

**%* Adding hosts

*** Adding controllers

*** Adding links

(1.00Mbit) (1.00Mbit) (1.00Mbit) (1.00Mbit) (1.00Mbit) (1.00Mbit) (1.00Mbit) (1.00Mbit) (1.00Mbit) (1.00Mbit) (1.00Mbit) (
1.00Mbit) (1.00Mbit) (1.00Mbit) (1.00Mbit) (1.00Mbit) (1.00Mbit) (1.00Mbit) (1.00Mbit) (1.00Mbit) (1.00Mbit) (1.06Mbit) (1
.00Mbit) (1.00Mbit) (1.00Mbit) (1.00Mbit) (1.00Mbit) (1.00Mbit)

*** Starting network

*** Configuring hosts

h1 h2

*** Starting controller 1

*** Starting switches

(1.00Mbit) (1.006Mbit) (1.06Mbit) (1.06Mbit) (1.00Mbit) (1.00Mbit) (1.06Mbit) (1.06Mbit) (1.06Mbit) (1.00Mbit) (1.00Mbit) (
1.00Mbit) (1.00Mbit) (1.00Mbit) (1.00Mbit) (1.00Mbit) (1.00Mbit) (1.00Mbit) (1.00Mbit) (1.00Mbit) (1.00Mbit) (1.00Mbit) (1
.00Mbit) (1.00Mbit) (1.00Mbit) (1.00Mbit) *** Starting CLI:

mininet> pingall

*** ping: testing ping reachability

hi -> h2

h2 -> h1

**%* Results: 0% dropped (2/2 received)

mininet>

Figure 6: Multipath-Implementation

10

5.2.2 RYU Controller Deployment with Mininet

After the network emulation setup which is mininet and the creation of the multipath
network topology we have deployed RYU Controller with version of 4.4 which is an
element-based framework of Software Defined Network (SDN). And also, it helps scholars
to generate a new network management and applications which can be controlled [l And
the RYU controller uses the default port (6633) and generate a connection with the
mininet. The RYU controller calculates the forwarding rules among the nodes with a
maximum flow algorithm, which is graph-theory problem and discussed in the next section
i.e.,5.3. As we have created instance among the switches which are enabled with open-
flow and the RYU-controller, the RYU-controller sends an ofproto (open-flow-protocol)
message to which switch responses by defining its abilities, ports list, and id of data-
path etc. And this is how RYU-controller keeps track of information of software defined
networking switches. For multipath topology we have executed maximum-flow-Dinic’s
controller script. In below Figure[7] it defines that OFP-Handler is initialized for sending
and receiving the packets among the switches.

File Edit View Search Terminal Tabs Help

x18147062-vivek@x18147062vivek-VirtualBox:~/R

loading app /home/x18147062-vivek/flownanager,

You are using Python v2.7.17.final.®

Tloading app Main_Dinics_Implementaion.py

Dinic's Algorithm

Tloading app ryu.topology.switches

Tloading app ryu.controller.ofp_handler

instantiating app None of DPSet

creating context dpset

creating context wsgi

instantiating app Main_Dinics_Implementaion.py of OpenFlowController

instantiating app ryu.topology.switches of Switches

instantiating app /home/x18147662-vivek/flowmanager/flowmanager.py of FlowManager

instantiating app ryu.controller.ofp_handler of OFPHandler

(17371) wsgi starting up on http://0.0.0.0:8080

switch_features_handler is called

Adding flow OFPMatch(oxm_fields={}) [OFPActionOutput(len=16,max_len=65535,port=4294967293, type=0)]
switch_features_handler is called

Adding flow OFPMatch(oxm_fields={}) [OFPActionOutput(len=16,max_len=65535,port=4294967293, type=0)]
switch_features_handler is called

Adding flow OFPMatch(oxm_fields={}) [OFPActionOutput(len=16,max_len=65535,port=4294967293, type=0)]
switch_features_handler is called

Adding flow OFPMatch(oxm_fields={}) [OFPActionOutput(len=16,max_len=65535,port=4294967293, type=0)]
switch_features_handler is called

Adding flow OFPMatch(oxm_fields={}) [OFPActionOutput(len=16,max_len=65535,port=4294967293, type=0)]
switch_features_handler is called

Adding flow OFPMatch(oxm_fields={}) [OFPActionOutput(len=16,max_len=65535,port=4294967293,type=0)]
switch_features_handler is called

Adding flow OFPMatch(oxm_fields={}) [OFPActionOutput(len=16,max_len=65535,port=4294967293, type=0)]
switch_features_handler is called

Adding flow OFPMatch(oxm_fields={}) [OFPActionOutput(len=16,max_len=65535,port=4294967293, type=0)]
switch_features_handler is called

Adding flow OFPMatch(oxm_fields={}) [OFPActionOutput(len=16,max_len=65535,port=4294967293,type=0)]
switch_features_handler is called

Adding flow OFPMatch(oxm_fields={}) [OFPActionOutput(len=16,max_len=65535,port=4294967293, type=0)]
switch_features_handler is called

Adding flow OFPMatch(oxm_fields={}) [OFPActionOutput(len=16,max_len=65535,port=4294967293, type=0)]

Figure 7: RYU-controller-Deployment

5.3 Max-Flow Algorithm Description

To maximize the multipath capacity reliably in the goal line of research-project the RY U-
controller uses Dinic’s maximum flow approach in a network which is used to control the
maximum quantity of flow that can be sent from source to destination node. So, to
maximize the throughput we use this max-flow product on the packet switched network.
The intention behind this is trying to find the paths until we get among the source
to destination node with existing capacity or predefined capacity by sending the flow
between these paths.

Zhttps://ryu.readthedocs.io/en/latest/getting_started.html

11

https://ryu.readthedocs.io/en/latest/getting_started.html

6 Evaluation

In this section we have undergone with connectivity test between mininet emulator and
the ryu-controller and we have captured the test results to evaluate the developed RYU
controller by using max flow algorithm for multipath topology. We have captured the
transferred packets, path bandwidth which we can say as throughput between the hosts
and also compared with another multipath RYU controller which they have used Dijkstra
algorithm and developed RY'U controller for multipath topology. Below sections will give
the more information on the test results and the setup.

6.1 Connectivity Test with mininet and RYU Controller

The multipath topology network is created with 11 switches and 2 hosts as explained
in 5.2.1. to execute on mininet. To implement the Dininc’s max flow algorithm RYU-
controller (python script name: Main-Dinics-Implementaion.py) as proposed, we need all
paths between the hosts included in multipath network as input. Switches uses open-
flow mechanism to connect the hosts. So, to test the connection between the hosts we
have used pingall command to check the connectivity and switches (shows all 11 switch
features are called and adding flows) are working as shown in Figure [6] and Figure [7] in
section 5.2.1 and in section 5.2.2 respectively. And the continuation of the output from
Figure [7] in section 5.2.2 shows all paths are working between the host-H1 and host-H2
with port numbers 1,2,3,4 as shown in below Figure [§

File Edit View Search Terminal Tabs Help

x18147062-vivek@x18147062vivek-VirtualBo... = | x18147062-vivek@x18147062vivek-VirtualBo... = | x18147062-vivek@x18147062vivek-VirtualBo... = | x18147062-\

switch_features_handler is called
Adding flow OFPMatch(oxm fields={}) [DFPAct10n0utput(len—16 max_len=65535,port=4294967293, type=0)]
packet in 5
in
in
in
in
in
in 3
in 3 101 GE) E)EJ OEJ 00 GE) 02 1
in 3 01 00:00:00:00:00:02 1
in 3 01 00:00:00:00:00:02 1
in H :01 00:00:00:00:00:02 4
in :00: 0:00:01 00:00:00:00:00:02 3
flow OFPMatch(oxm_fields={'eth_src': '00:00:00:00:00:01', 'eth_dst': '00:00:00:00:00:02', 'in_port':
in 11 00:00:00:00:00:01 00:00:00:00:00:02 2
flow OFPMatch(oxm_fields={'eth_src': '00:00:00:00:00:01', 'eth_dst': '00:00:00:00:00:02', 'in_port':
in 8 00:00:00:00:00:01 00:00:00:00:00:02 2

flow OFPMatch(oxm_fields={'eth_src '00:00:00:00:00:01', 'eth dst': '00:00:00:00:00:02', 'in_port':
in 9 00:00:00:00:00:01 00:00:00:00:00:02 2
flow OFPMatch(oxm_fields={'eth_src': '00:00:00:00:00:01', 'eth_dst': '00:00:00:00:00:02', 'in_port':
in 11 00:00:00:00:00:02 00:00:00:00:00:01 1

in 8 102 BE) EJEJ 00 00 BE) 01 2
in 3

in
in
in
in
in
in
in
in
in 3
flow | = X : '00:00:00:00:00:02', 'eth_dst': '00:00:00:00:00:01', 'in_port':
in 1 00:00:00:00:00:02 00:00:00:00: 01 2

flow OFPMatch(oxm_fields= '00:00:00:00:00:02', 'eth_dst': '00:00:00:00:00:01', 'in_port':
in 4 00:00:00:00:00:02 00:00:00:00:00:01 1

flow OFPMatch(oxm_fields={'eth_src': '00:00:00:00:00:02', 'eth_dst': '00:00:00:00:00:01', 'in_port':

HEBENAWSNUBOOWO
BWRNNNNNNNN

Figure 8: RY U-controller-Connectivity Test

12

6.2 Results

Iperf tool is used to measure the bandwidth in the network. The software defined network
RYU-Controller uses its handlers for sending open-flow messages among the switches.
With the Iperf tool UDP (User Datagram Protocol) and TCP (Transfer Control Protocol)
throughput can be measured by sending the packets among the host-1 and host-2.

6.2.1 Case Study 1 - TCP and UDP for proposed algorithm
e TCP Test between Host-1 and Host-2

TCP (Transmission Control Protocol) packets transmission tested between the two
hosts i.e., host-1(h1l) with IP-address-10.0.0.1 and host-2(h2) with IP-address 10.0.0.2.
And we are capturing the results every one (-i) second by starting the TCP as server (-s)
at host-2 with port (-p) 5555 as shown in Figure[9] Meanwhile we have started the TCP
as client (-¢) at host-1 and duration of the transmission is set to twenty-seconds (-t) as
shown in Figure [9] and store the results in another file to plot the graph through gnuplot.
Basically, here we are calculating the time and bandwidth for the quantity of data sent.
Thus, from the results average bandwidth throughput among the time interval i.e., 0.0
to 22.6 seconds sent from host-1 to host-2 is 232 Kbits/sec with 640 Kbytes packets
transferred.

"Node: h2"

ultipath_To

2/Multipath_Topolo

Host-1

Figure 9: TCP-Testing-A

e UDP Test between Host-1 and Host-2

As identical to TCP (Transmission Control Protocol), similarly we have tried to test
the UDP (user datagram protocol(-u)) between the Host-1(h1) and Host-2 (h2).We have

13

started the UDP as client (-¢) at host-1 and duration of the transmission is set to twenty-
seconds (-t) as shown in Figure . In meantime we have started capturing the results
every one (-i) second by starting the UDP as server (-s) at host-2 (h2) with port (-p)
5555 as shown in Figure [10] and store the results in another file to plot the graph through
gnuplot. Average bandwidth throughput among the time interval 0.0 to 20.1seconds sent
from host-1 to host-2 is 1000 Kbits/sec with 2.39 MBytes packets transferred. And also,
after the 10 tries with a warning that 1708 datagrams of messages went with data-loss.

Ltipath_To

tipath_To

Host-1 Host-2

Figure 10: UDP-Testing-A

6.2.2 Case Study 2 - TCP and UDP for Existing Algorithm
e TCP Test between Host-1 and Host-2

To compare and test with another algorithm (Ryu-Multipath-Controller—using Dijkstra
Algorithm) [| made the same evaluation with same test environment as described above
in section 6.2.1 And we have calculated the time and bandwidth for the quantity of data
sent. Thus, from the results average bandwidth throughput among the time interval i.e.,
0.0 to 20.1 seconds sent from host-1 to host-2 is 64.1 Kbits/sec with 157 Kbytes packets
transferred as shown in below Figure [11]

3https://github.com/wildan2711/multipath/blob/master/ryu-multipath.py

14

https://github.com/wildan2711/multipath/blob/master/ryu-multipath.py

"Node: h2"

tipath_To

Hultipath_To

Host-1

Figure 11: TCP-Testing-B

e UDP Test between Host-1 and Host-2

Similarly, as we did test for UDP for proposed algorithm we made the same evaluation
with same test environment as described above in section 6.2.1 and we have captured the
average bandwidth throughput among the time interval 0.0 to 20.3seconds sent from host-
1 to host-2 as shown in Figure [12|is 992 Kbits/sec with 2.39 MBytes packets transferred.
And also, after the 10 tries with a warning that 1708 datagrams of messages went with
data-loss as shown in below Figure [12]

ipath_To

Host-1

Figure 12: UDP-Testing-B

15

6.2.3 Case Study 3 - Evaluation of TCP and UDP
e TCP and UDP Evaluation for Proposed Algorithm

In the multipath network the performance from host-1 (hl) to host-2 (h2) of the
packet transfer is reliant on the data-rate of packets transferred and average bandwidth
of the data. The variation exists among the UDP bandwidth and TCP bandwidth and
the quantity of data produced in a multipath network is calculated by TCP, whereas UDP
will calculate the data rate transmission. Through the help of the gnuplot tool, graph
is plotted between the time and throughput (bandwidth) i.e., x and y-axis respectively
in host-2 TCP and Host-2 UDP as shown in the below Figure [13] And from the graphs
we can say that bandwidth of TCP variates more than the UDP variates. The highest
bandwidth for TCP is captured at 13.0 to 14.0 seconds interval of time with 324Kbits/sec.
And at the UDP highest bandwidth is captured at 6.0 to 7.0 seconds interval of time with
282Kbits/sec.

"Node: h2" "Node: h2"

Host-2 Host-2

Figure 13: TCP-UDP-Evaluation-For-Proposed-Algorithm

e TCP and UDP Evaluation for Existing Algorithm

To compare and test with existing algorithm (Ryu-Multipath-Controller—using Dijk-
stra Algorithm) made the same evaluation with same test environment as described above.
Through the help of the gnuplot tool, graph is plotted between the time and throughput
(bandwidth) i.e., x and y-axis respectively in host-2 TCP and Host-2 UDP as shown in
the below Figure And from the graphs we can say that bandwidth of UDP variates
more than the TCP variates. The highest bandwidth for TCP is captured at 1.0 to
2.0 seconds interval of time with 69.5Kbits/sec. And at the UDP highest bandwidth is
captured at 8.0 to 9.0 seconds interval of time with 153Kbits/sec.

16

"Node: h2" "Node: h2"

e "udp flow" with linespoints

Host-2

Figure 14: TCP-UDP-Evaluation-For-Existing-Algorithm

6.2.4 Case Study 4 - Evaluating the Congestion in Multipath Topology net-
work

We have created a multipath topology (name of the python script: Multipath-Topology-
22-links-1c) with extra links (Link-Connection-2) to validate the overcome of congestion in
the multipath network as shown in below Figure[15] And we have executed the proposed
Max-Flow controller on this multipath topology (script name: Multipath-Topology-22-
links-1¢) and validated that source (host-1) can reach destination (host-2) by avoiding
the congestion in the network. To check this, we used pingall command as shown in
Figure [16]

SDN - RYU - Controller

—¥ Link - Connection
Centralized - Control

Control - Flow

Control - Flow - 2
Link-Connection-2

Switch-11

Switch-10

yF_/ ./
=a EII
L =

Host -1 Host -2

Figure 15: Congestion in Multipath Network

17

File Edit View Search Terminal Tabs Help

x18147062-vivek@x18147662vivek-VirtualBox: x18147€ tipath_To ontroller$ sudo python Multipath_Topology_22_Links_1C.py

[sudo] password for x18147062-vivek

[*#* Adding switches

[*+* Adding hosts

[*+* Adding controllers

[*+x Adding links

(1.00Mbit) (1.08Mbit) (1.00Mbit) (1.8@Mbit) (1.0Mbit) (1.06Mbit) (1.8@Mbit) (1.08Mbit) (1.86Mbit) (1.6@Mbit) (1.08Mbit) (1.06Mbit) (1.80Mbit) (1.0@Mbit) (1.08Mbit) (1.60Mbit) (1.0@Mb

it) (1.00Mbit) (1.00Mbit) (1.06Mbit) (1.06Mbit) (1.06Mbit) (1.00Mbit) (1.06Mbit) (1.60Mbit) (1.60Mbit) (1.60Mbit) (1.00Mbit) (1.06Mbit) (1.06Mbit) (1.06Mbit) (1.06Mbit) (1.60Mbit) (1
0oMbit) (1.60Mbit) (1.60Mbit) (1.00Mbit) (1.0@Mbit) (1.06Mbit) (1.06Mbit) (1.06Mbit) (1.60Mbit) (1.60Mbit) (1.60Mbit)
[*** Starting network

[*#* Configuring hosts

h1 h2

[+ Starting controller 1

[*#* Starting switches

(1.00Mbit) (1.06Mbit) (1.00Mbit) (1.80Mbit) (1.0Mbit) (1.06Mbit) (1.@@Mbit) (1.0@Mbit) (1.06Mbit) (1.80Mbit) (1.0@Mbit) (1.06Mbit) (1.60Mbit) (1.0@Mbit) (1.08Mbit) (1.60Mbit) (1.0@Mb
it) (1.00Mbit) (1.0@Mbit) (1.06Mbit) (1.60Mbit) (1.0Mbit) (1.06Mbit) (1.@@Mbit) (1.8@Mbit) (1.06Mbit) (1.60Mbit) (1.@Mbit) (1.08Mbit) (1.60Mbit) (1.@Mbit) (1.0@Mbit) (1.80Mbit) (1
eoMbit) (1.08Mbit) (1.06Mbit) (1.60Mbit) (1.6@Mbit) (1.06Mbit) (1.80Mbit) (1.6@Mbit) (1.08Mbit) *** Starting CLI:

mininet> pingall

[*+* ping: testing ping reachability

hi -> h2

h2 -> h1

*** Results: 0% dropped (2/2 received)

mininet>

Figure 16: Evaluation of Congestion Multipath Network

6.3 Discussion

In this research project based on the case studies, experiments were performed. From
Figure represents the comparison of TCP throughput for multipath topology and it
shows for proposed algorithm has higher throughput between the time interval 0.0 to
20.0 seconds sent from host-1 to host-2 is 232 Kbits/sec with 640 Kbytes packets trans-
ferred and for the existing algorithm when we compare to proposed algorithm has lesser
throughput between the time interval 0.0 to 20.0 seconds sent from host-1 to host-2 is 64.1
Kbits/sec with 157 Kbytes packets. From Figure [18| represents the comparison of UDP
throughput for multipath topology and proposed algorithm hasn’t much significant dif-
ference from the existing algorithm, for proposed algorithm has little higher throughput
between the time interval 0.0 to 20.0 seconds sent from host-1 to host-2 is 1000 Kbits/sec
and for existing algorithm is 992 Kbits/sec, but it is same with 2.39 MBytes packets
transferred. Form the case study 4, we can overcome of congestion in the multipath
network. To conclude from case studies, we can say that utilization of bandwidth is more
and can overcome the problem of network congestion. So, proposed algorithm is better
when we compared to existing algorithm.

TCP

300 337

Kbps
[%]
=

4.1

=t
=
=

0.0 - 20.0 seconds
Time - interval

Proposed Algorithm TCP Bandwidth

Exisiting Algorithm TCP Bandwidth

Figure 17: TCP

18

UDP

1000

8992

0.0-20.0 seconds

Time - interval

M Proposed Algorithm UDP Bandwidth

Exisiting Algorithm UDP Bandwidth

Figure 18: UDP

7 Conclusion and Future Work

The present network situation needs a higher bandwidth usage and solve the network con-
gestion problem, because the traditional one is complex with the distributed architecture.
To overcome this, SDN is practiced in the current infrastructure. From the case studies
we get to know that TCP throughput shows significant difference between the proposed
and existing algorithm and in case of UDP throughput, there wasn’t much significant dif-
ference but proposed algorithm is performing better. Thus, the proposed RY U-controller
algorithm performs better than the existing algorithm.Service Function Chaining can be
applied in the future enhancement to meet further requirements like load balancing. And
also, we can apply virtual network functions to enhance the resource storage utilization.

Acknowledgement

I would like to express my sincere gratitude to my mentor, Dr. Muhammad Iqgbal for his
valuable guidance and support for my research project. I would also thank our programme
director Dr. Horacio Gonzalez-Velez for continuous support through out the course. And
I would also thank my parents and friends for the continuous support during the course.

References

Ai, J., Chen, H., Guo, Z., Cheng, G. and Baker, T. (2019). Improving resiliency of
software-defined networks with network coding-based multipath routing, 2019 IEEE

19

Symposium on Computers and Communications, ISCC 2019, Barcelona, Spain, June
29 - July 3, 2019, IEEE, pp. 1-6.

Benson, T., Anand, A., Akella, A. and Zhang, M. (2011). Microte: fine grained traffic
engineering for data centers, in K. Cho and M. Crovella (eds), Proceedings of the 2011
Conference on Emerging Networking Experiments and Technologies, Co-NEXT ’11,
Tokyo, Japan, December 6-9, 2011, ACM, p. 8.

Bera, S., Misra, S. and Jamalipour, A. (2019). Flowstat: Adaptive flow-rule placement
for per-flow statistics in SDN, IEEE J. Sel. Areas Commun. 37(3): 530-539.

Guillen, L., Izumi, S., Abe, T., Suganuma, T. and Muraoka, H. (2017). SDN implement-
ation of multipath discovery to improve network performance in distributed storage
systems, 13th International Conference on Network and Service Management, CNSM
2017, Tokyo, Japan, November 26-30, 2017, IEEE Computer Society, pp. 1-4.

Guillen, L., Izumi, S.,; Abe, T., Suganuma, T. and Muraoka, H. (2018). Sdn-based
hybrid server and link load balancing in multipath distributed storage systems, 2018
IEEE/IFIP Network Operations and Management Symposium, NOMS 2018, Taipei,
Taiwan, April 23-27, 2018, IEEE, pp. 1-6.

Hu, Y., Wang, W., Gong, X., Que, X., Ma, Y. and Cheng, S. (2015). Maximizing network
utilization in hybrid software-defined networks, 2015 IEEE Global Communications
Conference, GLOBECOM 2015, San Diego, CA, USA, December 6-10, 2015, IEEE,

pp. 1-6.

Lin, S., Wang, P., Akyildiz, I. F. and Luo, M. (2018). Towards optimal network planning
for software-defined networks, IEEE Trans. Mob. Comput. 17(12): 2953-2967.

Liu, J., Li, J., Shou, G., Hu, Y., Guo, Z. and Dai, W. (2014). SDN based load balancing
mechanism for elephant flow in data center networks, 201/ International Symposium
on Wireless Personal Multimedia Communications, WPMC 2014, Sydney, Australia,
September 7-10, 2014, IEEE, pp. 486-490.

Liu, Z., Wang, Q. and Lee, J. (2019). A SDN controller enabled architecture for the IMS,
20th Asia-Pacific Network Operations and Management Symposium, APNOMS 2019,
Matsue, Japan, September 18-20, 2019, IEEE, pp. 1-4.

Prabhavat, S., Nishiyama, H., Ansari, N. and Kato, N. (2012). On load distribution over
multipath networks, IEEE Commun. Surv. Tutorials 14(3): 662-680.

Rezende, P. H. A.) Kianpisheh, S.; Glitho, R. H. and Madeira, E. R. M. (2019). An sdn-
based framework for routing multi-streams transport traffic over multipath networks,
2019 IEEFE International Conference on Communications, ICC 2019, Shanghai, China,
May 20-24, 2019, IEEE, pp. 1-6.

Sehery, W. and Clancy, C. (2017). Flow optimization in data centers with clos net-
works in support of cloud applications, IEEE Trans. Network and Service Management
14(4): 847-859.

20

Sheu, J., Liu, L., Jagadeesha, R. B. and Chang, Y. (2016). An efficient multipath rout-
ing algorithm for multipath TCP in software-defined networks, European Conference
on Networks and Communications, FuCNC 2016, Athens, Greece, June 27-30, 2016,
IEEE, pp. 371-376.

Singh, S. K., Das, T. and Jukan, A. (2015). A survey on internet multipath routing and
provisioning, IEEE Commun. Surv. Tutorials 17(4): 2157-2175.

Subedi, T. N., Nguyen, K. K. and Cheriet, M. (2015). Openflow-based in-network layer-2
adaptive multipath aggregation in data centers, Comput. Commun. 61: 58-69.

Woo, S., Lee, S., Kim, J. and Shin, S. (2018). RE-CHECKER: towards secure restful
service in software-defined networking, IEEE Conference on Network Function Virtu-
alization and Software Defined Networks, NFV-SDN 2018, Verona, Italy, November
27-29, 2018, IEEE, pp. 1-5.

Xu, C., Jin, W., Zhao, G., Tianfield, H., Yu, S. and Qu, Y. (2017). A novel multipath-
transmission supported software defined wireless network architecture, IEFE Access
5: 2111-2125.

Yao, X., Wang, H., Gao, C. and Yi, S. (2016). Maximizing network utilization for SDN
based on particle swarm optimization, 28th IEEE International Conference on Tools
with Artificial Intelligence, ICTAI 2016, San Jose, CA, USA, November 6-8, 2016,
IEEE Computer Society, pp. 921-925.

Yoshioka, K., Hirata, K. and Yamamoto, M. (2017). Routing method with flow entry
aggregation for software-defined networking, 2017 International Conference on In-
formation Networking, ICOIN 2017, Da Nang, Vietnam, January 11-13, 2017, IEEE,
pp. 157-162.

21

	Introduction
	Related Work
	Analysis of Multi-path Network
	Analysis of SDN Multipath Routing
	Analysis of SDN in Maximizing the Flows

	Methodology
	Architecture of Multipath

	Design Specification
	Implementation
	Outline of Experimental Setup
	Network Emulation Setup
	Implementation of Multipath-Topology in Mininet
	RYU Controller Deployment with Mininet

	Max-Flow Algorithm Description

	Evaluation
	Connectivity Test with mininet and RYU Controller
	Results
	Case Study 1 - TCP and UDP for proposed algorithm
	Case Study 2 - TCP and UDP for Existing Algorithm
	Case Study 3 - Evaluation of TCP and UDP
	Case Study 4 - Evaluating the Congestion in Multipath Topology network

	Discussion

	Conclusion and Future Work

