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Enhancing Static Auto-scaling Approach to Mitigate
Resource Over-Provisioning in Cloud Computing

Manasi Patil
x17156742

Abstract

The elasticity property in cloud computing is favorable for both cloud providers
and consumers because of its automatic adaptation to the dynamic workload that
the application might experience. There are various approaches for scaling and
auto-scalers choose the one to maximize the efficiency based on their application;
keeping a balance between SLA violations and the cost of the resources. In almost
all the approaches, the efficiency of the auto-scaler is directly proportional to the
performance overhead it incurs. Hence, even the most popular approach, which
can foresee and prepare itself to adapt to the dynamic workload beforehand, affects
the performance of the auto-scaler due to its complex algorithms. This research,
thus, focuses on improving a static auto-scaler by mitigating its drawback of re-
source over-provisioning. Additionally, the proposed solution incurs a negligible
performance overhead. The paper introduces an algorithm which leverages the
static auto-scaling to provide a solution to avoid over-provisioning. Consequently,
the overall cost of the resources used by the application decreases. The results of
the empirical evaluation show that the cost of the resources can be decreased by
20-25% depending on the scale of the application.

Keywords: Auto-Scaling, Resource over-provisioning, CloudSim Plus
simulation, Cloud Computing, Elasticity, Static Auto-Scaling, MAPE
model, Horizontal Scaling

1 Introduction

Cloud Computing has led to many innovations and ease of running varied-scale businesses
in todays world. Its extensive range of applications comes from its thorough capabilities,
applicable from personal-interest projects to large-scale businesses (Ghobaei-Arani et al.;
2018). One of the features of cloud computing is elasticity. Mell et al. (2009) state
the following about elasticity:“Capabilities can be elastically provisioned and released,
in some cases automatically, to scale rapidly outward and inward commensurate with
demand”. When applications need extra resources than what is already allocated to them,
auto-scaling plays a major role in monitoring and analyzing the need for the amount of
resources at a particular time period. There are many models such as MAPE which
the auto-scaler follows in order to enable the elasticity of the application (Lorido-Botran
et al.; 2014). The scaling can either be horizontal (i.e. the instances are created or
removed as a whole) or vertical ( i.e. specific changes are made to the existing instances)
(Chen et al.; 2018). Horizontal scaling is comparatively more widely than vertical scaling
used type of scaling in cloud applications (Chen et al.; 2018). Hence, it can be said that
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the auto-scaler decides the number of resources as a whole to be allocated to match the
current demand as close as possible (Ghobaei-Arani et al.; 2018; Herbst et al.; 2013).
Since there is a low probability of resources matching the demand exactly every time, it
results in over- or under-provisioning (Ghobaei-Arani et al.; 2018).

Over-provisioning occurs when the number of resources is more than enough to meet
the demand of the application (Ghobaei-Arani et al.; 2018). On one side, since, the
commercial cloud providers use pay-per-use scheme for leasing the resources, the over-
provisioning condition causes extra cost to the application owner (Ghobaei-Arani et al.;
2018; Buyya and Son; 2018). Besides, extra resources also utilize excess energy and
electricity (Buyya and Son; 2018; Aslanpour et al.; 2017).

Under-provisioning, on the other hand, can violate SLA rules and result in loss of
revenue (Ghobaei-Arani et al.; 2018). Because of the overload of resources, some func-
tionalities may fail which can affect the reputation of application owner as well as the
cloud provider.

To avoid both these scenarios (i.e. over- and under-provisioning), there are many
methods provided by cloud providers in auto-scaling, so that the demand meets the
resources as much as possible. One of the most classic and widely used methods is static
or rule-based auto-scaling approach (Qu et al.; 2018; Chen; 2016). The approach follows
the basic rule of provisioning a specific number of resources when the demand reaches a
specified threshold (Chen; 2016). These values (threshold and number of resources) are
to be fixed by the application owner before the application is hosted. Although it avoids
complexity, it loses the flexibility of the application to adapt with respect to the demand
(Qu et al.; 2018). Moreover, due to the lack of insight of how the workload of a application
varies over time, there is always a probability that the application provider will specify
a high value for the number of resources to be provisioned when there is a condition
of over-provisioning, to avoid SLA violations (Chen; 2016). This method definitely will
lower the probability of degrading their reputation and loss of customers but at the same
time, the cost will increase due to provisioning the extra resources (Al-Dhuraibi et al.;
2018). Though there are many more methods which try to provide an efficient approach,
there needs to be a way to avoid resource over-provisioning when using a static approach
(as this is preferred over other approaches due to is negligible overhead) (Lorido-Botran
et al.; 2014; Chen; 2016).

The main purpose of this paper is to solve the issue of resource over-provisioning
in static auto-scaling. The proposed approach keeps the performance overhead under
control, since it is one of the main reasons for the application owner to choose the static
approach in the first place. The research introduces an algorithm built upon static
auto-scaling which calculates the number of resources to be de-allocated safely without
violating the SLA rules.

The remaining of the paper is structured as follows. Section 2 discusses different
approaches of auto-scaling and provides the justification of enhancing the static mode,
through the past research performed with similar interests. Section 3 states the basic
methodology followed to solve the issue of over-provisioning in order to avoid the excess
cost to the providers. Its implementation in cloudsim is explained in detail in section 4.
Section 5 evaluates the performance, cost of resources and compares the results between
the traditional and proposed approach. Finally, the concluding remarks and future scope
is provided in section 6.
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2 Related Work

This section provides the detailed information about how an auto-scaler works and crit-
ically analyses the revelant approaches followed by auto-scalers in the past.

2.1 Background on MAPE model

Auto-scaling is a continuous process which is iterated multiple times throughout the
application lifetime. It follows an autonomic control loop which IBM proposed and
referred to as MAPE model (Jacob et al.; 2004). The MAPE model is followed by many
researchers as their base to propose various ideas to solve issues regarding auto-scaling.
MAPE model has the following steps: Monitoring, Analysis, Planning, and Execution
(Chen; 2016; Qu et al.; 2018). The steps in MAPE are discussed below.

Monitoring the resources allocated to the application is the first step of the model.
The parameters for monitoring or key performance indicators (KPI) of the workload
can vary from application to application. It can be the number of users for any hosted
website (Kesavulu et al.; 2018), CPU utilization of virtual machines (Anand et al.; 2012),
or resource usage in any application (Dhingra et al.; 2012). The efficiency of auto-
scaling depends on these performance indicators as well as the time interval in between
monitoring (Qu et al.; 2018). The information gathered in this phase will be forwarded
to the analysis phase which will provide the model with the capability of deciding the
stability of the application (Qu et al.; 2018).

The Analysis phase will analyze the information gathered by the monitoring phase
for making further decisions. The monitored data is evaluated to decide to either scale
up or down the resources (Qu et al.; 2018). In this phase, auto-scaler not only makes a
decision to scale but also decides the schedule of the scaling. The decision for scheduling
is based on the configuration of the auto-scaler to either predict the future workload
or to wait for the workload to actually alter significantly (Lorido-Botran et al.; 2014).
According to this configuration, there are two modes namely reactive and proactive.

The Reactive configuration follows the basic auto-scaling method. Whenever the
workload varies significantly, the auto-scaler will allocate or deallocate the resources ac-
cording to the threshold values (Galante and De Bona; 2015). It does not predict the
future and only works with the current workload to decide the allocation of the specific
number of resources (Galante and De Bona; 2015). Hence, this technique is suitable only
for applications having a consistency in their workload graph (Qu et al.; 2018; Liao et al.;
2015). If in case, there is a sudden burst in the workload, the reactive-configuration
auto-scaler will require some amount of time, termed as provisioning time, to allocate
the resources (Lorido-Botrán et al.; 2012). This delay in provisioning while preparing
and migrating the resources might violate SLAs of the cloud providers. Besides this
drawback, reactive configured auto-scaler is used by many applications like Amazon,
RightScale, Scalr and other commercial and academic applications since it does not have
performance overhead due to an absence of computing complexity for prediction algoritms
(Galante and De Bona; 2015).

Another type of configuration is termed as Proactive. To overcome the drawback
of provisioning delay in reactive configured auto-scaling, the predictive configured auto-
scaler tries to be prepared with the number of resources to be allocated beforehand.
It anticipates the future workload and configures the system accordingly (Galante and
De Bona; 2015). For predicting the future workload, it uses information based on the
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monitored data, both current and historical (Galante and De Bona; 2015). Some of
the work using predictive technique are performed by Galante and Bona (2012), Da-
woud et al. (2011), Meinel et al. (2011), Roy et al. (2011), Gong et al. (2010). Unlike
reactive-configured systems, predictive-configured systems are suitable for applications
with varying workloads, since it mostly detects it beforehand and lessens the provision-
ing time. Along with the advantages, proactive systems have a disadvantage of over
or under-provisioning of resources whenever the system results in incorrect prediction
(Lorido-Botran et al.; 2014). Additionally, it also incurs performance overhead due to its
complexity in forecast-computing (Lorido-Botran et al.; 2014).

Planning is the subsequent step in the MAPE model. After getting an idea of the
workload and determining the necessity of resources for the application for scaling, the
planning phase is in charge of keeping a balance between SLA compliance and the cost
of allocated resources (Lorido-Botran et al.; 2014). Basically, this phase will estimate the
exact number of resources needed to manage the workload and to keep up with the SLA
(Qu et al.; 2018). Since the need for resources will vary according to the workload, the
auto-scaler needs to provision resources as close to the demand as possible, which is not
an easy task (Lorido-Botran et al.; 2014). There are several configurations which help
the auto-scaler to do the same. Lorido-Botran et al. (2014) classified the configurations
in five categories, two of which are described in the subsequent subsection 2.2.

Execution is the last step which is followed by the model. As the name suggests,
this phase is responsible for executing the plan which was decided in the previous phases
(Lorido-Botran et al.; 2014). Executing, here, refers to provisioning or de-provisioning of
resources.

2.2 Static mode

Cloud clients find static mode appealing because of its simplicity and intuitive nature
(Lorido-Botran et al.; 2014). This mode abides by the traditional rule of provisioning
a fixed number of resources whenever the workload varies (Al-Dhuraibi et al.; 2018).
The threshold and the number of provisioning resources are provided by the application
provider beforehand and are constant irrespective of the current demand (Han et al.;
2012). Thus the number of provisioned resources rarely meets the demand (Al-Dhuraibi
et al.; 2018). Hence this mode can be suitable only for applications with a uniform
workload graph where the application provider can estimate the resource demands roughly
(Lorido-Botran et al.; 2014; Han et al.; 2012). Some examples of static mode auto-scaler
are shown in Chen (2016), Wuhib et al. (2012), Maurer et al. (2012), Han et al. (2012),
Chazalet et al. (2011), Copil et al. (2013) and Chen et al. (2018).

There are a number of modifications implemented in static mode to overcome the
drawbacks and improve the efficiency of the auto-scaler. Every example seems to ex-
ecute a different approach, nonetheless, follow the similar fundamentals of static mode
configuration.

The basic rules of static mode are the thresholds which need to be provided by the
application provider for both upper and the lower bound on the workload metric (Liao
et al.; 2015). Along with it, the auto-scaler need to provide the number of resources to be
provisioned as a constant. As mentioned in Chen et al. (2018), Cloudline (Galante and
Bona; 2013) has the options to programmably configure the auto-scaling thresholds, even
at runtime as required. This can be done only if the application provider has an expert
knowledge about the application and the workload it might experience. In addition to
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that, the auto-scaler cannot adapt itself to the dynamic workload. On the other hand,
the advantage of this mode is that it is lightweight and incurs no complexity in the design.

Realizing the drawback of a fixed number of resources irrespective of the current
workload, Netto et al. (2014) implemented an idea where the auto-scaler will increase the
step size (number of resources fixed to scale up or down) holistically at runtime based
on the increased number of resources and the current utilization. This type of approach
was proved efficient for an application with bursty workload but incapable of improving
auto-scaling for applications with all the other types of workloads (Netto et al.; 2014).

Cunha et al. (2014) worked on the same principle as Netto et al. (2014) trying to
improve auto-scaling efficiency for all the types of workload. Along with the step size,
the aggressiveness (step size increasing intervals as fixed by the application provider (Qu
et al.; 2018)) of the parameter was also meant to be dynamically tunable according to
the QoS of the application. Although with the dynamicity, the overhead in terms of
performance and complexity originated.

After trying to improve the efficiency based on a fixed number of resources, some
research revolved around the fixed threshold in static mode. Jeffrey and Chase (2010) and
Lim et al. (2009) tried to change the threshold according to scaling. They realized that
the application would need large threshold values for a small number of instances running
on it. But it wont be suitable for a large cluster of instances. According to their research,
threshold will increase after scaling in and decrease after scaling out (Jeffrey and Chase;
2010; Lim et al.; 2009). Hence the dynamically varying threshold will accommodate the
varying allocated resources.

An ideal auto-scaler does not always point towards efficiency but also the cost of
renting the extra resources (Aslanpour et al.; 2017). Lim et al. (2009) has hence tried to
create an auto-scaler which is cost optimal along with being able to fulfill the workload
demand. Considering the processing power, configuration cost, incoming workload and
the capacity of clouds, Lim et al. (2009) compared the results with Amazon cloud in a
specific configuration.

Calcavecchia et al. (2012) and RightScale (2018) worked on a totally different approach
than the rest. They focused in a decentralized system of P2P network of instances
(Calcavecchia et al.; 2012). The network was responsible for sharing their statuses and
voting to decide whether to allocate or deallocate resources in the network (Calcavecchia
et al.; 2012). It works on the basis of predefined rules and the following the majority in
voting (RightScale; 2018).

2.3 Dynamic mode

To overcome the drawbacks of over and under-provisioning in static mode, the dynamic
mode learns about the workload and its changes to predict the future workload for better
resource provisioning (Qu et al.; 2018). Public cloud providers like Profitbricks 1 and
CloudSigma 2 abide by dynamically configured auto-scaler (Galante and De Bona; 2015).
Unlike static mode, applications using dynamic mode are allowed to have spikes in their
workload. Despite the bursty workloads, the dynamic mode manages to scale efficiently.
For this, it basically uses machine learning to create a resource provisioning model (Qu
et al.; 2018). The machine learning starts without any prior configurations and then
modifies itself according to the current workload. Since it follows learning from its own

1https://www.ionos.com/
2https://www.cloudsigma.com/
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mistakes, many-a-times it violates SLA rules (Ghobaei-Arani et al.; 2018). In addition to
it, dynamic mode also incurs additional performance overhead due to its machine learning
computation (Chen; 2016).

2.4 Static versus Dynamic Approaches of Auto-Scaling

As described in Chen et al. (2018), although dynamic mode is preferred by many applic-
ations over static, there are several reasons why static is still chosen for auto-scalers in
applications. Around 20% of applications still choose to use static over other approaches
(Chen et al.; 2018; Gandhi et al.; 2018).

Cloud providers find static mode easy to provide in auto-scalers. Additionally, the
clients also find it very easy to set-up the thresholds and number of resources in the auto-
scaler (Lorido-Botran et al.; 2014). The applications which require a basic auto-scaler
without much computation complexity might choose static over dynamic configuration
in auto-scaler.

Applications with unvarying workload can suit themselves with static and not worry
about the SLA violations and the extra cost of the resources (Aslanpour et al.; 2017;
Galante and De Bona; 2015).

The ideal auto-scaler must perform scaling without affecting the normal performance
of the application (Aceto et al.; 2013). As mentioned above, the dynamic model has a
performance overhead. Hence small applications would prefer static mode because of its
negligible overhead (Chen; 2016).

The starting phase of machine learning makes errors before stabilizing itself and hence
violates many SLA rules by under provisioning of resources (Qu et al.; 2018; Chen; 2016).
It requires many actuations to make on the physical system (Chen; 2016). Additionally,
it could incur more cost of resources by over-provisioning. Since, high profile applications
can not afford SLA violations, they might choose static over dynamic.

The complex trade-offs are handled only implicitly. Hence making amateur decisions
is highly possible (Chen; 2016).

The application providers of academic or scientific applications (Galante and De Bona;
2015) with high intuitive and expert knowledge about the application can decide the
threshold and the number of resources required very accurately. Hence, choosing static
approach could avoid the above-mentioned drawbacks of dynamic mode and configure
the auto-scaler statically.

This section described the working of auto-scaler with MAPE model and critically
analysed the approaches followed in the past. Subsequently, it provided reasons for some
applications to choose static over dynamic mode. The type, area and the outcomes of
the research reveal that there is still a scope for improving the auto-scaling efficiency in
static mode.

3 Methodology

This section describes the proposed solution to mitigate the over-provisioning issue. The
proposed solution calculates the number of resources that can be deleted safely to max-
imize the overall CPU utilization. This value is computed using a formula which takes
into consideration the upper and lower thresholds defined by the application provider and
the current CPU utilization of the resources. In this way, the proposed approach tries to
lessen the over-provisioned resources to the application. As mentioned in the section 2,
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few applications providers prefer to use auto-scalers with static mode over dynamic mode
for auto-scaling their applications either to avoid performance overhead, to not deal with
SLA violations in the starting phase of machine learning, or need a basic approach since
the application has unvarying workload. Bearing in mind the need of these applications,
the proposed approach incorporates some existing configurations.

The auto-scaling is defined as horizontal scaling, which implies adding and removing
resources as a whole. The scaling is performed only after the status of stability of the
application changes. This corresponds to reactive-conFigured auto-scaling. Lastly, the
auto-scaler follows static mode which means the thresholds are already fixed by the
application provider programmatically.

3.1 Proposed solution

Basically, the proposed solution builds on the top of static auto-scaling approach. It
takes into consideration the thresholds and values defined by the application owner and
deletes some resources based on those values. The basic components needed for imple-
menting the proposed solution in the auto-scaler are shown in Figure 1 . For enabling
the elastic feature in the cloud, the auto-scaler is the main component of the system.
It ensures proper provisioning of resources whenever the demand rises or drops. The
resources represent the instances needed by the application deployed on the cloud. The
load balancer balances the workload among the allocated resources to avoid overloading
of any one of the allocated resources. Since the proposed solution is an enhancement in
the static auto-scaler, Figure 1 shows the solution as a part of the static auto-scaler.

Figure 1: Component Diagram

Figure 2: Pseudo Code Figure 3: Deployment Diagram

These components are dependent on each other for performing their tasks. This
dependency and detailed responsibilities of each element can be shown in the deployment
diagram (3). The users are the consumers of the application which is hosted on the cloud.
The application needs resources to provide service to users. The need for resources can
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vary according to the demand. These resources are provided by the cloud providers
with a specific configuration as needed by the application. The application provider
is responsible for defining the thresholds to provide enough resources in order to avoid
any kind of SLA violations. Since the auto-scaler used here is a static auto-scaler, the
thresholds are provided by the application owner beforehand. The threshold values can be
decided based on performance metrics like CPU utilization, request rate or response time
of the application (Lorido-Botrán et al.; 2012). In this paper, the performance metric is
chosen to the CPU utilization. The upper threshold (Thr Upr) defines the upper bound of
the CPU utilization reached by the resource to allocate new resources. Whereas the lower
threshold (Thr Lwr) defines the lower bound of the CPU utilization before deleting the
resource. Also, the number of resources to be provisioned (Prov num) for the application
to reach stability is also fixed and pre-defined by the application provider.

As mentioned in the previous section, since the application owner tends to provide a
higher number of resources to avoid SLA violation, there is an issue of over-provisioning
of resources. To avoid this, the proposed solution monitors the resources, calculates De-
Prov num and de-provisions resources to still meet the demand and avoid SLA violation.
For example, as shown in the Figure 3, the resources R1 to R4 have an overall CPU
usage of less than 40%. It means that even if one of these resources were shut down, the
application will not suffer in terms of performance. The proposed algorithm provides the
auto-scaler with a safe number of resources to be destroyed to mitigate over-provisioning
depending on the threshold values and the current CPU utilization.

The pseudo code for the proposed algorithm is shown in Figure 2. First, similar to a
basic static auto-scaler, it checks if the CPU utilization crosses some fixed threshold. If it
does, the auto-scaler adds or removes a certain amount of resources. After auto-scaling,
with the help of the load balancer, the workload is balanced among all the available
resources. The load balancer makes sure that the resources are in a condition which will
not violate any thresholds. At this stage, the proposed algorithm is implemented. When
neither of the thresholds (Thr Upr and Thr Lwr) are exceeded, the proposed algorithm
calculate the number of resources using the formula. The formula takes into consideration
the thresholds provided by the application owner, number of currently allocated resources
and their total CPU utilization.

DeProv Num =
(Thr Upr × n) − ((100 × n) − sum)

Thr Upr

where,
DeProv Num = Number of resources which can be deleted
Thr Upr = higher bound set for checking VM overloading (in percentage)
n = Number of allocated resources
sum = Sum of CPU utilization of all VMs (in percentage)
For a better understanding of the flow of the auto-scaler and the implementation

of the proposed solution, the Figure 4 presents the activity diagram of the proposed
algorithm. There are three parts of the system as shown in the Figure 4. First, the
application itself, which is hosted on the cloud. Second is the auto-scaler to monitor,
provision or de-provision resources according to the current demand. The third is the
load balancer which is responsible to balance the workload among the allocated resources.
The application monitors the workload at specific time intervals to match one of the three
conditions.

Rule1: If the CPU usage is higher than the threshold (Thr Upr), add a predefined
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Figure 4: Activity Diagram

number of resources (Prov Num). Rule2: If the CPU usage is lower than the threshold
(Thr Lwr), remove a resource. as If the CPU utilisation is within the interval defined
by the two thresholds (i.e.[Thr Lwr, Thr Upr]) check the overall CPU utilization of the
all the resources. Rule3: If the overall CPU utilization is less than the lower threshold
(Thr Lwr), calculate the number of resources to be destroyed using the proposed formula.
Once the number of resources to be destroyed is calculated, the auto-scaler destroys the
resources having the lowest CPU usage. This loop runs throughout the course of the
application. The proposed solution analyzes the overall unutilized CPU percentage of all
allocated resources and destroy the equivalent number of resources. This way, the issue
of over-provisioning of resources can be mitigated. The implementation of this algorithm
in a simulator is explained in the next section (section 4).

4 Implementation

This section provides details about the implementation of the proposed solution. The pro-
posed solution is implemented in CloudSim Plus 3, a cloud simulation framework used for
simulating cloud applications. With a variety of commercial cloud providers available for
implementation and testing the proposed solution such as Amazon, Google, OpenStack,
etc., cloud simulator was preferable due to the following reasons. Since evaluating the
approach needs a variation of workload at different times in the application, simulation
can provide a better control at managing the same. Moreover, testing the experiments
with instances having varied configurations would be time-consuming. Cloud Simulator
provides an added advantage of flexibility in sampling instances of different configura-

3www.cloudsimplus.org
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tions. It allowed iterating the experiments a countless number of times without worrying
about the time and expense. Besides, most of the commercial cloud infrastructure would
have been expensive for renting instances.

4.1 CloudSim Plus: Simulation Framework

CloudSim Plus is an extended version of CloudSim 3 simulator framework (Manoel C.
et al.; 2018). CloudSim Plus is a simulation framework which provides basic entities
like a data center, VMs, SANs, and hosts, Additionally, it postulates the behavior of
such entities exposed to diverse workloads (Silva Filho et al.; 2017). Moreover, it lets
the user specify characteristics like RAM, storage, and processing elements (PEs) for
the entities. Apart from the basic functionalities of simulating the cloud environment,
CloudSim Plus has some some exclusive features like VM scaling, vertical and horizontal
scaling and event listeners. These features are used as the foundation for building the
algorithm proposed in this research. CloudSim Plus framework is written in Java, hence
the algorithm also uses Java as the programming language. The use of CloudSim plus
simulator framework for implementing and evaluating the algorithm is explained next.

Figure 5: CloudSim Simulator

For simulating the cloud environment, CloudSim Plus has a class named CloudSim
which provides the user with entities shown in fig 5. The Cloud Information Service
(CIS) contains the registry of all the other entities once they are created. To build a
data center, there are several entities that need to be created and registered to CIS. The
data center contains hosts which have hardware characteristics like RAM, bandwidth,
storage, number of processing elements (PEs) and their capacity . The datacenter passes
the list of these hosts as parameters for its creation. These hosts are virtualized in
the cloud infrastructure providing a number of VMs with specific configurations. The
VM is configured with RAM, bandwidth, storage, number of PEs, PE capacity and
scheduling algorithms. The number of hosts and VMs are adjusted for simulating different
scenarios. In this research, every VM is provided with a feature of horizontal scaling.
This feature defines a function which checks the CPU utilization every few seconds for
overloading and a function which provides a specific number of VM if the condition stands
true. The simulation framework provides with a datacenter broker to mediate between
SaaS and the cloud provider (Calheiros et al.; 2011). The workload is simulated via
tasks performed on the cloud called as cloudlets. Cloudlets are assigned to every VM
tagged along with a space-shared scheduler. The cloudlets capacity is measured in Million
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Instructions (MI). The number of cloudlets is varied according to the need of workload
for the experiment. To mimic the authenticity of a real-world scenario, the cloudlets are
dynamically created throughout the simulation at random times. These cloudlets are
submitted to the broker and the broker forwards it to the VM in the datacenter for its
completion. All the entities are destroyed once all the cloudlets finish their execution.
The function setVmDestructionDelayFunction() makes sure that the VMs are destroyed
only after few seconds of them being idle, namely 5 seconds. The time period 5 seconds
is chosen to nake sure the VM has finished the execution of all cloudlets and is not just
waiting for a cloudlet to get allocated to it.

4.2 Entities’ Characteristics

The cloudsim entities like host, VMs and cloudlets has characteristics which are defined
as per the application requirements.

• Host

– The number of hosts to be created in the datacenter.

– A list of Processing Elements (PEs) for each host.

– Capacity of each PE in Million Instructions per second (MIPS)

– RAM to be provided in megabytes

– Storage to be provided in megabytes

– Bandwidth to be provided in megabits

– Enable State History for obtaining the CPU utilization for every host.

• VM

– The number of VMs to be created.

– A list of Processing Elements (PEs) for each VM.

– Capacity of each PE in Million Instructions per second (MIPS)

– RAM to be provided in megabytes

– Storage to be provided in megabytes

– Bandwidth to be provided in megabits

– Enable Utilization History for obtaining the CPU utilization for every VM.

– Enable Horizontal Scaling (ref figure 6)- For providing every VM with a feature
of scalability, the horizontal scaling class supplies with a function isVMOver-
loaded() which checks the CPU utilization of the VM every 5 seconds. This
time can be adjusted as per requirement in the variable named SCHEDUL-
ING INTERVAL. Furthermore, the class also lets the application provision
VMs if the VM has crossed the higher bound (Thr Upr).
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Figure 6: Horizontal Scaling Figure 7: New Cloudlet Creation

• Cloudlets

– The number of Cloudlets to be created.

– Length of the Cloudlets in Million Instructions (MI).

– Utilization Model for defining usage of RAM, CPU and Bandwidth.

– Input, Output file sizes

– Enable Event listener (ref figure 7)- Notify the system when any cloudlet fin-
ishes its execution and run the function named onCloudletFinishListener().

– Create Cloudlets at run time. The cloudlets are scheduled to get created
and allocated to the VMs every few seconds until they reach the maximum
cloudlets value (Max Cloudlets) via a function addOnClockTickListener of the
CLoudSim class. The scheduling interval can be adjusted by changing the
variable value (CLOUDLETS CREATION INTERVAL).

4.3 Auto-Scaling

The auto-scaling works on a basic principle of monitoring, analyisng, planning and execut-
ing in a loop. For monitoring, the horizontal scaling class has provided with a function is
isVMOverloaded(). Basically, the CPU utilization of the VM is checked against the two
thresholds (Thr Upr) and (Thr Lwr) and accordingly resources are either provisioned or
de-provisioned. If the CPU utilization value crosses Thr Upr, a flag variable overload is
set to 1. This flag is checked while creating a new VM for provisiong. The flag set to 1,
indicates that the resources are overloaded, and hence it will create Prov Num number
of VMs.

If the CPU utilization value is lower than Thr Lwr, a function for deleting the VM
(destroyVM()) is called. This function will migrate the cloudlets from the waiting list of
the underutilized VM to another VM chosen from the VmList (List of allocated VMs).
Since, the CPU utilization of the VM is low but not zero, it denotes that there are
cloudlets running on the VM. Hence the VM is added to the vmDestroyList. This list
is checked everytime any cloudlet finished its execution via the event listener function
onCloudletFinishListener(). So whenever a cloudlet finishes its execution, this function
will check if the VM to whoch the cloudlet was assigned, is in the vmDestroyList list. If
it stands true, then it deletes that particular VM.

4.3.1 Static Approach

The basic auto-scaling with static configuration is leveraged to include the proposed
algorithm. This helps in evaluating the performance difference between the proposed
algorithm and the basic one. The static algorithm needs several thresholds to be defined
like the CPU percentage as a high bound (Thr Upr) for allocating instances, low bound
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(Thr Lwr) for deleting instances, number of instances (Prov Num) to be allocated on
up-scaling. Before starting the simulation, all the entities must be created by defining
their hardware configurations and registered with CIS. The VMs and the cloudlets are
submitted to the broker mentioning their scheduling policy. Once the simulation starts,
the cloudlets are assigned to the VMs and the VMs start executing the cloudlets in a
space-shared manner. The simulation follows the auto-scaling mechanism as stated in
subsection. It will monitor the CPU utilization of VMs, check the value against the
thresholds set and allocate or de-allocate resources accordingly.

4.3.2 Proposed Approach

For implementing the proposed algorithm, the main difference lies in the analysis part
of the auto-scaling. In the static auto-scaling, the monitored CPU utilization value is
checked against the upper bound (Thr Upr) and lower bound (Thr Lwr) in the isV-
MOverloaded() function. However, in the proposed solution, this function will also check
if the overall CPU utilization of all the VMs included, is lower than Thr Lwr. If this
condition stands true, the algorithm (mentioned in section 3) calculates the number of
resources to be destroyed, is processed. In order to delete the VMs with the lowest
CPU utilization, the VMs are sorted in ascending order according to their current CPU
utilization. For every VM to be deleted, the function named deleteVm() is called.

5 Evaluation

This section presents the empirical evaluation of the proposed algorithm for its perform-
ance, accuracy and reliability. There are a total of four case studies examining various
parameters in scenarios simulating either a small scale application or a large scale ap-
plication. The performance of the proposed solution is evaluated by examining the basic
functionality of an auto-scaler. Depending on the workload, the auto-scaler is examined
for its provisioning and de-provisioning of resources (i.e. allocates resources when the
workload is high and de-allocates when the workload is low). Furthermore, since the
proposed solution is built upon a static auto-scaler, this section compares both the static
and the proposed approach under similar workload for the cost of resources they might
incur.

The performance of the auto-scaler is examined by monitoring the allocation time of
the VMs and the overall CPU utilization of the resources according to the variation of the
workload. The VMs are expected to be allocated whenever there is a rise in workload,
Moreover the graph of CPU utilization over time is also expected to be in accordance
with the graph of workload over time.

As stated in section 1, the motivation behind improving the static auto-scaler is to
obtain a cost-effective auto-scaling approach. Since the cloud providers provide a pay-
per-use scheme for the resources being allocated, the application provider has to pay
unnecessarily for the over-provisioned resources. Hence to ensure the proposed approach
optimizes cost of resources over the static approach, the cost of the allocated resources
per unit time throughout the course of the application is used for comparison.
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5.1 Performance Analysis of the basic (static) approach

This experiment is conducted to verify the basic functionalities of an auto-scaler. Any
basic auto-scaler is expected to provision resources when the workload rises and de-
provision them when the workload stabilizes. Furthermore, the CPU utilization is also
expected to rise as the workload rises. Hence for this experiment, the CPU utilization
and the allocated VMs is compared with the number of cloudlets running (depicting
the workload) at particular time intervals. The configuration of the simulation is set
according to a small scale application.

Figure 8: Performance Analysis of Static Approach

The figure 8 represents the performance analysis of the proposed solution. A dual
axis graph provides a better comparison between two parameters having different units
of measurements. The x-axis depicts the time interval of the course of the application.
The y-axis on the left-hand side represents the number of cloudlets executing and the
number of VM allocated. The secondary axis on the right-hand side represents the CPU
utilization of the host. In the first time interval (0-5), the number of cloudlets and VMs
are 5 each. The system allocates one cloudlet to each VM. During the same time interval
(0-5) in the figure, the CPU utilization has a high value of around 50%. Due to this high
CPU utilization, the auto-scaler allocates 5 additional VMs to the application. As soon
as the VMs are allocated, the overall CPU utilization drops to 12%. This shows that
the workload is balanced between all the allocated VMs. The auto-scaler de-provisions
the VM at the time 25 when the cloudlets starts finishing their execution. At time
interval 40-45, the number of cloudlets executing drops from 4 to 1. Hence the VM are
de-provisioned in the next time interval (45-50). Moreover, the accuarcy of the proposed
approach can also be analysed from the figure 8.The number of allocated VMs seem to
follow the number of cloudlets at each time interval, which signifies that the auto-scaler
provisions and de-provisions the VMs according to the workload. Theerfore, considering
the performance and the accuracy, we can say that the auto-scaler using the proposed
approach operates as expected.
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5.2 Comparison of Proposed and Static approach on a small
scale application

This experiment is carried out to compare the proposed solution and the static auto-
scaling approach in terms of the number of resources being used in any small-scale ap-
plication. In other terms, the experiment is simulating any small-scale application with
the threshold values in accordance with the scale of the application. This experiment is
simulating the situation where the application provider has the knowledge of the applic-
ation and the workload it might experience. Hence, the thresholds provided by them will
be well-suited for the type of the application and the workload. The evaluation metric
used here is the cost per unit time since the experiment is trying to compare the cost
which the application provider might be charged for the number of resources used by
both types of auto-scalers.

The hardware configurations of CloudSim Plus simulator for this experiment is the
same for both static auto-scaling approach and the proposed approach are shown in
Table 2.

Table 1: Configuration for small scale application

Entity Number of
Entities

RAM
(MB)

Storage
(MB)

Bandwidth
(MegaBits)

No of
PEs

PE capacity

Host 4 6000 1,000,000 10,000 50 1000
VM 6 512 10,000 1000 2 1000

The threshold values and configuration to simulate a small scale application is stated
below:

Prov Num=2; Thr Upr=0.8; Thr Lwr=0.3;
Minimum number of cloudlets= 10; Maximum Number of Cloudlets=100;
Cloudlet length= 10000 in MI (Million Instructions)
The threshold values are provided by the application owner. The Thr Upr and

Thr Lwr are the upper and lower bound against which the CPU utilization is checked for
up-scaling or down scaling. Prov Num defines the number of resources to be allocated
when the CPU utilization reaches Thr Upr. The number of cloudlets are provided
considering the scale of the application. The minimum number of cloudlets that are
created at the start of the simulation. When the cloudlets are created at runtime, the
cloudlets are not supposed to exceed the maximum number. All these cloudlets have
their lengths (capacity) provided in million instructions (MI).

With the given setup, the simulation for static auto-scaling with both the basic ap-
proach and the proposed approach is run on CloudSim Plus simulator. The start and
finish time for each of the VMs are monitored and aggregated in order to obtain the
total execution time of all the VMs. The total cost of using the VMs is calculated by
multiplying this time by the cost per unit time. This experiment is repeated 110 times
and the data is collected for both the approaches. A line graph is plotted with cost per
unit time on x-axis and number of cloudlets on the y-axis. The cost of a resource is
considered as 1 unit and the number of cloudlets represent the intensity of workload the
application might be experiencing.

Figure 9 shows the behavior of a small scale application in terms of cost per unit
time of the application as the workload varies for both static and proposed approach.
The x-axis represents the number of cloudlets and y-axis represents the median of cost
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per unit time. As shown in the figure 9, according to the workload, the total cost per
unit time of the resources differs. This denotes that for higher workload, the application
tends to use a higher number of resources regardless of the approach used. However,
the proposed approach represented by the blue line seems to incur overall less cost of
resources per unit time. This signifies that the proposed solution uses comparatively less
number of resources for the same configurations. The proposed approach incurs 24.17%
less cost per unit time than the static approach.

Figure 9: Cost per unit time for
small scale applications

Figure 10: Cost per unit time for
small scale applications with high
provisioning value

5.3 Comparison of Proposed and Static approach on a small
scale application with a high provisioning value (Prov Num)

An application provider has a tendency to provide a provisioning value (Prov Num)
higher than the range of the application scale. Since small-scale applications tend to
have smaller bursts of workload, a smaller provisioning value is appropriate for a those
kinds of applications . However, some application providers unnecessarily provide a
higher Prov Num for their small-scale application to ensure that the application will
not violate any SLA rules. As mentioned in section 2, this is one of the main reasons
causing resource over-provisioning. This experiment simulates a similar scenario of a
small scale application with a high provisioning value (Prov Num). The experiment is
repeated 100 time under the configuration similar to the previous experiment for a small
scale application (refer table 2). Since this experiment is simulating a scenario where the
application provider provides a higher provisioning value, instead of Prov Num as 2, this
experiment has the provisioning value (Prov Num) set to 5.

Evaluating the same metric as the previous experiment, the figure 10 represents the
comparison of the proposed and static algorithm in terms of the cost of resources per unit
time. The x-axis represents the number of cloudlets. The y-axis represents the median
of cost per unit time. The figure 10 shows that as the number of workload increases,
the cost of resources er unit time also increases. It signifies that even if the application
provider provides a high number of provisioning resources, the proposed approach tends
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to use only necessary number of resources. Hence, we can say that, regardless of the
higher provisioning number, the proposed approach abides to the basic cost optimization
in the auto-scaler than static approach. The proposed approach is approximately 21.9%
cheaper per unit time than the static approach.

5.4 Comparison of Proposed and Static approach on a large
scale application

This experiment simulates a large scale application and the effects of both proposed
and static auto-scaling approaches on it. The hardware configurations of CloudSim Plus
simulator for this experiment simulating a large scale applcation is the same for both
static auto-scaling approach and the proposed approach and is shown in Table 2.

Table 2: Configuration for large scale application

Entity Number of
Entities

RAM
(MB)

Storage
(MB)

Bandwidth
(MegaBits)

No of
PEs

PE capacity

Host 20 600000 100000000 1000000 100 1000
VM 10 6000 100000 10000 10 1000

The threshold values and configuration to simulate a small scale application is stated
below:

Prov Num=10; Thr Upr=0.8; Thr Lwr=0.3;
Minimum number of cloudlets= 100; Maximum Number of Cloudlets=5000;
Cloudlet length= 10000 in MI (Million Instructions)
The threshold values provided by the application owner for large scale application

which denote the upper and lower bound against which the CPU utilization is checked
for up-scaling or down-scaling. Prov Num defining the number of resources to be alloc-
ated when the CPU utilization reaches Thr Upr is higher considering the high values
of hardware configurations of the large scale application. Similarly the minimum and
maximum number of cloudlets provided have a higher value. With this configuration, the
experiment is repeated 100 times to collect enough data for analysis.

Figure 11: Cost per unit time for large scale application
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With the configuration mentioned above, the experiment is repeated 100 times to
obtain a result as shown in figure 11. The x- axis represents the number of cloudlets.
The y-axis represents the cost per unit time. The lines representing both the approaches
does not seem to have a significant difference regardless of the workload. This implies
that the number of resources allocated in proposed approach are not significantly lower
than the number of resources allocated in static approach. This experiment signifies that
the proposed approach does not perform significantly better in a large scale application.
Observing closely, the proposed algorithm costs only 1% lower than the static approach
would.

5.5 Discussion

This section provides a critical analysis of the outcomes of the experiments carried out.
The improvements and limitations of the proposed approach over static and other ap-
proaches are mentioned and discussed.

The proposed solution is evaluated and verified that it operates according to the basic
functionalities accurately. Moreover the results showed that the proposed approach has
significant enhancements over the static approach. The first experiment (5.1) examined if
the proposed approach operates as expected from any auto-scaling approach. In figure 8,
the number of VMs are provisioned as the workload (number of cloudlets) increased and
de-allocated whenever the workload dropped. Moreover, the CPU utilization graph which
varies according to both the number of VMs and cloudlets signifies that the workload is
distributed among the provisioned VMs. Since the proposed solution seems to operate
as expected, the subsequent experiments (5.2, 5.3, 5.4) evaluates the performance (in
terms of cost per unit time) of the approach against the static approach. The results of
the second experiment (refer figure 9) claimed that the number of resources used in any
small scale application is lower if the proposed approach is followed as compared to the
static approach. Hence we can say that the proposed approach optimizes cost by around
24.17%. Moreover, despite of the application provider providing a higher provisioning
value (Prov num) to avoid SLA violations, as simulated in the third experiment 5.3, the
proposed approach is able to satisfy the workload demand using lower number of resources
as compared to static approach. This is shown in figure 11 which presents that the cost
per unit time is low for the proposed approach. Hence we can say that the proposed
approach can take care of a higher provisioned value (Prov Num) by allowing the small-
scale application use only the number of resources necessary. The fourth experiment 5.4
provides a simulation of a large scale application, and the outcomes reveal that proposed
approach does not out-perform the static approach in terms of resources used. Although,it
does not cost more than static approach, since the cost optimixation according to the
experiment 5.4is 1%. It means that the proposed solution uses comparatively (though
not significantly) less number of resources for most of the values of number of cloudlets
in the case of large-scale application.

Thus, the experiments prove that the proposed approach has shown enhancements
over the static approach to some extent and that it still has scope to improve. Since the
proposed solution was only compared against the static approach, it is still unsure if the
approach is better than the other approaches which use the machine learning algorithms
to predict the workload. Moreover, since the proposed approach is built upon static
approach, it will not provide its best efficiency on bursty workloads.
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6 Conclusion and Future Work

This paper proposes an algorithm in order to mitigate the issue of resource over-provisioning
in the static approach of auto-scaling. Application providers tend to provide a higher
resource provisioning value while setting up the application in order to steer clear of
violating any SLA rules. This causes resource over-provisioning and eventually incurs
unnecessary cost to the application provider. To solve this issue, the proposed algorithm
calculates the number of instances which can be shut down without affecting the per-
formance of the application. The algorithm is a basically a mathematical formula which
considers the thresholds provided by the application provider for up-scaling and the cur-
rent CPU utilization of the allocated resources and hence does not have any performance
overhead. The proposed algorithm operates the basic functionalities as expected in the
simulator accurately. Considering cost per unit time as the evaluation metric, the paper
compares the performance of the proposed approach with the static one. The results
denote that de-allocating the extra resources proved to be around 20-25% cost optim-
ized in various scenarios of a small scale application. The proposed algorithm basically
outperforms the static approach in most of the circumstances.

The future work of this research can be focused on mitigating the issues found during
the evaluation of the proposed solution. In the case study of the large scale application,
the proposed approach showed the cost optimization of only 1%. Besides, the proposed
approach might have an additional cost issue due to the frequent creation and destruction
of resources (Liao et al.; 2015). Additionally, the algorithm can be compared against the
dynamic approach and enhanced accordingly. Since the algorithm exhibited significant
improvement over static approach, it could be applied to an auto-scaler for an application
deployed on the cloud.
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1 System requirements

• OS: Windows 10

• Processor: Intel(R) Core(TM) i3-4030 CPU@1.90Ghz

• RAM: 8 GB

• System Type: 64 bit

2 Install an IDE

Eclipse IDE with integrated plugin for JAVA development is a platform used to simulate
the cloud environment.The steps 1 to be followed to install it are:

• Install Java Development ToolKit (JDK), since the simulation is using Java as the
programming language. Use

http://www.ntu.edu.sg/home/ehchua/programming/howto/JDK_HowTo.html#jdk-

install

for the steps to be followed for installation.

• Download the Eclipse IDE from

https://www.eclipse.org/downloads/packages/release/juno/sr2/eclipse-ide-

java-ee-developers

• Unzip the downloaded folder and open the execution(.exe) file to open Eclipse IDE.

1http://www.ntu.edu.sg/home/ehchua/programming/howto/eclipsejava_howto.html
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3 Simulate Cloud Environment

For simulating the cloud environment, a simulation framework, CloudSim Plus is used.
The steps 2 to implement the simulation in Eclipse IDE are:

• Download the project source from http://cloudsimplus.org/

• Unzip the downloaded folder in the eclipse IDE’s workspace.

• Open Eclipse IDE and import the cloudsim plus folder as an existing MAVEN
project. The project will be saved in a structure as shown in figure 1.

Figure 1: CloudSim Structure

• Allow the IDE to automatically install the packages required to run the cloudsim
plus project.

4 Execution

• Implement the approach

Select src/main/java under cloudsim-plus-examples and import the package

org.cloudsim.cloudbus.staticautoscaling.

• Set the configurations

The cloud environment has hardware configurations and characteristics for hosts,
VMs and cloudlets which can be set to simulate particular instance type or a scen-
ario. In addition to that, the thresholds values(Thr Upr, Thr Lwr, Prov Num) can
also be provided. Section 5 provides the configuration for simulating the scenarios
under which the proposed approach is evaluated in the research.

• Run the java code and obtain simulation results

The simulation results can be obtained similar to the figure 2. The CPU utilization
of every VM or Hosts can also be obtained.

2http://cloudsimplus.org/
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Figure 2: Simulation Result

5 Implementing Case Studies

The evaluation performed on the proposed solution simulates different scenarios for small
scale or large scale application. The configurations for small scale and large scale differ
in thresholds, and hardware configuration and entity characteristics.

5.1 Performance Analysis of Proposed Solution

For this experiment, the configuration tries to simulates a small scale application. The
configurations are shown in figure 3. For collecting the data for evaluation, the CPU
utilization of the hosts for every 5 seconds are collected and stored in a file. The fig-
ure 4 presents a code snippet of the function showCpuUtilizationForAllHosts() where the
CPU utilization and time is stored in a text file named Host.txt. Moreover for eval-
uating the performance the execution start and finish time for cloudlets and VMs are
also required. The figure 5 shows the code snippet of the function printSimulation-
Results() which adds the cloudlet id and the start and finish time of all the cloudlets
in a textfile named cloudlet.txt. Whereas the VM id with the start and finish time
of all the VMs is stored in a VM.txt. All the created text files can be found under
org.cloudsim.cloudbus.staticautoscaling. Using this data, graph can be plotted in order
to analyze the performance and accuracy of the proposed algorithm.

Figure 3: Configuration for simulation
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Figure 4: Collect CPU utilization

Figure 5: Collect Cloudlet and VM data
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5.2 Comparison of Proposed and Static Approach

The experiments for comparing the proposed approach with the static one have either
simulated a small scale application or a large scale application. After setting the config-
urations for the application as provided in the research, these experiments evaluate the
cost per unit time with the number of cloudlets. This data can be gathered as shown in
the figure 6. The figure 6 is a code snippet of the function printSimulationResults() in the
static approach, which adds the cost per unit time and the number of finished cloudlets
to a text file named static.txt. This code must be added in both the approaches(proposed
and static) and run 100 times to collect enough data for comparison. For repeating the
experiments around a 100 times, the code runExperiments.java can be run. Both the text
files can be analyzed and have the capability of obtaining a line graph for comparison.

Figure 6: Collect #Cloudlet and Cost Per Unit Time
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