
 
 

 
 
 
 
 
 
 
 
 
 

 

Multi-layer security framework for cloud 

application 
 
 
 
 

 

MSc Research Project 
 

Masters in Cloud Computing 
 
 

 

Akash Sadanand Hande  

Student ID: X17156220 
 
 
 

School of Computing 
 

National College of Ireland 
 
 
 
 
 
 
 
 
 
 
 

Supervisor: Dr. Sachin Sharma 



 

 
National College of Ireland 

 

MSc Project Submission Sheet 

 

School of Computing 

 

Student Name: 

 

Akash Sadanand Hande 

 

Student ID: 

 

X17156220 

 

Programme: 

 

Cloud Computing 

 

Year: 

 

2018 

 

Module: 

 

MSc Research Project 

 

Supervisor: 

 

Dr. Sachin Sharma 

Submission Due 

Date: 

 

20/12/2018 

 

Project Title: 

 

Multi-layer security framework for cloud applications 

Word Count: 

 

7314                                                        Page Count       22 

 

I hereby certify that the information contained in this (my submission) is information 

pertaining to research I conducted for this project.  All information other than my own 

contribution will be fully referenced and listed in the relevant bibliography section at the 

rear of the project. 

ALL internet material must be referenced in the bibliography section.  Students are 

required to use the Referencing Standard specified in the report template. To use other 

author's written or electronic work is illegal (plagiarism) and may result in disciplinary 

action. 

 

Signature: 

 

……………………………………………………………………………………………………………… 

 

Date: 

 

20/12/2018 

 

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST 

 

Attach a completed copy of this sheet to each project (including multiple 

copies) 

□ 

Attach a Moodle submission receipt of the online project 

submission, to each project (including multiple copies). 

□ 

You must ensure that you retain a HARD COPY of the project, both 

for your own reference and in case a project is lost or mislaid.  It is not 

sufficient to keep a copy on computer.   

□ 

 

Assignments that are submitted to the Programme Coordinator Office must be placed 

into the assignment box located outside the office. 

 

Office Use Only 

Signature:  

Date:  

Penalty Applied (if applicable):  



1 
 

 

 
 

Multi-layer security framework for cloud application 

Akash Hande  

X17156220  
 

 

Abstract 

Rapid movement of financial and business applications towards cloud platforms not 

only increases mobility and flexibility but also introduces different vulnerability issues. 

Considering increased transactions and security attacks such as SQL Injection and 

Cross-site scripting single security breach could harm the reputation as well as the 

quality of service of a cloud application. Detecting and preventive solution are grouped 

into two broad categories i.e. third-party tools such as Intrusion Detection System or 

programming language dependent solution such as AspectJ. This paper proposes Multi-

layer Security Framework which enables solution provider to design and develop self-

defensive cloud application with respect to SQL Injection as well as cross-site scripting 

attacks. To defend against SQL Injection and cross-site scripting attacks, MLSF 

proposes security patterns and malicious script analyzer which is based on similar 

characters in SQL queries, scripts and user input. The experimental result clearly shows 

that MLSF not only recognizes attacks but also defend all of them.  

 

Keywords: SQL Injection, cross-site scripting, the Multi-layer security framework 

 

1 Introduction 
 

Cloud environment provides a great platform for business applications however, the mobility of 

cloud computing attracts cybercriminals to make use of system resources and vulnerability to make 

more attacks. As millions of users are sharing computing resources these attacks are very harmful and 

effective. Cloud applications inherit the vulnerabilities of web applications and become victims of 

SQL Injection and cross-site scripting attacks [1]. Majority of attacks opposed to data are due to SQL 

Injection which allows an attacker to take complete control of the database [2][3] as well as cross-site 

scripting which allows an attacker to implement or execute harmful script in user’s browser [4]. Open 

Web Application Security Project i.e. OWSAP is an international open community of cybersecurity 

professionals who are motivating software professionals to design, develop, maintain and acquire 

software application which can be trusted [5]. OWSAP Top 10 is an awareness document released by 

OWSAP with the help of security experts from the international background for web-based 

application development which highlights secured coding practices [6]. This document confirms that 

SQL Injection and cross-site scripting are the most challenging and increasing issues in web 

application development which could harm the quality of cloud application. 

SQL Injection and cross-site scripting attacks are consistently on the peak of OWSAP Top 10 list 

for critical application security risks and most common vulnerability issue in SaaS application [6][7]. 

SQL Injection is basically a code injection attack in which malicious SQL script is formed by entering 

some special characters into the input fields from the presentation layer of SaaS application used to 

create dynamic SQL queries [6][7]. Several special characters such as <, >, -, /, =, ‘, “, #, SPACE 

along with standard keyword from SQL language such as UNION, DROP, it is possible to formulate 

harmful scripts for a database of web-based application [6][8]. Similarly, cross-site scripting is a code 

injection attack in which attacker implements and executes the malicious script on the user’s browser 



2 
 

 

[4]. Special characters such as <, >, -, =, ‘, “ are considered harmful characters in respect to cross-site 

scripting attacks [4][8]. Figure 1.1 shows the general architecture of cloud-based application which 

includes presentation tier, business tier and data tier. The presentation layer is composed of UI 

component e.g. HTML and UI Process component e.g. JavaScript. Business tier is responsible for 

implementing business workflow, components and entities which is logical and domain-specific 

representation of the application. The service layer is an additional layer in MVC application which 

mediates communication between view and controller. Data tier is logical database management unit 

that defines all database objects and how the application is accessing them which composed of data 

access components, data helper and service agents e.g. connection pooling, JDBC, helper classes etc.  

The attacker uses special characters and keywords to penetrate through these layers especially 

from the presentation layer and takes control over the database [6]. SQL Injection flaws are very usual 

in legacy code and very easy to discover while examining the code and error pages. These 

vulnerabilities can be found in SQL, NoSQL, LDAP queries, expression languages, SMTP headers 

and ORM queries which results in corruption, data loss, disclosure to unauthorized parties, denial of 

access and sometimes lead to complete database takeover [6]. Cross-site scripting attacks can be 

easily found with automated tools which can be used for DOM XSS, remote code execution on user’s 

browser, serve for stored XSS, stealing session information/credentials etc [6].  

 
Figure 1.1 Structure of cloud application  



3 
 

 

Majority of proposed countermeasures of SQL Injection and cross-site scripting expects costly 

analysis tool or massive modification in the source code [7][9][10]. This is the main reason that 

software application needs to dependant on specific programming language and framework (e.g. PHP, 

J2EE). Most of the existing solutions are third-party solutions which analyze SQL and HTML traffic 

which increases spending on the security of cloud-based application [11][7]. Although these are 

effective solutions, all these approaches have not evaluated on cloud computing environment to 

protect cloud applications. In recent years, many researchers proposed various approaches to 

counteract SQL Injection as well as cross-site scripting which is dependent on the specific 

programming language or environment [4][8]. 

This paper proposes a framework for self-defensive cloud application which defends against 

SQL Injection attacks based on input filtering and trait analysis of SQL Injection attacks. Multi-layer 

Security Framework (MLSF) provides integrated, defensive and multilayer programming framework 

for the cloud application development. MLSF introduces security patterns and malicious script 

analyzer on different layers of cloud application for detection of harmful special characters and 

keywords which could take over a database of the application. Instead of depending on external 

monitoring tool or specific programming language cloud application can be developed or migrated 

with MLSF which increases self-defensiveness of cloud application and quality of service in terms of 

security. This paper is structured in four major sections. Section 2 discusses related work and existing 

solutions. Section 3 describes the research methodology. Implementation is described in section 4. 

Next, Section 5 discusses the evaluation of the proposed framework. Finally, Section 6 draws a 

conclusion and future work. 

 

2 Related Work 
 

There are enormous investigations, studies and researches have done in previous years for 

detecting and counteracting against SQL Injection and cross-site scripting attacks associated with 

web-based applications. Many solutions have been proposed by researchers, unfortunately both the 

attacks still major cybersecurity threat in web applications. These applications still facing SQL 

Injection and cross-site scripting attacks and tools, preventing techniques are designed to counteract 

them are divided into two major categories: 

2.1 External Solution 

SQLIDaaS is SQL Injection introduction detection framework which is composed of six modules 

to detect SQL Injection attacks proposed by Yasin et al [12]. This framework is integrated with AWS 

and delivered a set of Amazon Machine Images (AMI) by which SaaS providers can subscribe for 

framework on-demand as well as measured and scaled as per use. Backbone ideology for this 

framework is monitoring of HTTP traffic (e.g. HTTP session and web session), SQL traffic (e.g. 

SQL query) as well as the correlation between introduction detection system (IDS) and detection of 

SQL injection attacks. 

Patil et al. proposed a multilevel system for security of cloud application and to counteract 

against SQL injection along with DDoS and Brute force attacks with similar ideology as SQLIDaaS 

[13]. Network-based intrusion detection (NIDS) agent installed on each cloud server of the network to 

form a system. This NIDS agent monitors incoming and outgoing traffic flowing through bridges 

which are responsible for traffic control among physical servers and VMs. For counteracting against 

SQL Injection in their solution they proposed four phases framework which compares SQL query 

entered by multiple clients with predefined fishy commands which are stored at server side. If they 

match system blocks user of the application to avoid the attack. 



4 
 

 

A very different and much interesting solution was proposed by Rajeh and Abed in the year 2017 

which is three-tier SQL Injection detection and mitigation strategy [14]. This follows dynamic, static 

and runtime prevention as well as a detection mechanism. As a result, this approach introduced a 

three-tier approach which provides security on different layers such as client tier, access tier and data 

server tier. This proposal recommends using proxy server within service provider of cloud data along 

with the central firewall. This again used to differentiate queries with pre-stored metrics to protect the 

firewall to cross over. The result of their test was held on three different web applications achieved 

100 percent detection and it prevents all types of SQL Injection attacks along with stored procedure 

attacks. 

Trending and more advanced deep learning approach have been utilized by Nguyen and 

Dutkiewicz to counteract against cyber-attacks in mobile cloud computing [15]. The backbone 

principle of their approach is utilizing deep learning method with sample dataset which trains the 

preestablished neural network in offline mode. Biologically inspired computing algorithm neural 

network is used to learn from observational data over the network to detect cyber attacks in the cloud 

environment. The three modules system proposes data collection, detection of attacks and request 

processing module which lies between cloud resources and mobile users to monitor doubtful request 

and update security policies in the dataset. The observable advantage of this proposal is a neural 

network algorithm can be replaced by other machine learning algorithm as per need as well as this 

solution covers the majority of cyber-attacks with 97.11 percent high accuracy. 

Hidden Markov Model was proposed by Li et al. which is based on the observation of a log 

analyzing combined with statistical characterizes and feature matching [16]. In the first place, this 

approach builds browsing behavior models of user and attacker. Furthermore, HMM is utilized to 

restore user browsing procedure from user log and SQL Injection attacks will be detected by 

analyzing user behavior without sensitive request made by users. 

The proposed approach by Wang and Hou targets SQL Injection attacks in a cloud environment 

and suggests SQL detection algorithm which combines poisonous script analysis and input filtering 

[17]. This approach provides protection to web applications while embedding with a cloud 

environment. This proposal based on an analysis of lexical regulations for SQL statements to obtain 

SQL keywords and then it analyses the syntax rules of SQL statements to form rule tree. Based on 

SQL syntax, rules to detect attacks ternary tree get traversed. For investigational verification, web 

service has been designed, developed and deployed on Ali and Amazon cloud with MySQL database 

and Apache2 server which not only shows successful detection of common attacks but also the 

replacement of code attacks with a high detection accuracy of SQL Injection. 

 Proposed model by Sonewar and Thosar is a web server hosted application which is based on 

the network to monitors the behavior of attacking situation [18]. Their research is introducing three-

tier web application with static as well as dynamic behavior. While considering static and dynamic 

analysis, parameter filtering, parameterized query and instruction detection system proposed by Xiao 

et al which is a unique approach to counteract with SQL Injection attack [19]. The backbone ideology 

behind this is monitoring attack behavior, response and state of a web-based application under the 

different attacking condition and formulate pattern of the network for the next vulnerable situation. 

Majority of the proposed solution in this category are based on filters which clean the malicious 

input and those are not capable of preventing emerging attacks. In respect to this concept web security 

proxy for cross-site scripting has been recommended and implemented by Vijayalakshmi and Lemma 

[20] which is much similar as system proposed by Xiao et al [19]. However, instead of depending on 

observation their solution is following detection and protection mechanism for secure web access. 

Also, a considerable difference between both solutions is they are addressing one problem at a time 

i.e. either SQL Injection or Cross-site scripting. This proposed system is web security proxy for cross-

site scripting attacks which is composed of WSP, WS policy management, Policy filters and 



5 
 

 

malevolent report which resides between world wide web and client machine to monitor request and 

response. 

 Below table 2.1 enlists different approaches and proposal addressed by researchers. 

 

Proposed Tool Author Description  Issue Addressed 

SQLIIDaaS  Yassin et al. [2017] Intrusion Detection framework  SQL Injection 

NISD Patil et al.[2017] 

Network-based Intrusion 

Detection System 

1. DDoS                         

2. Brute force                  

3. SQL Injection 

SQLi detection 

schema 

Wahid Rajesh, 

Alshreef Abed 

[2017] 

Three-tier SQL Injection 

detection and mitigation scheme SQL Injection 

Deep Learning 

approach Nguyen et al. [2018] 

Observational network data to 

detect cyber-attacks in cloud 

systems 

1. Cross-Site 

Scripting                    

2. SQL Injection 

Utilization of HMM Li et al [2017] 

log Observation with Hidden 

Markov Model SQL Injection 

web service for 

SQL detection  

Kuisheng Wang, Van 

Hou [2016] 

Dynamically generate a ternary 

rule tree to detect an attack SQL Injection 

Web-based tool 

Sonewar and Thosar 

[2016] 

Network dependent monitoring 

tool 

1. Cross-Site 

Scripting                 

2. SQL Injection 

Web Security Proxy Xiao et al. [2017] Observation-based tool SQL Injection 

Web Security Proxy 

Vijayalakshmi and 

Leema [2017] 

Detection and protection 

mechanism for a secure web 

access Cross-Site Scripting                     

Table 2.1 External solution  

2.2 Programming Language Dependent Solution  

In software programming, Aspect-oriented programming is paradigm which increases modularity 

while separating tasks generally spread through different part of the system. This concept was utilized 

in an Aspect-oriented system for defeating against SQL Injection and cross-site scripting proposed by 

Kajo-Mece et al [8]. This intrusion detection ideology is implemented by AspectJ and embedded into 

a target system which scans input strings and compares with the pre-registered standard pattern. The 

main advantage of this approach is a separation of security code from business logic which can be 

maintained or extended to deal with new attacks. The evaluation of this proposed system’s 

performance is considered by introducing the overhead of web application. 

Aspect-oriented programming is again exploited in ‘AProSec’ by Hermosillo et al. which 

provides the capability of changing security policies at runtime with the help of JBoss AOP 

framework [10]. This proposed framework is composed of three different parts, first part is 

responsible for validation process, the second part is XML configuration file and can be controlled by 

the administrator which analyses input for SQL Query, finally AspectJ or JBoss AOP is used. This 

proposal utilizes advantages of AspectJ and JBoss AOP frameworks to defending against SQL 

Injection. 

D’silva et al. have utilized hashing to defend against SQL Injection and Session Hijacking. Their 

proposal follows the ideology of authentication query which authenticates a valid user of the 

application [21]. While registering user his credentials i.e. user id and password are stored in hash 



6 
 

 

digest in the form of Hash of authentication. For each login hash of credentials will be dynamically 

generated and compared with pre-stored hash from hash digest when users want to interact with the 

database. This is a very efficient and lightweight way of preventing attacks however it gives the 

responsibility of securing hash digest as well.  

A similar solution like the previous one has been introduced by Dubey and Gupta which is a 

combination of two security services which authenticates data and maintains confidentiality with 

integrity [22]. Even though their proposal is following a similar approach like D’silva et al. it 

overcomes disadvantages of security by changing approach for query comparison. Proposals which 

are based on hashing framework has a dependency on libraries which are used for generating hash 

values. 

Signature-based SQL Injection framework which follows the backbone of fingerprinting method 

and pattern matching for differentiating vulnerable script from genuine SQL query has been proposed 

by Appiah et al [23]. This framework monitors SQL query at data tier and compares the same with a 

pre-defined dataset of signatures which can cause an attack. As this comparison is done at data tier 

this is very secured approach but introduces the overhead of pre-storing dataset of signatures. 

The proposal by Ntagwabira and Kang follows the similar ideology of work like multi-layer 

security framework [24]. Their research aims the development of a method for detecting and 

preventing SQL Injection attacks with the help of Query tokenizer which implemented by Query 

parser method. The major drawback of this proposal is a dependency of java programming language. 

Chen Ping proposes a very nice approach to defending against SQL Injection attack which is based on 

Instruction Set Randomization. This approach gives defensiveness at database layer and dependant on 

MySQL database.  

Recently, Taha and Karabatak have proposed, secured PHP functions which utilize built-in 

functions which detects and prevents XSS attack at two different layers [25]. Their two layered 

proposed system, the first layer uses a regular expression for authenticating data entered by a user of 

the application and second layer uses another regular expression for validating and protecting every 

single entry which may contain malicious script entered by a user of the application. Their future 

work heading towards developing a tool or browser extension which detects as well as prevents 

running harmful script in web form. 

Ismail et al. proposed a java based twofold client-side system which not only protects users from 

cross-site scripting attacks but also warns web server about the attack [26]. This system automatically 

detects XSS vulnerability after modifying either client request or server response. The backbone 

ideology of this proposal is to validate HTTP request and response based on special characters and 

malicious scripts in detection proxy server. If detection proxy server finds fraud response or requests 

it gives HTML alert in web browser i.e. for client-side also it blocks database to execute script i.e. 

server side. This system has been implemented in Java/Linux/greSQL environment and for evaluation 

they used existing realistic examples which gives evidence of detection of the malicious script in 

response and request. 

Amnesia is a tool proposed by Halfond and Orso which detects, and blocks SQL Injection 

attacks based on static analysis and runtime monitoring [7]. Underline technique for this tool is 

building SQL query models based on scanning application code which is consists of identify hotspots 

and build SQL-query models. After that each dynamically generated executing the query from the 

program is monitored in the instrument application and runtime monitoring steps if it found dangerous 

as per SQL query model it will not execute at the database level. A major limitation of this tool is 

SQL-query models takes space in the application also it assumes SQL queries from the application 

code only. 

An advanced framework based on compiler platform and machine learning have been proposed 

by Kamtuo and Soomlek which uses a decision tree algorithm for predicting SQL Injection attacks 



7 
 

 

[27]. The machine learning part is the core of their approach which conducts 1100 datasets of 

vulnerabilities to train their model. A considerable drawback of this approach is it needs new datasets 

to train their model  

Table 2.2 highlights programming language dependent solutions addressed by researchers. 

 

Proposed Solution Author 
Programming 
dependency  Issue Addressed 

Aspect-based defense system Kajo-Mece et al. [2018] AspectJ 
1. SQL Injection          
2. Cross-Site Scripting  

AProSec Hermosillo et al. [2007] AspectJ, XML, Jboss 
1. SQL Injection          
2. Cross-Site Scripting 

SHA1 based method D’silva et al. [2017] Hashing 

1. SQL Injection          
2. Session Hijacking     

SQL Filtering 
Rhythm Dubey, 
Himanshu Gupta [2016] 

Hashing with Query 
comparison 

SQL Injection 

Signature-based framework Appiah et al. [2017] Not given SQL Injection 

Query tokenization 
Lambert and Song Lin 
[2010] Java SQL Injection 

Instruction set Randomization Ping et al. [2016] MySQL SQL Injection 

Algorithm for developers  
Taha and Karabatak 
[2018] PHP Cross-Site Scripting 

Automatic detection / 
collection system Ismail et al. [2004] Java Cross-Site Scripting 

Amnesia Halfond and Orso [2006] Java SQL Injection 

The framework of machine 
learning  

Kamtuo and Soomlek 
[2016] Not given SQL Injection 

Table 2.2 Programming language dependent solution   

 

3 Research Methodology 
 
This section gives a detailed description of the research procedure followed and an evaluation 

methodology to prove the defensive strength of the framework. The primary objective of this 

framework is to formulate cloud application for self-defensiveness so that dependency of external 

entities or programming languages can be removed. After closely examining and utilizing the benefits 

and drawbacks of existing systems mentioned in Section II a significant security framework will be 

provided to the cloud computing community for the development of secured cloud applications. 

3.1 Objective 

As mentioned previously, the motivation for this research project is to contribute framework for 

cloud computing community which helps cloud application developers to develop or migrate secured 

application for the cloud. This framework can remove the dependency of using external tools which 

are already using for monitoring and preventing from SQL injection and cross-site scripting attacks. 

Apart from that, this framework will not stick to any specific programming languages which gives 

freedom to cloud application developer for choosing programming languages. This framework will 

remove the dependency of using the external tool and formulate cloud application self-dependent in 

terms of security. This framework is not only useful for application developers but also it will play a 

very important role for solution architects for designing secured cloud applications. The Multi-layer 

security framework will be operative for all cloud-based applications to increase their Quality of 

Service to opposing against SQL Injection and cross-site scripting attacks. 



8 
 

 

3.2 Research Procedure 

This framework has been evolved from the motivation of securing cloud application from 

application developers’ minimal efforts. This framework should be able to use by multiple actors in 

the software development lifecycle such as application developers, solution architect etc. This 

framework should be easily pluggable and can be used while migrating an application or refactoring 

the application. With all these advantages MSLF has been carrying simple structure and applicable in 

every cloud application without restriction of any specific programming language. 

3.3 Structure of the Framework 

Multi-layer security framework is primarily divided into three separate layers, each with the 

specific functionality. OWSAPs guide for secured software development recommends three pillars for 

securing user data as follows [6]: 

• Reject corrupt data 

• Accept valid data  

• Clean the data which can harm the system 

 
The backbone of multi-layered security framework is based on these three pillars also it covers 

some of the significant approaches from the recent research held in the same direction. Here are the 

three layers of MSLF framework: 

3.3.1 UI Component Layer Filtering 

This layer of the framework is designed to defend against special characters which cause SQL 

Injection and cross-site scripting attacks. In this stage, the framework rejects the corrupt data and 

corrupt data at this layer can be defined as the special characters which may cause SQL injection and 

cross-site scripting attacks. Previous researchers and OWSAP have recommended special characters 

such as <, >, -, /, =, ‘, “, #, SPACE which causes SQL Injection and cross-site scripting attacks 

[4][6][8]. MLSF introduces security pattern at UI Component layer of cloud application for filtering 

of corrupted data which blocks these special characters to flow towards data tier of the application. 

Considerable superiority of this security pattern is that they can be reconfigured as per business 

requirements. These security patterns will be attached to input fields such as text box, text area etc. 

Here is the example of security patterns: 

 

Allowed characters in the text box 

 

Alphabet: a-z / A-Z Numbers: 0-9 

Special Characters (spaces should be allowed): ~@$^&*()_+[]{}|\\,.?: 

 

Security pattern for above requirement 

 

[a-zA-Z0-9~@#$^*()_+=]* 

3.3.2 UI Process component Layer Filtering 

The second layer of the framework has been specially designed for detection and defending 

against malicious keywords which is another major cause of SQL Injection attack. Malicious 

keywords have been recommended by some of previous researchers and OWSAP such as SELECT, 

UPDATE, DELETE, UNION etc [6][8]. MLSF proposes malicious script analyzer at UI process 

component layer which scans user input, detect and rejects of malicious user input. By using core 



9 
 

 

principle of object-oriented programming i.e. inheritance single function could scan all input field of 

application for malicious keywords and can easily upgrade to future malicious keywords. All these 

malicious keywords included in the UI process component layer are given below: 

 

SELECT UPDATE WHERE OR 

DELETE UNION HAVING NOT 

ORDER BY GROUP BY AND SLEEP 
                 Table 3.1 Malicious Keyword 

3.3.3 Service Layer Filtering 

As per Stephen Walter (2009), the service layer is the interface between middleware and 

graphical user interface which can be used effectively for validation purpose. First two layers of the 

multi-layer security framework are operating on client side i.e. end user’s browser which can be 

bypassed with penetration tools such as SQLMap, Postman etc., and the attacker can target the 

application. To protecting cloud application against such attacks service layer filtering plays a vital 

role in the multi-layer security framework. MLSF utilizes a service layer for validation purpose and 

combines security pattern with malicious script analyzer at the service layer. All data entered by user 

or attacker must bypass through this security gate which is present at the service layer. Here is the 

code snippet for service layer filtering: 

 
private static final String SQLIA_SECURITY_PATTERN = "[a-zA-Z0-9~@#$^*()_+=]*"; 
private static final List<String> MALICIOUS_SCRIPT = Arrays.asList("WHERE", "OR", "HAVING", 
"NOT", "ORDER BY", "GROUP BY", "AND", "SLEEP"); 
  
public boolean validate(final String validationString) { 
 Pattern pattern = Pattern.compile(SQLIA_SECURITY_PATTERN); 
 Matcher matcher = pattern.matcher(validationString); 
 return matcher.matches() && MALICIOUS_SCRIPT.contains(validationString); 
} 

3.3.4 Architectural structure 

Figure 3.1 shows the architectural structure of multilayer security framework which is embedded 

in a cloud application. There are three different layers of this framework which are embedded with 

existing layers of cloud application namely UI components, UI process components and service layer. 

When the attacker tries to penetrate from presentation tier which is split into two layers i.e. UI 

component (e.g. HTML, CSS) and UI process component (e.g. coffee script, JavaScript) MLSF 

detects special characters and malicious keywords from those layers respectively. Service layer 

filtering is responsible for validating for special characters as well as malicious keywords which 

protects data tier of a cloud application. 



10 
 

 

 
Figure 3.1 MLSF embedded in cloud application 

 
 

4 Implementation       
 

Multi-layer security framework is lightweight and incorporated security mechanism in cloud 

application which can be used for designing, development and migrate cloud application to enhance 

the security of the application. As this framework is not depending on any specific programming 

language or framework, this can be developed with any technology stack. For development and 

demonstration purpose cloud-based vulnerable application has been developed and multi-layer 

security framework is embedded into it to improve its defensiveness. 

4.1 Development tools and technologies 

The J2EE framework is widely used for financial as well as business applications due to the 

excellent features of java and high popularity. For demonstration purpose, MLSF has been developed 

in a J2EE framework which includes HTML5 as UI component, JavaScript as UI Process 

Components to form cloud applications presentation tier i.e. view of the application. Business tier is 

composed of java/servlet and we have introduced service layer separately i.e. at the controller. 

MySQL is holding a database of the cloud application which is connected to the application through 

JDBC i.e. model. This application is hosted on Platform as a Service (PaaS) provided by Microsoft 



11 
 

 

Azure [28]. Development of J2EE cloud application popular integrated development environment 

eclipse and MySQL Workbench has been used and deployment has been done with the help of Azure 

plugins for eclipse. Here are the tools and technologies used for development purpose: 

 

Layer of cloud application Technology used 

Presentation 

tier 

UI Component layer HTML  

UI Process Component layer JavaScript 

Business tier 

Service layer Servlets / Java 

Business component / workflow / 

entities 
Servlets / Java 

Data tier 
Data helpers Java 

Data access component / service agents JDBC 
                 Table 4.1 Development technologies 

 

As shown in the below process flowchart, multi-layer security framework checks for 

vulnerability at three different layers. First layer i.e. at UI component layer it checks for special 

characters, at second layer i.e. UI process layer it checks for the malicious script and at third layer i.e. 

service layer is validating for special characters as well as malicious keyword. If and only if user input 

is valid and passes all three-validation framework allow it to flow towards data tier of the application 

otherwise framework rejects user input. 

 

 
Figure 4.1 Process flowchart of MLSF 



12 
 

 

5 Evaluation 
 

Generally, Instruction Detection System can be evaluated by generating traffic with the help of 

another IDS or with the help of vulnerability exploitation tool which attacks the targeted system with 

attacks [12][29]. Similar approaches have been evaluated with vulnerability exploitation tool 

especially with SQLMap [12][30].an  MLSF is evaluated by using vulnerability exploitation tool 

which is used to attack and analyse on cloud application developed in J2EE. Apart from that, MLSF 

has been evaluated for performance of the application which shows the overhead of framework on a 

cloud application which helps to prove its feathery outlook.  

5.1 Vulnerability testing and Content policy analysis 

SQLMap is an open source penetration testing tool which automates the process of abusing SQL 

Injection vulnerabilities is used as vulnerability exploitation tool [30]. SQLMap is installed on 

attacking machine to target two cloud application i.e. vulnerable cloud application and MLSF 

embedded vulnerable cloud application. In order to guarantee similar cloud application database of 

both web application kept same and with the same configuration i.e. server version, java version etc.  

For evaluation purpose below scenarios has been considered: 

1) Scenario 1: WebApp1 which is a vulnerable cloud application attacked by using 

vulnerability exploitation tool. The goal of this scenario is to know the vulnerability of the 

cloud application. 

2) Scenario 2: WebApp2 which is vulnerable cloud application with MLSF i.e. the same code 

base but MLSF has been incorporated in the same has been attacked by using vulnerability 

exploitation tool as well as with content security policy evaluator. The objective of this 

scenario is to understand improved defensiveness of cloud application. 

5.2 Improved defensiveness 

Table 5.1 illustrates a comparison of vulnerable cloud application with MLSF embedded 

vulnerable application on basis of two user input fields. After using MLSF, various types of attacks 

have been not only effectively detected but also defended with high accuracy. In particular, various 

types of attacks have been automated by SQLMap on both applications specifically on two input 

fields. Thus, Multi-layer security framework embedded cloud application seems to be more secure. 
 

Type of attack Scenario 1 Scenario 2 
Email Password Email Password 

Boolean-based blind   ✓      
Error-based ✓  ✓      
AND/OR time-based blind ✓  ✓      
UNION query ✓        

Table 5.1 SQL Injection attacks prevented by Multi-layer Security Framework 

 
Symbol Associated value 
  Type of attack is not present in the given input field 
✓  Type of attack is present in the given input field 

Table 5.2 Values associated with symbols 

5.3 Overhead of framework 

 The previous section clearly shows improved defensiveness of the cloud application after using 

multi-layer security framework. In order to evaluate the impact of multi-layer security framework on 

cloud application response time in seconds has been measured using JMeter, firstly in absence of 

framework and then in the presence of multi-layer security framework [32]. JMeter is open source 

Apache tool which can be used for measuring and analyzing the performance of a variety of web-



13 
 

 

based services. Here is the comparison of cloud application without MLSF and with MLSF which 

shows the overhead of framework in normal condition. 

 

 
Chart 5.2 Overhead of framework 

5.4 Comparative analysis 

This section compares the performance of multi-layer security framework in attacking 

condition also we have compared this analysis with existing aspect based defensive system [8]. In 

order to automate attacking condition with performance malicious HTTP requests have been fired 

from JMeter. For each scenario, different load has been used i.e. 1000 requests, 10000 requests and 

100000 requests with both the attacks. To know overhead of the framework we have created below 

scenarios: 

Scenario 1: HTTP request with SQL Injection attack 

Scenario 2: HTTP request with cross-site scripting attack  

 

 
Chart 5.3 Performance Evaluation and comparison  

 

This analysis clearly shows that aspect based defensive system is validating, comparing, encoding, 

and rejecting dangerous script however multi-layer security is rejecting malicious information so it 

not only makes cloud application self-defensive but also it improves performance of the application in 

attacking situation. 
 
 
 



14 
 

 

6 Conclusion and Future Work 
 

The primary mechanism used to attack database is through SQL Injection in which dynamic 

queries are injected on cloud or internet. Cross-site scripting can change behavior of the application or 

can access secured information from a cloud application. Therefore, there is need for detection and 

mitigation algorithm based on network traffic which leads increase in the security budget of a cloud 

application. Multi-layer security framework provides integrated, detection and mitigation mechanism 

for cloud application which makes cloud application self-defensive as well as controls the security 

budget. Moreover, it is designed to ensure vulnerable code does not enter into the cloud application 

and data tier would not have to deal with corrupt data which may entirely or partially affect sensitive 

user information. MLSF proposes security pattern and malicious script analyzer which are 

programming language independent and makes cloud application self-defensive for SQL Injection and 

cross-site scripting attacks. Evaluation clearly shows that MLSF can counteract multiple types of SQL 

Injection as well as cross-site scripting attacks which makes cloud application self-defensive. 

The proposed framework is simple, lightweight and can be used to develop self-defensive cloud 

application as well as an application which is connected to the database without depending on specific 

programming language. Future work should be carried out for other cyber-attacks which can also 

defend with this framework. 
 

References 
 

[1] Chouhan, P.K., Yao, F., Sezer, S., 2015. Software as a service: Understanding security 

issues, in: 2015 Science and Information Conference (SAI). Presented at the 2015 Science and 

Information Conference (SAI), pp. 162–170. https://doi.org/10.1109/SAI.2015.7237140 

[2] Barclays: 97 percent of data breaches still due to SQL injection | Security | Techworld 

[WWW Document], n.d. URL https://www.techworld.com/news/security/barclays-97-percent-of-

data-breaches-still-due-sql-injection-3331283/ (accessed 12.16.18). 

[3] Manipulating_SQL_Server_Using_SQL_Injection.pdf, n.d. 

[4] A proposed approach for preventing cross-site scripting - IEEE Conference Publication 

[WWW Document], n.d. URL https://ieeexplore.ieee.org/document/8355356 (accessed 12.16.18). 

[5] About The Open Web Application Security Project - OWASP [WWW Document], n.d. 

URL https://www.owasp.org/index.php/About_The_Open_Web_Application_Security_Project 

(accessed 12.16.18). 

[6] Category:OWASP Top Ten Project - OWASP [WWW Document], n.d. URL 

https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project (accessed 12.16.18). 

[7] Halfond, W.G.J., Orso, A., 2006. Preventing SQL Injection Attacks Using AMNESIA, in: 

Proceedings of the 28th International Conference on Software Engineering, ICSE ’06. ACM, New 

York, NY, USA, pp. 795–798. https://doi.org/10.1145/1134285.1134416 

[8] Kajo-Mece, E., Kodra, L., Vrenozaj, E., Shehu, B., 2012. Protection of web applications 

using aspect oriented programming and performance evaluation. CEUR Workshop Proceedings 920, 

46–50. 

[9] Gould, C., Su, Z., Devanbu, P., 2004. JDBC checker: a static analysis tool for SQL/JDBC 

applications, in: Proceedings. 26th International Conference on Software Engineering. Presented at 

the Proceedings. 26th International Conference on Software Engineering, pp. 697–698. 

https://doi.org/10.1109/ICSE.2004.1317494 

[10] AProSec: an Aspect for Programming Secure Web Applications - IEEE Conference 

Publication [WWW Document], n.d. URL https://ieeexplore.ieee.org/document/4159905 (accessed 

12.16.18). 

[11] Abstracting application-level web security [WWW Document], n.d. URL 

https://dl.acm.org/citation.cfm?id=511498 (accessed 12.16.18). 

[12] Yassin, M., Ould-Slimane, H., Talhi, C., Boucheneb, H., 2017. SQLIIDaaS: A SQL 

Injection Intrusion Detection Framework as a Service for SaaS Providers, in: 2017 IEEE 4th 

International Conference on Cyber Security and Cloud Computing (CSCloud). Presented at the 2017 

https://doi.org/10.1109/SAI.2015.7237140


15 
 

 

IEEE 4th International Conference on Cyber Security and Cloud Computing (CSCloud), pp. 163–170. 

https://doi.org/10.1109/CSCloud.2017.27 

[13] A multilevel system to mitigate DDOS, brute force and SQL injection attack for cloud 

security - IEEE Conference Publication [WWW Document], n.d. URL 

https://ieeexplore.ieee.org/document/8279028 (accessed 12.16.18). 

[14] A novel three-tier SQLi detection and mitigation scheme for cloud environments - IEEE 

Conference Publication [WWW Document], n.d. URL https://ieeexplore.ieee.org/document/8167160 

(accessed 12.16.18). 

[15] Nguyen, K.K., Hoang, D.T., Niyato, D., Wang, P., Nguyen, D.N., Dutkiewicz, E., 2018. 

Cyberattack detection in mobile cloud computing: A deep learning approach [WWW Document]. 

undefined. URL /paper/Cyberattack-detection-in-mobile-cloud-computing%3A-A-Nguyen-

Hoang/f798c7946b98c26b91f0176eede18e86f2d0af0c (accessed 12.16.18). 

[16] Application of Hidden Markov Model in SQL Injection Detection - IEEE Conference 

Publication [WWW Document], n.d. URL https://ieeexplore.ieee.org/document/8029993 (accessed 

12.16.18). 

[17] Wang, K., Hou, Y., 2016. Detection method of SQL injection attack in cloud computing 

environment, in: 2016 IEEE Advanced Information Management, Communicates, Electronic and 

Automation Control Conference (IMCEC). Presented at the 2016 IEEE Advanced Information 

Management, Communicates, Electronic and Automation Control Conference (IMCEC), pp. 487–

493. https://doi.org/10.1109/IMCEC.2016.7867260 

[18] Detection of SQL injection and XSS attacks in three tier web applications - IEEE 

Conference Publication [WWW Document], n.d. URL 

https://ieeexplore.ieee.org/document/7860069?denied= (accessed 12.16.18). 

[19] Xiao, Z., Zhou, Z., Yang, W., Deng, C., 2017. An approach for SQL injection detection 

based on behavior and response analysis, in: 2017 IEEE 9th International Conference on 

Communication Software and Networks (ICCSN). Presented at the 2017 IEEE 9th International 

Conference on Communication Software and Networks (ICCSN), pp. 1437–1442. 

https://doi.org/10.1109/ICCSN.2017.8230346 

[20] Vijayalakshmi, K., Leema, A.A., 2017. Extenuating web vulnerability with a detection and 

protection mechanism for a secure web access, in: 2017 Fourth International Conference on Signal 

Processing, Communication and Networking (ICSCN). Presented at the 2017 Fourth International 

Conference on Signal Processing, Communication and Networking (ICSCN), pp. 1–4. 

https://doi.org/10.1109/ICSCN.2017.8085652 

[21] D’silva, K., Vanajakshi, J., Manjunath, K.N., Prabhu, S., 2017. An effective method for 

preventing SQL injection attack and session hijacking, in: 2017 2nd IEEE International Conference 

on Recent Trends in Electronics, Information Communication Technology (RTEICT). Presented at 

the 2017 2nd IEEE International Conference on Recent Trends in Electronics, Information 

Communication Technology (RTEICT), pp. 697–701. https://doi.org/10.1109/RTEICT.2017.8256687 

[22] Dubey, R., Gupta, H., 2016. SQL filtering: An effective technique to prevent SQL 

injection attack, in: 2016 5th International Conference on Reliability, Infocom Technologies and 

Optimization (Trends and Future Directions) (ICRITO). Presented at the 2016 5th International 

Conference on Reliability, Infocom Technologies and Optimization (Trends and Future Directions) 

(ICRITO), pp. 312–317. https://doi.org/10.1109/ICRITO.2016.7784972 

[23] Appiah, B., Opoku-Mensah, E., Qin, Z., 2017. SQL injection attack detection using 

fingerprints and pattern matching technique, in: 2017 8th IEEE International Conference on Software 

Engineering and Service Science (ICSESS). Presented at the 2017 8th IEEE International Conference 

on Software Engineering and Service Science (ICSESS), pp. 583–587. 

https://doi.org/10.1109/ICSESS.2017.8342983 

[24] Use of Query tokenization to detect and prevent SQL injection attacks - IEEE Conference 

Publication [WWW Document], n.d. URL https://ieeexplore.ieee.org/document/5565202 (accessed 

12.16.18). 

[25] Assad Taha, T., Karabatak, M., 2018. A proposed approach for preventing cross-site 

scripting. pp. 1–4. https://doi.org/10.1109/ISDFS.2018.8355356 

[26] Ismail, O., Etoh, M., Kadobayashi, Y., Yamaguchi, S., 2004. A proposal and 

implementation of automatic detection/collection system for cross-site scripting vulnerability, in: 18th 

https://doi.org/10.1109/RTEICT.2017.8256687
https://doi.org/10.1109/ICRITO.2016.7784972


16 
 

 

International Conference on Advanced Information Networking and Applications, 2004. AINA 2004. 

Presented at the 18th International Conference on Advanced Information Networking and 

Applications, 2004. AINA 2004., pp. 145-151 Vol.1. https://doi.org/10.1109/AINA.2004.1283902 

[27] Kamtuo, K., Soomlek, C., 2016. Machine Learning for SQL injection prevention on 

server-side scripting, in: 2016 International Computer Science and Engineering Conference (ICSEC). 

Presented at the 2016 International Computer Science and Engineering Conference (ICSEC), pp. 1–6. 

https://doi.org/10.1109/ICSEC.2016.7859950 

[28] Microsoft Azure Cloud Computing Platform and Services [WWW Document], n.d. URL 

https://azure.microsoft.com/en-in/ (accessed 12.16.18). 

[29] Probst, T., Alata, E., Kaâniche, M., Nicomette, V., 2015. Automated Evaluation of 

Network Intrusion Detection Systems in IaaS Clouds, in: 2015 11th European Dependable Computing 

Conference (EDCC). Presented at the 2015 11th European Dependable Computing Conference 

(EDCC), pp. 49–60. https://doi.org/10.1109/EDCC.2015.10 

[30] Advanced automated SQL injection attacks and defensive mechanisms - IEEE Conference 

Publication [WWW Document], n.d. URL https://ieeexplore.ieee.org/document/7868248 (accessed 

12.16.18). 

[31] Apache JMeter - Apache JMeterTM [WWW Document], n.d. URL 

https://jmeter.apache.org/ (accessed 12.16.18). 

[32] Eclipse Download and Installation Instructions [WWW Document], n.d. URL 

https://www.ics.uci.edu/~pattis/common/handouts/pythoneclipsejava/eclipsejava.html (accessed 

12.19.18).  

[33] Help - Eclipse Platform [WWW Document], n.d. URL 

https://help.eclipse.org/neon/index.jsp?topic=%2Forg.eclipse.stardust.docs.wst%2Fhtml%2Fwst-

integration%2Fconfiguration.html (accessed 12.19.18).  

[34] How do I manually download and install Java for my Windows computer? [WWW 

Document], n.d. URL https://java.com/en/download/help/windows_manual_download.xml (accessed 

12.19.18).  

[35] MySQL :: MySQL 5.5 Reference Manual :: 2.3 Installing MySQL on Microsoft Windows 

[WWW Document], n.d. URL https://dev.mysql.com/doc/refman/5.5/en/windows-installation.html 

(accessed 12.19.18).  

[36] selvasingh, n.d. Create a Hello World web app for Azure using Eclipse [WWW 

Document]. URL https://docs.microsoft.com/en-us/java/azure/eclipse/azure-toolkit-for-eclipse-create-

hello-world-web-app (accessed 12.19.18). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

https://doi.org/10.1109/AINA.2004.1283902


17 
 

 

Appendix 

 

 

A.   Project Configuration 
 
MLSF has been developed in the J2EE framework which includes three layers of application i.e. presentation 
layer, business tier and data tier. Below is the technology stack with their versions used for development of 
vulnerable cloud application [32-35]. 
 

Layer of cloud application Technology used Version 

Presentation tier 
UI Component layer HTML 5 

UI Process Component layer JavaScript 9 

Business tier 
Service layer Servlets / Java 8.0.11 

Business component / workflow / entities Servlets / Java 8.0.11 

Data tier 
Data helpers Java JDK 8 

Data access component / service agents JDBC 8.0.11 

Table 1.1 Project and programming language versions 

 

B.   Development Tool Configuration  
 
For the development of multi-layer security framework, firstly vulnerable cloud application has been 
developed then MLSF has been embedded into it to improve defensiveness of cloud application. For the 
development of vulnerable application maven project has been created which needs below tool set: 
 

Java Development IDE Eclipse Oxygen (v 3.7.1) 

Database Development IDE MySQL Workbench (v 8.0) 

Java Build Tool Maven  

Development Server Tomcat server (v 9.0) 

Java Development Kit JDK 8 
Table 2.1 Development tools  

 

C.   Run Configuration  
To host and run MLSF embedded vulnerable cloud application locally you can follow below steps: 

1. Download Project 
Self-defensive cloud application project has been made open source for cloud community on GitHub 

under “GNU General Public License v3.0”. Researchers can download it from below link: 
 

https://github.com/akashhande/Multi-Layer-security-framework 
 

Researcher can unzip the file and copy it in eclipse workspace in his local machine. Generally, eclipse 
workspace is present in below path: 

 
C:\Users\user-name\eclipse-workspace 

https://github.com/akashhande/Multi-Layer-security-framework


18 
 

 

 

 
Figure 3.1 GitHub download 

 

2. Configure locally 
Open eclipse and import existing project from workspace with below steps: 

 
File => Import => Existing Projects into workspace => Next => Select root directory => Browse => select 
WebApp2 => hit OK 

 

 
 

Figure 3.2 Import project from workspace 

 
 
 
 
 



19 
 

 

After import you can see below directory structure in project explorer panel of eclipse: 
 

 
 

Figure 3.3 Project structure from eclipse 

3. Run on the local environment 
To run self-defensive cloud application, follow below steps: 
 

• Right click on WebApp2 => Run As => Maven Install 

• Right click on WebApp2 => Run As => Run on server => Finish 
 

 
 

Figure 3.4 Run project on local environment  



20 
 

 

4. Application UI 
Application UI looks like below and application URL for local environment is http://localhost:8080/WebApp2/ 
 

 
Figure 3.5 Application UI 

 

D.   Deployment Configuration 
 
Developed secured application can be hosted on Azure PaaS platform from eclipse IDE with the help of Azure 
plugin [36]. For deployment Right click on project => select Azure => click on Publish to Azure Web App. 
 

 
Figure 4.1 Deploy project on Azure 

 
You must select deployment configuration such as App Service, pricing tier, location, instance size etc. Then 
you can deploy app on Azure platform. Installed apps can be explored via built-in Azure explorer from eclipse. 

 

 
Figure 4.2 Application UI 

 
 
 
 

 

http://localhost:8080/WebApp2/

