~

N\ National
College
Ireland

Monitoring and Maintenance of Datasets
Integrity of a Cloud Database instance using
Machine Learning

MSc Research Project
Cloud Computing

Samuel Das
Student ID: x17119642

School of Computing
National College of Ireland

Supervisor: Manuel Tova-Izquierdo

National College of Ireland National

Project Submission Sheet Col]ege of
School of Computing Ireland
Student Name: Samuel Das
Student ID: x17119642
Programme: Cloud Computing
Year: 2018
Module: MSc Research Project
Supervisor: Manuel Tova-Izquierdo
Submission Due Date: 20/12/2018
Project Title: Monitoring and Maintenance of Datasets Integrity of a Cloud
Database instance using Machine Learning
Word Count: 9862
Page Count: [32]

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature:

Date: 27th January 2019

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). O
Attach a Moodle submission receipt of the online project submission, to | [J
each project (including multiple copies).
You must ensure that you retain a HARD COPY of the project, both for | [J
your own reference and in case a project is lost or mislaid. It is not sufficient to keep

a copy on computer.

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only
Signature:

Date:
Penalty Applied (if applicable):

Monitoring and Maintenance of Datasets Integrity o
a Cloud Database instance using Machine Learning

Samuel Das
x17119642
Master of Science in Cloud Computing

27th January 2019

Abstract

The database systems associated with the cloud computing platform is experi-
encing exponential growth rate at the cost of increasing data redundancy and data
integrity issues. Various data mining tools can operate on these issues for huge
datasets for learning of various issues and later other systems can act upon the
learnings and stabilise the datasets. In this research study a novel approach is
used to help maintain the dataset integrity based on using standard data mining
algorithms. So, an automation of monitoring and maintenance of datasets on large
scale distributed cloud-based database systems.

Contents

1 INTRODUCTION

7 TG Review!
2.1 Matching Dependencies methodology for correcting corrupt dataset| . . .
[2.2 Cell Group methodology for dataset recovery|.
[2.3 Database integrity thru Fuzzy Logic technique|

[3 Methodology|
[3.1 Design and Data] 00
[3.1.1 Design|

4 Implementation|
4.1 Web application and Dashboard
|4.2 Detection ot error tuples from the target cloud databasel
4.3 The library for Records|.

4.4 The correction ot error values for the attributes under investigation| . . .
4.4.1 Correction Pseudo-codel
4.5 Sequence Diagram| Lo

f

11
12
12
14
15
15
16
17

4.6 Data Flow Diagram|. 18

4.7 Object Diagram| 19
4.8 Configurations and Execution|, 19
5__FEvaluation| 22
(5.1 Accuracy in Prediction| 22
6__Conclusion and Future workl 24
[7 Acknowledgements| 25
A ppend 27
A |
L__List of Softwarel 27
B |
[Configuration Manual| 28
[B.A AWS Cloud Database connection set-up| 28
(B.B Web Application Set-up| o000 30
[B.C 'Test Data Set-up| 31

1 INTRODUCTION

The motivation for this research came from the various articles and books which high-
lighted the issues of database integrity on the cloud database architecture. The database
systems growth in many ways have been driven by main sources such as the internet,
complex applications and hardware advances. Bernstein et al.| (1998))

Hence monitoring for a database service is important especially which are scaling up very
fast due to the above three drivers. As stated by Kai Hwang (Hwang et al.; [2013) that
“Data consistence checking in SAN-connected data center is a major challenge in cloud
computing.” (Hwang et al.; 2013) The fact that the cloud database is growing fast in
volume and services warrants an effective monitoring and maintenance system for the
cloud database architecture which will protect its dataset from being getting corrupt and
maligned. Cloud monitoring as understood in the industry, is a very broad term which
encompasses many aspects of services from VM monitoring to monitoring of multiple
dependent services and systems. [Toosi et al.| (2014]).

The cloud platform adds to the complexity of the data Database management system
(DBMS) by using data locations. So, the database schema integrity constraint (IC) be-
comes questionable and hence this research is the need of the hour.

So, to answer the existing data integrity issues this research endeavours to find the solution
to this problem which is currently existing in the real-world database storage, monitoring,
maintenance and access environment on the cloud.

The research answers to the question of how to maintain database integrity on a cloud
platform using data mining techniques. The research question deals with the important
issue which are present in the present world of cloud database architecture and are very
important to address because these issues are directly related to the database operations

and dataset integrity. Hence the research question tries to answer how a database in-
tegrity could coexist dynamically for an ever-increasing volume of datasets and will it
be possible to dynamically address the issues of lack in dataset integrity by dynamic
detection and correction of the inconsistent datasets.

To solve the research problem, it is important to have various views and perspectives.
The different views will show and highlight root cause of various types of corruption of the
tuples in the database. Hence considering the various root causes analysis from various
incidents and the understanding of the issue it can be summarised as follows.

The current cloud database architecture promotes large set or number of database ser-
vices across many different geographically separated data locations.

A foremost observed challenge is in the fact that most cloud-based databases always rely
on the replicated data locations across many geographical locations which introduces
more challenges to find and sync all the copies of the dataset. Xu et al. (2017)

The existing DBMS in the industry have datasets normalized in them and so the data-
sets definition and its values were in or out of the dataset very clearly, but presently the
is a growing number of cloud database architecture design which considers incomplete
datasets, and this contrasts with the traditional DBMS systems. (Widom; [2004) Due to
the nature of the cloud the databases are bound to be distributed and hence, problem
is bound to happen which is as stated by [Terry et al. (2013) that data co-location and
data replication across data locations increases complexity with the “trade-offs between
performance and consistency are accentuated due to the high communication latencies
between datacentres.” Terry et al|(2013).

Secondly referring to the work of Chu et. al. (2013) we understand that “Data cleaning
is an important problem and data quality rules are the most promising way to face it
with a declarative approach. Previous work has focused on specific formalisms, such as
functional dependencies (FDs), conditional functional dependencies (CFDs), and match-
ing dependencies (MDs), and those have always been studied in isolation.” |Chu et al.
(2013)

Thirdly referring to the work done by Chaudhuri et. al. (2005) in software systems,
the applications or databases, replicates or moves the data from its initial position in the
database system many times, also it gets transformed and possibly copied or moved to a
destination which might be a separate schema or table in the same database or separate
database. (Chaudhuri et al.| (2005).

Fourthly, as the data moves from a source to a destination schema it may more likely
take several steps and movement is done by every CRUD database operation. According
to the work of Cui et. al. (2003) those datasets which are used by applications are
exposed to lot of translations and transformations operations whose characteristics will
“vary from simple algebraic operations or aggregations to complex procedural code.” (Cui
and Widom| (2003)).

As stated by [Shin et al.| (2016) “The ongoing explosion in the diversity of memory and
storage technology has made hardware heterogeneity a fact of life for modern cloud stor-
age servers. Current storage system designs typically use a mix of multi-device idioms
such as caching, tiering, striping, mirroring, etc. to spread data across a range of devices,
including hard disks, DRAM, NAND-based solid-state drives (SSDs), and byte address-

able NVRAM or Phase Change Memory (PCM). Each such storage medium exhibits
vastly different throughput and latency characteristics; access latencies to data can vary
considerably” [Shin et al.| (2016)), so the data movement leaves the datasets vulnerable to
corruption.

Hence as stated by [Shin et al.| (2016) “creates an opportunity for trading off consistency
or staleness for performance.”

Finally, considering the cloud-based database architecture the database services when
executing on various database instances in a virtual environment have a good chance to
allow attacks from malware, trojan and viruses. Hence there is a need to protect the
database from these incorrect updates that takes place because of multiple user client
access and compromised database security.

Hence consistency and performance are both challenges as suggested by Lang et al.| (2015])
who states that “increasing the operational efficiency of the service generally means in-
creasing the utilization levels of the service by co-locating users together onto fewer
physical servers, while high, stable performance is generally achieved by isolating a user
onto their own server (potentially very wasteful)” . Lang et al.| (2015)

So, from above mentioned issues it is understood that the issues are all related to the
integrity of tuples. Hence it is quite well understandable that datasets have a chance of
getting corrupt in due course of time due to CRUD operations on them.

So, from the above stated points it is very clear that the problem of corrupt datasets is
a real threat to database and computational integrity.

This research answers the problem very clear that there is a greater need to monitor
and maintain the database and computing integrity for the cloud services and cloud en-
vironment.

Hence from the above discussion the research question comes out as, how can dataset or
tuples integrity be monitored and maintained of a large-scale database on cloud environ-
ment?

The document is divided into sections which are listed as follows.
e “Introduction” section gives a brief idea about the research study.

e “Research Question” section states the research question and the justification for
it.

e “Literature Review” section states the architecture and design of the solution.
e “Methodology” section states the architecture and design of the solution.

e “Implementation” section describes the methodology in terms of software tools and
low-level design specifications.

e “Evaluation” section describes a systematic analysis of experimental activities and
outcomes of the proposal so that decisions can be made about the proposal regarding
the improvement and effectiveness.

e “Conclusion and Future Work” section describes the research outcomes and dis-
cusses of the implications and the possibility of new research in the future based on
this research outcome.

2 Literature Review

2.1 Matching Dependencies methodology for correcting corrupt
dataset

The matching dependencies methodology was developed by Bertossi et al.| (2013])

The matching dependencies methodology searches and finds the incorrect tuples from the
schema of the same use case or business logic. The methodology then repairs by using
the integrity constraints as defined earlier in the schema.

As stated by Bertossi et. al. (2013) the methodology “introduced matching dependencies
as declarative rules for data cleaning and entity resolution.” Bertossi et al.| (2013])

The methodology does a matching under forceful circumstances of the dependencies, on
the same schema instances under investigation before correcting them. To put it in a easy
way around for understanding it can be said that the data correction action can take place
for a tuple, only in the case of the tuples belonging to the same business scenario and
where these tuples have their attributes very closely matching. Mandros et al. (2017)
mentions clearly the difficulties of this methodology as stated here “Given a database
and a target attribute of interest, how can we tell whether there exists a functional, or
approximately functional dependence of the target on any set of other attributes in the
data?” How can we reliably, without bias to sample size or dimensionality, measure the
strength of such a dependence?” |Mandros et al.| (2017).

From the above discussion the methodology lacks with two limitations which are user
dependency and use case dependency. Hence there is a need of a better methodology
which should not be constrained to user and user business scenario.

2.2 Cell Group methodology for dataset recovery

Geerts et al.|[(2013) came out with this methodology of grouping cells in tuples for dataset
recovery.

The cell group methodology main task is to remove inconsistencies and consequently
clean the cells or tuples. The methodology requires to learn the database schema con-
straint definitions, to perform both the task of modification of the incorrect tuples and
also replacing with a new value similar to the original value.

The cell group methodology has a separate schema tuples cleaning process. This cleaning
process can be used only when there is a set of two schemas of belonging to the same
database. The schema is known as source schema and target schema in this process. Both
these schemas are defined along with the group or set of related constraints. The function
of the source schema is to contain the master dataset which is the clean datasets. This
source dataset is an input to the correction process. The source schema also considers
the related schema constraints to analyse the master and target dataset for inconsist-
encies. The other dataset is referred to as the target schema which are having a set of
incorrect datasets in it that needs to be corrected. To execute the process of corrections
of the dirty datasets the following steps must be done. The with steps of evaluating and
comparing relative values of the dirty tuples and track the changes in the relationships of

the source and target datasets that are being changed the final correction of the dataset
are completed in this methodology.

The cons of this methodology can be found out from the two facts as follows. The most
important fact about this methodology is that there is an initial requirement of the details
of the internal schema definitions of the datastores which cannot be directly accessed.
Secondly, the datasets are replicated many times across the data locations to add to the
initial problem. [Zellag and Kemme, (2012)).

Hence as stated by Geerts et. al. (2013) the uphill activity is to create a process which
can correct the incorrect tuples without any user involvement, and hence “identify and
repair data errors in a dependable manner.” Geerts et al.| (2013]).

As a conclusion it can be well understood that having user intervention for correction
must be reduced to minimum and that is what is required for better user experience. It
can be said that by using data analytics along with the data mining algorithms, the user
interface can be reduced to the minimum.

2.3 Database integrity thru Fuzzy Logic technique

A very popular method used by Microsoft SQL services was developed using fuzzy logics
by |Arasu et al.| (2011)).

The methodology searches for the incorrect tuples by using a look up logic based on
fuzzy logic. There are assumptions that needs to be made for the search algorithm to
work which is the limitation of this methodology. Hence to find the corrupt data using
the fuzzy logic method there must be a matching making of the datasets at first and
then upon the results of the match making process the tuples are identified as incorrect.
Then upon the tuples must be segregated so that the values of the cells of the tuples
will be exposed to run a segregation logic on them so that the values which are incorrect
can be categorised. For this categorisation of the cell values, the cell data are tokenised.
The token generation logic is weighted and hence requires the tokenizing techniques like
whitespace-based tokenisation and the various transformation rules. |Arasu et al. (2011))
Hence as stated above, the methodology still has the challenging task for the user where
the user must define the tokenisation model. The tokenisation model is built on the
transformation rules which also intern has to be defined as well. Now the user has to
have a detail view of the dataset under the review only then can the tokenisation and
the declaration of the transformation rule can take place. Hence there is the challenge
for defining different transformation rules for different types for data.

The main task of developing the transformational rules as per the data integrity viola-
tions requires different analysis for different data types and datasets creates a challenge.
Secondly the violations of the data integrity constraints do not hold true and valid for
many reasons because the data integrity depends on the business model of the database.
Assadi et al.| (2018)).

Ultimately the user takes the decision to configure the tokenisation and further analysis
operations of the dataset, this creates a grey area for the entire process of correction of
the dataset. This may also not lead to the correct output of the dataset even after the
correction is performed at the initial steps and hence may take more complex steps to
reach the final correct data values of the tuples. So, though the methodology depends on
the fuzzy logic techniques, but still user has to be in control for the configurations. The
fuzzy logic techniques establish the rules for the lookup using various schema reference
tables. But the main process of lookup and picking up the correct tuples for correction

must be done over multiple steps by establishing a threshold parameter for the continuing
the lookup process and then setting up an index over the reference tables. The aggreg-
ation and segregation of the intermediate results also adds the complexity of the steps
that need to be followed until the result is achieved.

There is lot of dependencies as well on the interim new schema setup for the analysis
and the structuring of the reference dataset to enable the extraction query string. Hence
Arasu et al. (2011) methodology demands for a highly skilled user for arriving at the
correct results.

As discussed above in three sections the three different methodology has been successful.
But still the challenges of the requirements still stand tall because of the ever-increasing
datasets size and volume and the dynamics of the accessibility of the datasets especially in
the cloud database architecture where the database architecture has to deal with the cross
platform solution for federated cloud environment which is clearly stated by Moustafal
et al| (2015) “as monitoring in federated cloud environments needs a flexible and effi-
cient framework that combines a number of essential properties such as interoperability
between different clouds, SLA orientation, and service benchmarking.” Moustafa et al.
(2015)

The current progress in the cloud services related to database architecture indicates
that the there is more room for automation in the process of the data integrity checks
and monitoring, hence there is better chances of using latest technology like data mining
techniques to process the dataset in the transactional database. Makris and Markovits
(2018)

The latest technology of data mining helps to analyse the dataset under inspection in a
user-friendly manner. Even if the heterogeneous dataset is considered which are presently
the normal of the business model across different cloud platform and heterogeneous com-
puting infrastructure. |(Coady et al.| (2015

Also, the modern technology of data mining is a tool for predicting the close approxim-
ation for a given set of similar values. Using the popular Kmeans algorithm “to impute
missing confirmation bias metrics values” and then by using this values there is a possib-
ility to get the right value too. (Calikli and Bener| (2013])

Hence the Kmeans algorithm can be of good help to go thru the automated iterative
process and then get a series of outputs in a scientific way.

3 Methodology

This research is related to the cloud database instances which are holding huge datasets
and are also at the same time vulnerable to external and internal attacks or hacking
which in many cases alter the dataset values as registered or updated by the main applic-
ation with which the database is associated. Hence the dataset integrity is lost in these
kinds of attacks and hacking so to reinstate again the correct values for those corrupt
tuples or dataset we have introduced a novel approach to monitor and correct the dataset
continuously with the use of data mining algorithm and techniques and machine learning
advantages.

The experiment done has been explained here in a structure, which are described in

each separate sub sections under different headings.

Various UML diagrams have been used here to describe the designs, components, data
flow, data set, deployment and execution strategy.

The below sub sections contain the details of the implementation of the proposed design,
proposed data flow, experiment steps and the experiment results.

The experiment ends with the test scenarios, test cases and the test results which are
part the experiment execution with the objective to prove the research theory.

The solution architecture layout for the project encompasses cloud database instances
across different data locations this is achieved using AWS DynamoDB instances created
across multiple AWS regional server locations, an web application to processes the data to
and from the cloud database and also apply the data mining and data learning algorithms
to process the dataset for the detection of the incorrect tuples and also generates the most
probable outcome of the in-putted incorrect values.

Here in this proposed architecture we are doing this experiment using two separate use
cases and which also have two separate real-world datasets and database instances and
set-up in the AWS DynamoDB cloud servers. The user will be allowed to run the datasets
for detection of the incorrect values in the datasets and then be prompted for correcting
the data values as per the data mining and prediction algorithm outcome. In this current
experiment we are trying to prove a working model which will execute the requirement
specifications of this research project.

The following is the architecture diagram:

Figure 1: The Component diagram

The figure 1 diagram displays the overall architecture layout for the proposed solution.
The entire research experiment is composed of 4 steps as per the data journey thru the
system and its components. They are as follows:

e Step 1: This is the first process of the experiment. The user connects to the cloud
database which is considered as the target database for the project. The target
database which is on AWS DynamoDB domain and server has to be understood
in detail firstly. The table and schema credentials and the schema layout along
with the table specifications must be available to the user. The user notes the
schema table layout and connects to the AWS database instance. After successfully

connecting to the AWS database instance the dataset which is targeted to have the
corrupt data in it is extracted by the user. The dataset which is extracted is a
batch of 5000 tuples. This set of 5000 tuples are required to train the data mining
algorithm for finding the deviations in the values of those incorrect tuples and hence
identify the tuples also at the same time. The snap shot of the dataset will include
the incorrect dataset in it. Also, the dataset snapshot will have only the related
and affected attributes of the dataset.

e Step 2: The second process of step is to populate the temporary local database for
holding the dataset separately away from the source database for analysis. Here the
dataset is not the exact replication of the dataset but is the set of those attributes
which are identified as the qualifier for the attribute which is under scrutiny. So
only those dependable attributes must be considered for the analysis to identify the
incorrect tuple. The dataset record or tuple are observed for the OK and NOT OK
attribute values that will be required for the data mining to understand and learn
the dataset characteristics.

e Step 3: The third step in the entire process runs the data mining algorithm on
the dataset. The execution of the data mining algorithm will run thru the entire
dataset. The algorithm will then note the deviation from the range of values that the
same attribute possesses. Any deviation from the range of the values of the target
attribute is identified as a potential error in the value and the tuple is identified as
an error tuple which is present in the dataset. The identified errors are displayed
to the user for a view and better understanding of the content and context of the
dataset and its values that need amendment.

Step 4: The fourth step in this process refer to the prediction of the correct values
for the incorrect values. The data mining algorithm will use another algorithm
called k-nearest neighbour algorithm in this case. This algorithm will take into
input the incorrect dataset and run through them. After analysis of the incorrect
dataset this algorithm will predict the correct values for the attribute. The predicted
values may be 100 percent accurate or may be less than 100 percent accurate.

Step 5: This fifth step is responsible for storing the corrected tuple in the system.
This step is very much required for making the system more intelligent and at the
same time to keep a record of this correction activity. The library maintains the
copy of the original record and the copy of the corrected record separately in itself.

Step 6: The sixth step in the process is to update the source database schema on
the cloud with the correct values.

Step 7: The final step in the process is to generate the report of the dataset.

From the above section it is clear now that the dataset employed in the research
project is related to different use cases or business scenarios. This difference enables to
understand that the proposed solution is not limited to one business or use case only. The
proposed solution can be used for any different business case and will be equally effective
to solve the problem this research wants to achieve. The following section describes the
dataset used in this research project.

3.1 Design and Data

The research project design is done with the minimum complexity and minimum compon-
ent interfaces so that the data operations and data movement remain the crucial activity
for the user to control the various steps in this process. The research project solution
deals with the relational dataset. This is because of the less complexity to deal with in the
execution of the program and project due to limited time frame. This section highlights
the data flow and the design which will be implemented in this research project.

3.1.1 Design

The low-level design and internal architecture are well explained by the diagram below.
The Unified Modelling Language (UML) is the industry standard for describing the soft-
ware engineering model. UML can be used to describe the low-level design which consists
of components and processes. The low-level design is based on the high-level architecture
diagram. The low-level design describes more of the software model, which can will be
used for the software development, engineering and testing. Hence the below diagram
uses UML, for identifying the different processes, module and data transfers as per the
architecture component diagram presented in figure 1.

The following is the Low-Level Design diagram:

_ ,-‘ Connect to target schema }—

- -‘ Extract Data from target schema }—

Web Application f—

Updste. d
“ Target 5 ioud |
Database

Machine Leamning

Training Algorithm

Figure 2: The LOW-LEVEL DESIGN Diagram

Here in our system we provide a solution which is user friendly. We have developed
the solution around the data movement in various phases of the entire process under the
user commands.

The solution targets to correct the incorrect tuples in the dataset, hence the user con-
nects to the database after getting the details of the database from the AWS console.
The database is spread across different data locations. The data location instances are
also received from the AWS console.

We have used a web application for user control of the sub-processes. The web applica-
tion has a dashboard and menu options to show the various activities of the system.
The data mining sub-process takes the dataset for analysis. After the analysis the de-
fective tuples are highlighted in result of the analysis process. The resultant tuples are
shown on the dashboard to the user.

The user has the dashboard where the user can select and deselect the tuples for correc-
tions to be performed.

The user then goes to the next step of sending the incorrect tuples for analysis so that the

10

correct values are suggested by the data mining algorithm. After the dataset has been
passed thru the data mining algorithms then the corrected tuple is copied into a library
database for future references.

The design gives the user the control on the data movement selectively.

3.1.2 Data

The sample dataset which we have considered is of a simple real-life use case. A simplistic
dataset will help to have a better understanding of the research objective and outcomes
with complete clarity and no complexity in the outcomes of the research. This research
is based on the dataset primarily, hence the data source, data transfers, data CRUD
operations and data archiving is of importance with respect to the relational dataset
which are from the real-life scenario. The dataset is of a credit card transaction of various
customers. The credit card dataset has attributes with numerical and alphanumerical
type values in them. We have considered the numerical values in the attributes to be
the direct inputs to the data mining algorithm. The user can select other attributes as
well like of type alphanumerical. The data noise which generated and introduced in the
dataset is hand-crafted and not real.

The following is the Dataset attribute details:

D LIMIT_BAL SEX EDUCATION MARRIAGE AGE PAY 0 PAY 2 PAY 3 PAY 4 PAY 5 PAY 6 BILL AMT:BILL AMT:
20000 2 1 24 3913 3102
120000 26 2682 1725
90000 29239 14027
50000 46990 48233

1

2

3 34

4

5 50000 8617 5670
6

7

8

9

0

37
57
37
29
23
28
35

50000
500000
100000
140000

20000

64400 57069
367965 412023
11876 380
11285 14096

0 0

BN R R R R NN
wWwN RN RN

NN N

Loococolhookn
Lobhoocooomm
Lnbh ook oocoh
Loocococoococoh
Loocococoococol
bobhoocooonb

Figure 3: The Dataset attributes

For the data mining algorithm to work we have to take help of the data model or the
classifications of the data. The classification of the data has been into two classes which
are OK and NOT OK.

3.1.3 Assumptions

This research is based on the issues that are faced by large distributed databases present
in the cloud environment. The few assumptions in the methodology are as follows:

1. From the considered dataset for this experiment, the dad or corrupt tuples are ex-
pected to be about 1 tuple per 100000 tuples.

2. Only relational schemas and databases are considered to minimise complexity of the
logical operations

3. Low Cardinality of the dataset in the database so that the search is simple.

4 Implementation

We present our solution by implementing data mining algorithm and techniques for data-
set analysis and predictions. The solution implements AWS cloud platform for hosting
the datasets in the database instances which are spread across 3 different data locations.

11

We selected the target database to be hosted on the AWS Dynamo DB platform as its
being the popular cloud database platform. We also implement various AWS public cloud
environment-based database services to apply the extraction and various CRUD opera-
tion on the target database on the cloud.

For better user control and understanding we have divided the entire process into two
sub processes which are a) the discovery process and secondly b) the correction process.

4.1 Web application and Dashboard

We have implemented a web application Java Spring hibernate framework here for the
user. The spring framework provides the open source Java based web applications related
APIs and database connection APIs. The choice for Java spring framework is because of
it light weight and as it’s an open source for development of Java applications and web
applications. The hibernate provides the database APIs for MS SQL databases which
are required to process the dataset in the local database tables.

We have implemented a Java based web application for the user to be able to have a user
access to configuration and control of the multiple processes working in the system. The
user is also able to execute the processes and modules as a part of the manual steps in the
system. The web application has user friendly menus for triggering different functions
and a dashboard for the system control, error messages and execution.

4.2 Detection of error tuples from the target cloud database

We have implemented this detection process as the first function or activity of the system.
This is done to collect the dataset from the target database on the cloud and initialise
the system for the data mining algorithms to run on them. Hence the target database is
identified on cloud platform. Here we have selected AWS dynamo DB as a cloud plat-
form. On the AWS dynamo DB, we have installed a target database It is also assured
that the cloud database has the dataset across the multiple data locations or regions.
The application connects to the AWS database instance using a TCP/IP connection. The
database credentials are passed to the connection Java API for the database connection.
Once the connection to the cloud database is successful then the dataset is extracted
from the targeted datasets or the targeted tuples from the target cloud database. This
extraction of the dataset from the target database is done for large set of tuples and
stored in a file having a csv format.

The dataset selection process checks the user definition of the target dataset. Then the
database related IC rules, de-duplication rules are considered to extract the informa-
tion related to each tuple. So, after getting the normalisation dependencies we pool all
incorrect tuples. The following logical steps are performed in the detection algorithm.

e Extract tuples as per the target dataset definition from database nodes in different
data locations.

e Check for inconsistent 1C.
e Save to a temporary learning repository in a separate local storage.

The large quantity of the tuples or dataset includes both incorrect tuples and most
correct tuples, each of the category having a ratio of 1 percent and 99 percent respectively.
Hence the bulk of the dataset is correct dataset. This set of correct datasets is required

12

for the training the data mining algorithms to identify which are the correct values in
the tuple and with what range the values of the attribute varies. Hence the data mining
algorithm can detect the patterns and the ranges of the values of the target attribute of
the target dataset.

The extraction of the target database also includes the information on the primary keys
and foreign keys defined in the database. The primary key and foreign keys of the dif-
ferent target table set helps to identify the relationship of the data attributes and their
uniqueness and hence we can check the integrity constraints (IC) of the tables and their
attributes. These IC checks are done with the help of the primary key and foreign keys
for all the tuples in the extracted dataset.

This reverse IC checking identifies the OK tuples and the NOT OK tuples. This set of
the most probable OK and NOT OK classification of tuples are fed into the system for
the initial training set. The training set is required for the identification, categorization
and learning by the algorithm. This training set of tuples are stored in the database
separately as shown below in the diagrams.

The following is the Learning model details:

Classification Algorithm

‘ Training Data ‘

Figure 4: The learning model

The learning model give rise to the learning phase in the system. In the learning
phase mentioned here the classification algorithm is responsible classify the data into OK
or NOT OK data sets or groups. After the learning phase the classification rules are
applied on the tuples which are scrutinized for errors in them and stored separately in
the local database table.

The following is the selection model details:

A
Target Test Data ‘ r Test Data ?

Figure 5: Tuple selection process

This selection rule accuracy is judged as per the selection dataset outputted on the

13

dashboard. The user then decides which all dataset can be taken forward out of the NOT
OK test dataset. Hence the clustering of the test dataset is done to isolate the corrupted
tuples. This results in a pool of corrupted tuples which are stored separately on the local
database table.

4.3 The library for Records

The error tuples which need correction will be stored in a separate table which is a
Library-of-Records (LoR). This LoR storage has been created to keep a track of the
tuples which are getting identified for the correction process later on.

YT

AWS Pipeline
Tagging in Detection process \
|
7 I L A

{

Tagging in Correction .'; —~ AWS 53 storage 1 \/
process AWs Pipeline | .- T——————— .
RO

ID.IMIT_BA SEX DUCATIOMARRIAGE AGE Source_Record_ID Source Version
1 2000000 2 2 1 24 1 Customer_Transactions 0
2 20000 2 2 1 24 1 Customer_Transactions 1

Figure 6: The Data Flow details for LoR

The tuples are also kept here with a motive to refer them in the future for tracking
and log purpose as well.
In order to store the tuples here in this library or repository we have devised a mechanism
to uniquely identify the tuples as well. Hence each tuple’s information is also stored along
with the tuple data. we have captured the tuple source table information like table name
plus the record details together in a single new tuple. Each tuple is store also with a
version tag. This tag is a numerical value which starts from 0 and increases by 1 for every
single action done on it.
So, the first selected tuple which contains the error in it, will be tagged as version number
0. When the correction is done on it, then after the tag value will be changed to 1 value
or version number 1. Both the versions of the record will be available in the LoR table.
This is because to trace the original record and also to trace the various versions of the
record that has undergone changes or corrections thru this process.

14

4.3.1 Pseudo-code for LoR

The LoR stores the records with all the versions as its clear from the discussion.
Data: The identified record from the target database on cloud.

Result: Different versions of the record undergone correction

/* Initialize the counter keeping variables */
1 versionld = 0;

def get(dataSet, recordNumber)

/* Store Initial base version of the record */
2 iterations = getVersion(recordNumber);
while not getRecordSet(dataSet, recordNumber) do
3 iterations ++ ;
storeVersion(record,recordNumber, versionld);
end
4 return records

Algorithm 1: Algorithm to store records with versioning.

4.4 The correction of error values for the attributes under in-
vestigation

We have done this solution to get the correct value of the incorrect data value or a data
point of a target attribute by predicting the correct value using K-Means data mining
algorithm. We have chosen K-means over Expectation-Maximisation (EM) algorithm due
to the simplicity and linear nature of the iterations having a linear complexity O(n).
The correction process involves two steps. The first step is to select the seed value for
grouping the data points and the second step an automatic iteration process using the
k-means algorithm which runs until the new data points are discovered or the group
center is found out. These new data points are the predicted and correct values. But
then out of the three group center or new data point results, only one value is chosen by
the measuring the average of the three new group centres.

The assumptions for the correction process to run are

1. The seed value is random within the range of the data points collected.

2. The K value or the number of clusters is set to be constant value of 4 for this research
purpose. The more this k value is the more accurate results can be obtained and
also more data points can be considered for the iterations. But here K values is
always less than the number of data points (P) i.e. K less than P.

3. The data points are the actual values from the targeted table and the dataset
extracted for this correction process is 100 data points. Out of the 100 data points
it assumed that 99 data points are correct data and only 1 data point is incorrect.

4. The data points which are a set of numerical values of the same attribute hence
they are similar to each other. So, no labels are required for the K-means algorithm
to do the clustering or grouping.

The clustering of the data points will be based on the training data sets X).
The given data point #(!) ¢ R". The solution algorithm follows with the following steps
for an unsupervised learning to get a k centroid value.

15

1. Seeding the cluster centroids with values a; , as, a3 and ay € R™ randomly.

2. K-Means algorithm Iteration over the X (! data points till centroid is found:

{

For every data point 2, set centroid® := ARG MIN ||) - a; ||?

For every j in «; ,
S 1(centroid =j)z(?)
S, 1(centroid()=j)

set a; =

4.4.1 Correction Pseudo-code

The K-means algorithm functional calls are described as follows:

Data: 100 data points extracted from the target database on cloud.
Result: 4 different centroid data points

1 def kmeans(dataSet, k)

/* Initialize centroids randomly */
2 numFeatures = dataSet.getNumFeatures();
3 centroids = getRandomCentroids(numFeatures, k);

/* Initialize the counter keeping variables */
4 iterations = 0;
5 old-Centroids = None;

/* Run the main k-means algorithm */

while not stoplterations(old-Centroids, centroids, iterations) do
old-Centroids = centroids;
iterations ++4 ;
labels = getLabels(dataSet, centroids)

10 centroids = getCentroid Value(dataSet, labels, k)

end

11 getLabels(dataSet, centroids);
12 return centroids

© 0w I &

Algorithm 2: Algorithm to find correct values.

Below is the called function definition for getting the cluster details and also the

16

function for getting the centroid values respectively.

Data: Testing Data set for the clustering X
Result: The centroid values centroid®

1 def stoplterations(oldCentroids, centroids, iterations)

/* Function: Put a stop to Iterations for clustering */
/* Returns True or False when the process of finding k-means
iteration is complete. */

/* K-means loop will terminate on the condition that if it has run
a maximum number of iterations OR the centroids stop changing.

*/
/* When number of iterations is greater than MAXIMUM number of
itertions then exit loop */
2 while iterations < MAXIMUM — NUM — itertions do
3 calculate centroid value from the cluster of data points....
4 oldCentroids == centroids
5 return true
end

Algorithm 3: Function definition for clustering Iterations.
Below is the called function definition for getting the cluster details and also the
function for getting the centroid values respectively.
Data: Testing Data set for the clustering X)
Result: Returns a label for each data point in the testing dataset

/* For each data point or element in the testing dataset, find the
closest centroid then assign that centroid the data point’s
label. */

1 def getLabels(dataSet, centroids)

Algorithm 4: Function to get cluster.
Below is the called function definition for getting the cluster details and also the
function for getting the centroid values respectively.
Data: Testing Data set for the clustering X)
Result: The random K centroid values centroid®

/* Every centroid value found is a geometric mean of the data
points that have assigned centroid label. x/
1 def getCentroid Value(dataSet, labels, k)

Algorithm 5: Function to get centroid values.

4.5 Sequence Diagram

The sequence calls of the entire process is captured on the sequence diagram. This
diagram helps the user to understand the user case and the related processes which are
triggered in the system sequentially for the completion of the process.

17

WEB AWS 53 AWS DYNAMO DB DETECTION CORRECTION
APPLICATION REPOSITORY ARGET DATABASE PROCESS PORCESS

Connect]) databases [
¥ -
- - .
SEARCH() tuple:
get database INFO

- -
GET() tuples

-
tore|extracted Datn st
Poal() tuples

seggregae
store() tuples -

-
Get Data Set
a H-MEANS Algorithm

stored) tuphes

-

Stone Tuples with TAGGING
-

-
UPDATE(] the iuple with cormect valug

Figure 7: The Sequence diagram

4.6 Data Flow Diagram

We have captured the objects and their relationships in the diagram below. The object
diagram here shows the relationships of the functional component of the system.

Connect to target
database
L
¥
Store data in PULL data set from ‘
TEMP Data table target database

Each Tuple
Business

No Criteria

Check

Execute K-MEANS
algorithm for
prediction

Que Batches
of 100 tuples

Store data in
Training table

Each tuple
Integrity
Constraint
Wiolations

No
New value

of the
attribute

Store data in
Test Data
table

Update the target
Database table
with the correct

tuple

Store in Library

‘ Tagging version and ‘
Database

Figure 8: The Data flow diagram

18

4.7 Object Diagram

We have captured the objects and their relationships in the diagram below. The object
diagram here shows the relationships of the functional component of the system.

Web_App_Main

+userlD
+processiD

(G
+provides access to
ConnectDB

.
+show_dashboard ()
+dataNodelD +show_report()
+dBname _

+access "
0 WEKA_INSTANCE

+tuplelD
+Centroid_val
+K value

+E|ettl)

+se
+lud9}
+check()
+validate()

=Tt
[

modifies

+dataset_id
+schema_name
+repository_id

+extract()

+modifies()
+strore_repository()
+tagging_tuple()

g | Dataset_INSTANCE

Al

o

+tuplelD

CRUD Transaction

+tupleCreate(
+tupleUpdate()

I
TAGGING_TUPLE

+tuEle Id
+schema I'Id_lTlE
+tuple_version

+get()
+|:_reateij
+final_cloud_update()

Figure 9: The object diagram

4.8 Configurations and Execution

Dataset_extraction

+format_type
+schema_name
+table_name

+table_data_Dump()

+extract_dataset()

1
VALIDATION

+tu EleID
+schemalD

+tuple_IC_Check()
+tuple_BLogic_check()

The detection and correction algorithms work together different on each dataset which
are stored separately in the AWS cloud database. So, we can execute multiple instances
of the dataset for testing the accuracy of this new suggested solution.
For testing and execution of the suggested solution 3 set of separate datasets have been
utilized. The web application launches the execution of the detection and correction
algorithms in sequence for a selected group of datasets. The data set is extracted from
the source database or the target database with the help of the web application which
connects to the AWS Dynamo DB instances on the cloud for multiple regions.

& hitps zon.com

Services

Resource Groups

samuel

N. Virginia «

Support

DynamoDB

‘ oo 0
Dashboard
Tabbes Q * Viewing 2 of 2 Tables
Bac S

i Name -~ status Partition key Sort key Indexes - Total read capacity
Re d capacity
edit-infc abl D (Mumiber)

Preferences

DAX
Dashboard

Clusters

i (Slring

Figure 10: The Target database on AWS Dynamo DB

19

Services ~ Resource Groups ~ *

Ll samuel ~ N Virginia » Su
Create table credit-info-original-table Clase m = u (2]
CJ. ter by table name Overview Items Metrics Alarms Capumy Indexas Global Tables Backups Tﬂﬂgll" Access control T'IES
[o [N ° o
@ credi-info-original-tat

Scan: [Table] eredit-info-original-table: ID A, Viewing 1 to 98 items

[Tabie] credit-info-onginal-table: 10

o Add fifler
[[=};] -~ AGE = BILL_AMT1 - BILL_AMTZ - BILL_AMT3 - BILL_ AMT4 - BILL_ AMTS - BILL_AMTE - EDUCATION
24 3913 3102 G893] o o 2
2882 1725 2682 327z 3455 3281 2
259239 14027 13560 1432 1 14948 1 2
4 7 4 49291 059 2 2
as17 5670 35835 20940 19146 19131

@ Fesdback @ English (US)

Figure 11: The Target database on AWS Dynamo DB

From the cloud database the web application extracts the information in a JSON
format for loading onto the local detection process. The detection process reads these
datasets one by one and then detects the integrity constrains issues with the records. This

is done with the help of the reference tables for the target table of a particular database
or schema.

SELECT DISTINCT LIMIT_BAL, AGE, columnA, columnB, columnC, columnD_FK |
FROM sourceDataSet |

|
I
| INNER JOIN EDUCATION on EDUCATION.ID_EDUCATION = SourceDataSet.EDUCATION_FK|
| INNER JOIN AGE ON AGE.YEAR = EDUCATION.AGE_FK |
| WHERE AGE.YEARS != NULL; |

The result of the SQL query gives the final dataset of unique tuples which are incorrect
with respect to the data integrity constraint defined in the table or schema.

20

=] imanager % [Dwa Restoration Teol - Apat xR - o IEH

“ C @ locathost y ib-data 1 "o 2
DRT - Original Dataset List
Filter List By :
Date : wm/ dd/ yyyy
Limat Bal :| Search
id :;"1 Sex Education Marriage Age PAY 0 PAY 2 PAY 3 PAY 4 PAY S PAY_ S BILL_AMT1 BILL_AMTZ BILL_AMTI BILL_AMT4 BiLL_AMTS BILL_AMTE PAY_AMT1
T 500000 1 2 Pl a » a L] o L] 367965 412023 445007 542653 483003 473944 55000
47 20000 2 2 FrJ a o Ky 1 0 1] 14028 16484 15800 16341 16675] 3000
9 30000 2 2 2 .73 o o L] L] 0 o 28387 29612 30326 28004 26445 G4 1686
B9 130000 2 3 2 Pl 1 “d -2 -1 1 <190 <9850 -§E50 1031 10181 1319 o
& 100000 2 2 2 23 (] -1 -1 o 0 -1 11876 20 &0 m -159 567 B0
B2 70000 1 2 1 n a L o L] 0 1 TS0 72060 50938 16518 14086 830 4025
B4 180000 2 1 2 25 1 2 L]] o] 41402 41742 2758 42500 43420 45319 1300
TS 34000 1 i 2 1z i - -1 -1 -1 -1 3048 5550 23w 4291 0153 25820 5713
88 130000 2 1 1 33 a L a =1 -1 -1 81313 17 17740 1330 To9% 1an 40000
2 50000 1 2 2 33 2 o 0 [] 0 o 30518 29618 22102 22734 FLESTS 23580 1718
56 500000 2 1 1 45 -2 2 -2 2 o -2 1805 540 162 U] 151 2530 3540
44 140000 I 2 1 1] o o o 0 o 5504 1544 B2G25 B4280 &7079 69802 000
19 50000 1 1 2 25 1 1 1 2 2 -2 0 TE0 0] i} 0 780
10 20000 1 3 2 35 -2 2 -2 2 1 -1 0 o o L] 13007 138912 o -

Figure 12: The Web Application dashboard showing data extracted from AWS Dynamo
DB

The dataset goes thru the detection process and then the incorrect tuples are identified
and stored on the repository with an initial version which equals to 0. The repository
is set-up in the AWS Dynamo DB cloud also for scaling the library and also due to
easy access to any application interface or systems in the future. The original version of
the incorrect tuple or record is stored here for future references. Hence the first record
or tuple is always the incorrect record. After the record is corrected by the correction
process, then again, the new correct record is formed here, and a new version is added to
it.

package com.clovdapokes. dynamads:

public interface Constraints {|

String :
String =
String :
String :
String
String -

public atatic final String AC
public static final String SE

Figure 13: The Library table parameters as set on cloud AWS Dynamo DB

The prediction process then starts with the cluster group values set to a constant
value of 4. Hence in this solution there will be always four cluster that will give four
centroid values for 4 different clustered datasets.

SimpleKMeans kMeansInstance = new SimpleKMeans();

21

int number0fClusters = 4;
int[] centroids = null

//Assumed seed value is as per the data points grouped
//as per desired grouping.
kMeansInstance.setSeed (10000) ;

kMeansInstance.setNumber0fClusters (numberOfClusters) ;
kMeansInstance.buildClusterer (groupOne) ;

//The array returns the centroid value for

//each group of data points

centroids = kMeansInstance.getAssignments();

} catch (Exception e) {

|

|

|

|

|

|

...

| try {
|

|

|

|

|

|

| e.printStackTrace();
|

The four clusters generate four centroids which we consider for the new correct value.
The average of the four centroids gives the final correct value for the error attribute value.

5 Evaluation

This section evaluates the experiment results for different factors like accuracy, effect-
iveness, processing speed and user friendliness of our solution. A systematic empirical
and statistical analysis of information from the outcomes of execution results helps us
to understand the above factors. The data set used for the experiment is real world
example and an analysis of the experiment results will show us a near to real picture
of the efficiency and effectiveness our solution. Our solution is made up of two distinct
processes which are detection process and prediction process. The prediction process is
dependent on the detection process with respect to the data which is collected from the
target table existing on the cloud. The prediction process is the crux of our solution
hence the efficiency and effectiveness of our solution is more dependent on the prediction
process and its results.

5.1 Accuracy in Prediction

The detection and correction processes executed 10,000 tuples or records of each three
different dataset for 10 days. Each dataset has 10 attributes or columns of data and every
dataset has 3 reference tables for referencing for the integrity checks which adds to the
complexity.

It is observed that after executing a total 30,0000 records by the detection process, the
integrity check SQL query command becomes complex and takes more time as the data
quantity increases and the query couldn’t be indexed. But as long as the dataset can be
targeted very specifically in batches of 1000 records the detection process completes each
process in few seconds. Hence it is noted here that the user should have a specific target
to focus on. If the user wants to run the detection process on all the existing dataset
then the duration of the detection process will consume lot of time and will not be an

22

effective and best practise to run the detection process.

Hence limitation of our solution lies in the fact that a smaller batch of records have
to processed in batches to keep the algorithm execute fast. Secondly, the understanding
of the business process is required to isolate the dataset and the possible affected tuples
is the best way.

The most important process of out solution is the prediction process. But the prediction
process also depends on the batches of records which are not more than 1000 in quantity.
The learning data set is a must for the prediction algorithm to work. Hence the small
batch of the dataset comes in use here for making a dataset for learning.

Similarly, for the prediction algorithm, a large volume of dataset was passed thru the
K-means algorithm in batches of 5000 data points at a time. This did not allow the sys-
tem to execute the results fast enough and at times would halt the execution. Secondly
the results set were not accurate due to cluster groups were large to include very large
number of data points. Hence it was deemed to bring down the test data set to a man-
ageable count of 1000 and 500 data points to be processed at a time.

Test Cases for Measuring Accuracy

Test | Dataset Tuple Batch || Clusters || Centroid | Expected| Approx
Runs|| Attrib- Volume | Size: || of Data || Avg Result Differ-
ute:CREDIT Data || points ence in
LIMIT points percent-
age
100 || Male 10000 2000 || 2 26251.65 || 30000 15
150 || Female 50000 2000 | 2 17457.85 || 21000 15
50 Less than 30 | 50000 3000 | 5 46551.55 || 50000 10
yIs
50 Between 20 | 50000 2000 || 5 51532.42 || 55000 8
yrs to 40 yrs
50 Between 30 | 50000 1000 | 4 56572.44 || 60000 8
to 40 yrs
50 Between 40 | 50000 1000 | 4 43568.35 || 45000 8
to 50 yrs
50 Between 30 | 50000 500 4 56301.68 || 60000 8
to 40 yrs
50 Between 40 | 50000 500 4 43853.84 || 45000 8
to 50 yrs

Table 1: Test Cases and Results showing accuracy

As shown in the figure plot below that the accuracy increases when the test data point
count was at 1000 and 500.

We tested the data sets with various volume sizes repeatedly to see the prediction cap-
ability and its accuracy. The results were known before in hand in-order to compare the
predicted values using the KMeans algorithm. The below table shows the nature of the
test runs that were executed to find the accuracy. The graph below depicts the pattern

23

observed in the test runs with the test data sets.

Predicted percentage changes for CENTROIDS

T
—o— Test Results

y = x1000 Batch Size of Data points

10 12 15
x = Centroid — ExpectedV alue Percentage Difference

Figure 14: Graph Report for accuracy of centroids predicted by K-means algorithm.

Hence, we can suggest this solution to be fairly accurate to 10 percent on average of

the original values which were corrupted. So, the new correct values are approximate
as appears from the experimental results. We found also that the Kmeans+-+ algorithm
can deliver better results on the same set of data points. The Kmeans employs geometric
circular clusters which exclude related data points and hence the decrease in the effective
prediction.
There is better algorithm in data analytics like Expectation-Maximisation (EM) al-
gorithm which can deliver much better results due to its ecliptic clustering characteristic,
but we could not employ the Expectation-Maximisation (EM) algorithm due the time
consuming factors for the data preparations required for EM algorithm at present for this
research duration.

6 Conclusion and Future work

We have proposed a framework that uses the advantages of data mining techniques and
delivers an efficient and robust system which is suitable for cleaning the database of
malformed values in the attribute of a database tuples.

This solution framework is reliable and with more modifications can deliver very accurate

24

results.

The proposed framework can be enhanced with more features and functions to support
various database instances which are either on public cloud, hybrid cloud and private
cloud. With more features and functions the proposed framework can be extended to
various attributes with different data types like alphanumerical as well.

The core functioning of the system is presented as a web application which enables easy
access to the system over the internet. This feature and functional control of the functions
can be segregated into various libraries and APIs which can be called and used in a Java
program directly as third-party source libraries. We have collected the statistics of the
output showing the efficiency of the system in its functions.

In the future this framework can be extended to process non-structured data from the
database. Secondly the framework can expose external APIs which can be called in
any Java based application where database entries and updates are taking place from
multiple users and multiple external systems. This framework can function as a check
gate to detect anomalies in the data that is getting uploaded or added into the structured
relational database.

7 Acknowledgements

I would like to extend my sincerest thanks to my supervisor Mr. Manuel Tova-Izquierdo
for his support and continuous motivation during this research. His interest and guidance
in my research proposal boosted me up in striving for new innovative ideas until the final
stage of shaping up the solution. His timely advice and guidance have benefited me in
producing the thesis with all the questions answered in well-organized manner.

References

Arasu, A., Chaudhuri, S., Chen, Z., Ganjam, K., Kaushik, R. and Narasayya, V. (2011).
Towards a domain independent platform for data cleaning, Data Engineering Bulletin

Assadi, A., Milo, T. and Novgorodov, S. (2018). Cleaning data with constraints and
experts, Proceedings of the 21st International Workshop on the Web and Databases,
ACM, p. 1.

Bernstein, P., Brodie, M., Ceri, S., DeWitt, D., Franklin, M., Garcia-Molina, H., Gray,
J., Held, J., Hellerstein, J., Jagadish, H. et al. (1998). The asilomar report on database
research, ACM Sigmod record 27(4): 74-80.

Bertossi, L., Kolahi, S. and Lakshmanan, L. V. (2013). Data cleaning and query answering
with matching dependencies and matching functions, Theory of Computing Systems
52(3): 441-482.

Calikli, G. and Bener, A. (2013). An algorithmic approach to missing data problem in
modeling human aspects in software development, Proceedings of the 9th International
Conference on Predictive Models in Software Engineering, ACM, p. 10.

25

Chaudhuri, S., Ganjam, K., Ganti, V., Kapoor, R., Narasayya, V. and Vassilakis, T.
(2005). Data cleaning in microsoft sql server 2005, Proceedings of the 2005 ACM
SIGMOD international conference on Management of data, ACM, pp. 918-920.

Chu, X., Ilyas, I. F. and Papotti, P. (2013). Holistic data cleaning: Putting violations
into context, 2013 IEEE 29th International Conference on Data Engineering (ICDE),
[EEE, pp. 458-469.

Coady, Y., Hohlfeld, O., Kempf, J., McGeer, R. and Schmid, S. (2015). Distributed
cloud computing: Applications, status quo, and challenges, ACM SIGCOMM Com-
puter Communication Review 45(2): 38-43.

Cui, Y. and Widom, J. (2003). Lineage tracing for general data warehouse trans-
formations, The VLDB JournalThe International Journal on Very Large Data Bases
12(1): 41-58.

Geerts, F., Mecca, G., Papotti, P. and Santoro, D. (2013). The llunatic data-cleaning
framework, Proceedings of the VLDB Endowment 6(9): 625-636.

Hwang, K., Dongarra, J. and Fox, G. C. (2013). Distributed and cloud computing: from
parallel processing to the internet of things, Morgan Kaufmann.

Lang, W., Bertsch, F., DeWitt, D. J. and Ellis, N. (2015). Microsoft azure sql data-
base telemetry, Proceedings of the Sixth ACM Symposium on Cloud Computing, ACM,
pp- 189-194.

Makris, C. and Markovits, P. (2018). Evaluation of sensitive data hiding techniques
for transaction databases, Proceedings of the 10th Hellenic Conference on Artificial
Intelligence, ACM, p. 11.

Mandros, P., Boley, M. and Vreeken, J. (2017). Discovering reliable approximate func-
tional dependencies, Proceedings of the 23rd ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, ACM, pp. 355-363.

Moustafa, S., Elgazzar, K., Martin, P. and Elsayed, M. (2015). Slam: Sla monitoring
framework for federated cloud services, Utility and Cloud Computing (UCC), 2015
IEEE/ACM 8th International Conference on, IEEE, pp. 506-511.

Shin, J.-Y., Balakrishnan, M., Marian, T., Szefer, J. and Weatherspoon, H. (2016). To-
wards weakly consistent local storage systems, Proceedings of the Seventh ACM Sym-
posium on Cloud Computing, ACM, pp. 294-306.

Terry, D. B., Prabhakaran, V., Kotla, R., Balakrishnan, M., Aguilera, M. K. and Abu-
Libdeh, H. (2013). Consistency-based service level agreements for cloud storage, Pro-

ceedings of the Twenty-Fourth ACM Symposium on Operating Systems Principles,
ACM, pp. 309-324.

Toosi, A. N., Calheiros, R. N. and Buyya, R. (2014). Interconnected cloud computing
environments: Challenges, taxonomy, and survey, ACM Computing Surveys (CSUR)
47(1): 7.

Widom, J. (2004). Trio: A system for integrated management of data, accuracy, and
lineage, Technical report, Stanford InfoLab.

26

Xu, L., Pavlo, A., Sengupta, S. and Ganger, G. R. (2017). Online deduplication for
databases, Proceedings of the 2017 ACM International Conference on Management of
Data, ACM, pp. 1355-1368.

Zellag, K. and Kemme, B. (2012). How consistent is your cloud application?, Proceedings
of the Third ACM Symposium on Cloud Computing, ACM, p. 6.

Appendices

Appendix A
List of Software

The implemented using the open source tools and applications. Below are the following
proposed.

SOFTWARE Package version
Java Maven 2.5
Java Framework Spring 3.0.6
Apache Tomcat 8.0.3
AWS Java SDK 1.5.0
Java JDK 1.6
IDE Eclipse Mars
IDE Netbeans IDE 8.0
AWS MySQL 5.1.6
Test Junit 4.7
Javax Servlet API 2.5

Figure 15: Software List Used
1. AWS services: AWS is a major cloud service provider. The entire project will be

hosted on AWS cloud platform.

2. AWS Dynamo DB: The research requires multiple instances of the database in-
stances and data location which will be created using Dynamo DB.

3. R open source language: Artificial Intelligence language for data mining -The re-
search uses data mining technique called expectation-maximization (EM) which is
used for knowledge discovery.

4. Java MVC model to create the main program which is the web application. Web
application is developed in Java Spring MVC framework.

5. Java Weka API are used for the using the data analytic APIs.

6. Weka Tool is used for analysing the results and testing the data points for confirm-
ation of the test data quality.

27

Appendix B
Configuration Manual

The software components installation and configuration parameters are described for user

to follow the set-up instructions for the system and the data that is required to execute
the experiment.

Appendix B.A AWS Cloud Database connection set-up

The AWS cloud database is identified with the following steps for the extraction of the
data from the AWS cloud database.

AWS Data Pipeline Man: X | gl 53 Manag EMR-AWS Console X RDS - AWS Console X | W AWS DeveloperForums: X | +

<

C @ htips//consoleaws.am:

aws

Services v Resource Groups v % A samuel v Nvirgina © S

N m credit-info-original-table Close o0 = m e

Q Filter by table name Overview Items Metrics = Alarms = Capacity Indexes Global Tables ~ Backups Triggers Accesscontrol Tags

e =3 o # 0

dit-info-originak-at
L) CEDNEEEEE Scan: [Table] credit-info-original-table: ID A Viewing 1 to 98 items.

mytable

| [Table] credit-info-original-table: 1D

© Add filter
D@ - AGE ~ BILLAMT! - BILL AMT2 - BILL AMT3 - BILL AMT4 - BILL AMT5 - BILL_AMTé - EDUCATION
1 24 3913 3102 689 0 0 0 2

d. Pivacy Poiy Ters of Use

- fl © 92

Figure 16: AWS database Identification

We then go ahead to connect to the AWS cloud database with the following steps as
shown in the screen shot.

AWS Data ipelne Man- X | g 53 Management PP ckoawsconce x| Ros.AwsC

DynamoDB
TR oo ol® @
Dashboard

Tables QFilter by table name X Viewing 2 of 2 Tables
Backups
Name - status ~_Partition key - sortkey - Indexes~ Total read capacity -
Reserved capacity
creditinfo-original-table Active 1D (Number) 0 5
Preferences
mytable "Active id (Sting) 0 5
DAX
Dashboard
Clusters

Figure 17: AWS database Instance connection.

Then we create a AWS data pipeline for data transfer process as below.

28

<

AWS Data Pipeline Mar

c

& httpsy/consol
services +

mazon.com

Kesource Groups v

Data Pipeline ~

Create Pipeline

Create Pipeline

@ 3 Maragement Conscl. X | (@ DynamoDB: AWS Corst X

EMR- AWS Console X

@ You can create pipeiine using a template or build one using the Architect page.

Name

Description (optional)

source

Input 3 folder
Target DynamoDB table name
DynamoDB write throughput ratio

Region of the DynamoDB table

(Credit Card Dataset import from S3 Storage to DynamoDB
Loading Original Dataset in DynamoDB for Querying and
Extraction
@ Build using a template

Import DynamoDE backup data from S3

Import a definition
Build using Architect

is3://data-restoration-bucket/dataset/ | 2

RDS - AWS Console.

1 samuel v

credit-info-original-table

025

us-east-1

X | @ AWS DeveloperFoum: X |

Select a Kegion ~

Support v

il

Figure 18: AWS Data Pipeline set-up

After the data pipeline is created then we activate the data pipeline.

9 AWS Data Pipeline Mar

<€ c

RDS - AWS Console

x | @ AWS DeveloperForum: x | +

& https//console.aws.amazon.com

@ You can run your pipeline once or specify a schedule. More

Run @ on pipeline activation
on aschedule

Logging @ Enabled Copy execution logs to 3. More
Disabled

53 location for logs

3J/data-restoration-bucketiogs/ =
IAM roles Default
@ cusiom
Pipeline role DataPipelineDefautRole el
EC2 instance role |DataPpelineDefaultResourceRale v |C¥

Tags

@ Add up 10 10 tags to your pipeline. These tags will be applied to the pipeline as well as any resources created by the pipeline. A tag consists of a case-sensitive
Key-value pair. Leam more

Value (Optional)

[my-value] 'R

& htips

Figure 19:

Activate the AWS Pipeline for data transfer

WS 35 WEnagementionsoT X | g Lymamoun:AWSLONsT X EWR - Awa Lonsore X R AW Lonsoie X | mp Aw> veveoperroums: X |

‘console.aws.amazon.com,

rvices ~ samuel ~

Data Pipeline v

Resource Groups ~ Jal Select a Region ~

List Pipelines > Architect: Credit Card Dataset import from S3 Storage to DynamoDB (df-043739512F4AHS209ZXW) [Pending]

Activate Export View/Edit tags
_ »
@ Activities
3 * DataNodes
¥ Schedules

Configuration

Default ~ Resources
Core \nslam:% 3 xiarge
390
Ami Version:
§3DataNode EmrCluster MasterInstance | s yiarge
S3inputDataNode EmrClusterForl oad s ——
#{myDDBRegion}
Region
Terminate After, weekis) T3
o Add an optional field... M
EmrActivity
TableLoadActivity

Errors/Warnings

@ Feedback

¥ Preconditions
¥ Others
¥ Parameters

Privacy Policy

Figure 20: AWS Pipeline for data transfer Running state

29

Support ~

Terms of

TR # 3 Menagement Conso X | @ DynamoDB. AWS Cons: X EMR - AWS Console X RDS - AWS Console X | W AWS Developer Forums X | +

& C & https//console.aws.amazon.com/datapipeline
Services Resource Groups ~ L samuel ~ Selecta Region ~ Support v
Data Pipeline v List Pipelines DataPipeline Help
Create new pipeline Actions v
Filter: | Al ~ [Filter 3 pipelines (all loaded) (&
Pipeline ID Name Schedule State 4 Health Status Creation Time
wTe)
P Credit Card Dataset import from S3 SCHEDULED o PO
P d-09157832R7OKITTESS16 Storags 0 DynamoDB Runs every 100 years O No completed executions 2018-12-13 11:35:14
FINISHED N
-04946521NEREVWPTWUILL a A 2018-12-
P d1-04046521NEREVWRPTWULX Export dat Runs every 100 years @ HEALTHY 2018-12-13 08:10:10
» O10528427BIHZGTMIMNRS Import From S3 to DynamoD& FINISHED @ HeALTHY 2018-12-13 09:42:31

Runs every 100 years

Figure 21: AWS Pipeline Running state

AWS Data Pipeline Man X | lig 53 Management Consal- x | (@ DynamoDs - awsconse X [Vt RDS - AWS Console X | 4@ AWS Developer Forums X | +

& htips://console.aws.amazon.com/elasticmapreduce/home?region=us-east-

Services v Resource Groups v [\ samuel ~ N.Virginia v Support v
@ You can use the AWS Glue Data Catalog as your external Hive metastore for Apache Spark [, Apache Hive [, and Presto [/} werkloads on Amazen EMR release 5.10.0 and later. To get =
» started, simply select the AWS Glue Data Catalog for table metadata when creating your cluster.
Filter: [All clusters v | [Filter clusiers 8 clusters (all loaded) C'
Name D Status Creation time (UTC+5:30) + Elapsed time Normalized
instance hours
df-
- O 09157832R7T0KITTEIS16_@EMrClust [-3HOU2BYL2YW2F Starting 2018-12-13 17:05 (UTC+5:30) 5 minutes 0
erForLoad_2018-12-13T11:35:38
Summary Steps Add step Bootstrap actions
Master public Name Status Start time (UTC#5:30) , Elapsed time Name
DNS: —
Termination Install TaskRunner Pending 0seconds bootsirap-action ae01814d-524b-
protection: Off Change 4353-8300-548728040458
Tags: my-key = my-value View All / Edit Install Pig Pending 0 seconds
aas: ey = myvele e AL bootsirap-action.ce853dsd-04ea-
Hardware Install Hive Pending 0 seconds 4937023306068 11c59
Master: Provisioning 1 m3.xlarge
sioning 1 m3.xlarge
View cluster details View monitoring details
ar Terminated
» 0528427B9H2GTMJIMNRS_@EmrClust |-1Z57XTXUOBVSP User requast 2018-12-13 15:12 (UTC+5:30) 14 minutes 16
erForLoad 2018-12-13T09:42:55 -
df- -

Torminatad

@ Feedback (@ English (US) s affiliates. Al rig ed. Privacy Policy Terms of Use

]

Figure 22: AWS Pipeline Running state

Appendix B.B Web Application Set-up

We configure the web application code for the data extraction. Hence this web application
for data extraction and listing records of the table and also for data pull and push through
GUI. we deploy the .war file through Tomcat Manager which will be running on localhost.
After this Tomcat server is started the we start the AWS beanstalk service for the web
application to talk to the AWS database. The Apache can be installed with the following

steps.
1. After downloading the installation file, double-click to run installer.
2. Then follow instructions to install.
3. When prompted for the input of ”Server Information”, enter "localhost”.
4. Allow the installer to install to the default folder.

5. Finally click the ”Install” button to set up Apache. Then click the ”Finish” button.

30

18 /manager X[|| Completion Page < ORGANIC/NC X | € (1) WhatsApp. X | [TeamViewer Windows Downloac X | = = m——

«>Cc 0 RF_NONCE=3C072EB52CIADBE24S536DF307D826DA * e °

S8me. " Apache M A

Software Foundation
http://www.apache.org/

Tomcat Web Application Manager

[Fesseze: &]

List Applications HTML Manager Help Manager Help Server Status|

Path Version Display Name Running [Sessions Commands

Start | Stop | | Reload | | Undeploy

Expire sessions | with d > 30 minutes
Start | Stop || Reload | | Undeploy

! Nore specified Welcome to Tomeat true [

examples None speified Serviet and JSP Examples true (]
[Expire sessions |wihide =[50 Jminutes
Start | Stop | [Reload | | Undeploy
host-manager None specified Tomeat Host Manager Application true) -
[Expire sessions Jwith ide =[50 |minutes
Start_Stop_Reload_Undeploy
imanager None specified Tomcat Manager Application true 3

Expire sessons |wih ide 30 ____|minues

Figure 23: Tomcat Apache Configuration

B T Ll = = —

€ 3 Q@ lcalhstEalmanagenttmliupioad fong apsche catalin filte W E=66DAITE26CEM0FIALET EFECESCEAFIDD o

88" Apache

Software Foundation

http:ffwww._ apache.org/

Tomcat Web Application Manager

|messege: | |
List Applicalicns HTML Manages Hel Managsr Help Server Slats
Fath Varsion Display Mami Running | Se3sions Commands
Stan | Swp || Reioad | | Undsgioy
{ P peciied \Plalenma fo Tomest e 1
Expirs saseians | with dk = 30 minuks
Start | Stop || Reiond | | Undestor 1
Mot specifiedt e] —————
Expies sansians. [with i = 30 L |
Stan | Swp || Aaioad | | Undogloy
Imepnplar. fioe apecihed Seeviet med 5P Examples. e] —
Expis sassions |wih itk = 30 | mins
Stant Fsiuad | | Und
ihgstmanage: Noe apeciied Tomeal Host Manager Apslicatizn e [] = e
s assions |wih il = 30 s
B e romeata e Start Stop Reload Undepley
roanigar aa 5p6c Temeal Managar Appkeaton Lo 3 e 7 it

Figure 24: Our Web application Deployed on Tomcat

Appendix B.C Test Data Set-up

For our use case to find the customers of the credit card bank, who have incorrect credit
limit, i.e. the limit balance for credit assigned to them the transaction table of the
cloud database is the target table of the database. The data extraction is done with the
following steps.

1. The code to parse CSV to JSON and JSON to CSV format is done so that the data
is understood by DynamoDB since DynamoDB generates JSON in below format as
shown in Figure 25.

2. Click on the “Generate Test Data” Button to run the program which will parse the
input dataset into specific arff format which is required later for the data learning
of the Kmeans algorithm.

3. Observe a file with dot arff extension is generated in the project folder local dir-
ectory. As shown in figure 26. The same data is also present in the local MySQL
database instance , as shown in figure 28.

31

Fie Ean Souwce Reactor Novgte Semch Proect R Virdow Fil
D% E e S R PR @ @ O R G IO O A ORI [v G
loucccces | g3 |

® Node &l

[P 7 = O [ConvenTeTos30NFomat e 57 =
e%le v | ¢ A
N o public class ComersTextTosmIsONFormat
o 5 AvsDynamodeerej o ¢
+ {2 eschoai 1 public static void main(String arg=(]) throws ToException {
L Eam =
s @ T = bReader = new ot Filecs ! - card_client so0r.c5v")));
S cole =
> § Colegdiemn s Filauriter firiter = new Fi Filecs 5 - card_client_soor—json.txt));
» (3 sikaha o String Coluan.header=-10, LINET BAL, SExX,EOUCATION,MARRTAGE AGE PAY_0,PAY. 2, PAY. 3, PAY_4,FAY 5,FAY 5, STLL AT BILL AUT3,BTLL_ANTS,BILL ATS,BTLL_AMTS,STLL,
2 wetates = Stringl] coluantanes = colum_header. SPLLE(") ")
ppey: s Sering Tineer;
+ @ weareg | o
e “hile((Line = bReader.readuine()) 1= mall) {
o[Comert | 22 |
») CsvTor |12 String[] cells = Line.split(",");
o e |22 it total. clenents = cetls. Lengih;
» mh R sysemtion 025 Stringauilder rovenew Stringoutlder();
e Torcine 1m0y ictorl elenente; i) {
5
4 onappend(*scolumnlanes(1+7 5 n" s rcells i1],
s o

< >
i = & Console 33
o0 13,2010 525700
50"), LIT_BAL ' 11, eoucariow” 2, ac ET
e S n' 1%, Ebucarion 2 ! 23,
) LT o 213 Eovcarion 33, hce 1 {on
3 oo 213 Eovcarion 1 oaee
i 313 Eovcarion 1) hce
] LT oaL 21 eoucation: 2 e
] LT oaL - Evbcation 3
L T oa FURt 2 e
oy], Eobeation 2 e
[Wit |smamen | 22012

Figure 25: The datasets

=] a | =] i[=} | B credit _card._cient_100rison ot | B new 3 | fa7d1820-obo-deac 9001 73212434924 1) (5 Query_deta_mysalaft [

Ezelacion Query_data mysal ~

Gaccribute c_id numeric
Gatcribute limic_bal numeric
Gattribute sex numeric
Gattribute education numeric
Gattribute marriage numeric
Gaccribute age numeric

10

caata.
7,500000,1,1,2,29

20 7,500000,1,1,2,28
21 32,50000,1,2,2,33
22
25 56,500000,2,1,1,45
24 43,140000,2,2,1,37
2
26 39,50000,1,1,2,25
27 69,130000,2,3,2,28
22 8,100000,2,2,2,23
30 82,360000,2,1,2,26
51 62,70000,1,2,1,39

S5 seia80000,2,2,1,54 o
Nomaltot e ength 2138 s 11 1 cort 50 i el s
Figure 26: The training datasets
& [Projects X | Services | Files = || vt x|3] |8 x| x| M=
H & vew | [[ooy (R E-B-[QBHEEIPE DGO B[
-3) datasetupload ip L i
2) dymamods-data oo a1 i
® B eati 42,
B home.ssp 43, private void setup() throws Exception {
) loans5p ae creds = new ce:
) ognssp eas, Constraints.SECRETKEY) :
) nens 245 dynanoD = new AmazenBynameBSSisens(creds);
(@) showdynamoDB-tabledc || 847 amoDB. "nttp://dynamodb.us-east-1 - -
) sho ez 3
& 43
B suveyreoortsp 50 private Connection mySQLSetup() throws Exception {
B suveyso st
H] o2 [
o sss Class. fortiane (Conseratnes.aysal_driver)
ese String dbame - Conotrains.aySEios:
ess String userllane = Constrainte.nySQL, Ussznane;
ese
o y
9 String port| = Constraints.myeql Forc
ess Sering sdbcUri = "sdbernyedis//" + hostname + "t + BOEE + + usemme
w60 Conneation con = Driverkanager-gesConneotion (1dbcUrl)
a1 et cons
e)
ces caten (Classtoroundexsepeion o) {
oy Systen. ore.printin ()
ces)
o a—
cer -
e o
SuveResortitersisbe v]| Werreviss Brec [ad o® &
< o 5 || & Homeconvoler 5 &) mysaisetn 3 twy H port 5 x|
& @ Notfications @) e

Figure 27: The training datasets

32

	INTRODUCTION
	Literature Review
	Matching Dependencies methodology for correcting corrupt dataset
	Cell Group methodology for dataset recovery
	Database integrity thru Fuzzy Logic technique

	Methodology
	Design and Data
	Design
	Data
	Assumptions

	Implementation
	Web application and Dashboard
	Detection of error tuples from the target cloud database
	The library for Records
	Pseudo-code for LoR

	The correction of error values for the attributes under investigation
	Correction Pseudo-code

	Sequence Diagram
	Data Flow Diagram
	Object Diagram
	Configurations and Execution

	Evaluation
	Accuracy in Prediction

	Conclusion and Future work
	Acknowledgements
	Appendices
	List of Software
	Configuration Manual
	AWS Cloud Database connection set-up
	Web Application Set-up
	Test Data Set-up

