
Improving Kubernetes Container Scheduling
using Ant Colony Optimization

MSc Research Project

Cloud Computing

Shashwat Shekhar
Student ID: x17101506

School of Computing

National College of Ireland

Supervisor: Divyaa Manimaran Elango

www.ncirl.ie

National College of Ireland
Project Submission Sheet

School of Computing

Student Name: Shashwat Shekhar

Student ID: x17101506

Programme: Cloud Computing

Year: 2018

Module: MSc Research Project

Supervisor: Divyaa Manimaran Elango

Submission Due Date: 20/12/2018

Project Title: Improving Kubernetes Container Scheduling using Ant Colony
Optimization

Word Count: 6000

Page Count: 31

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature:

Date: 28th January 2019

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). �
Attach a Moodle submission receipt of the online project submission, to
each project (including multiple copies).

�

You must ensure that you retain a HARD COPY of the project, both for
your own reference and in case a project is lost or mislaid. It is not sufficient to keep
a copy on computer.

�

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

Improving Kubernetes Container Scheduling using
Ant Colony Optimization

Shashwat Shekhar
x17101506

28th January 2019

Abstract

In this paper we are looking at container scheduling algorithms which could
be useful in improving the container and task scheduling for the popular container
orchestration tools like Kubernetes. Container Orchestration is increasingly used at
enterprise scale for automation in deployment and management of large container
clusters. Orchestration typically includes activities like provisioning,communication
between containers, instantiation and reconfiguration. Hence, container scheduling
is an important aspect of orchestration. It has a direct impact on the application
performance and an improved scheduling mechanism can enhance the application
performance. We have chosen Kubernetes as the orchestration tool as it is one
of the most popular orchestration tools and there have very limited studies in the
field of container scheduling especially related to container scheduling. In this
paper we have tried to use Ant colony Optimization, one of the popular meta-
heuristic scheduling algorithms for container and task scheduling, measuring its
impact on performance. The results of our experiments are highly encouraging and
Ant Colony Optimization has shown an average improvement of 20 percent over
traditional scheduling algorithms.

Contents

1 Introduction 2
1.1 Inspiration . 3
1.2 Research Objective . 3
1.3 Target Audiences . 3
1.4 Structure and Outline . 4

2 Background And Related Work 4
2.1 Ant Colony Optimization Explained . 4

2.1.1 History . 5
2.1.2 Applications of Ant Colony Optimization 5
2.1.3 Recent Advancements . 6

2.2 Kubernetes And Its Need . 7
2.2.1 History . 7
2.2.2 Containers Explained . 7

1

2.2.3 Need for Kubernetes . 8
2.3 Literature Review . 8

2.3.1 Container Scheduling . 9
2.3.2 Comparing scheduling of Docker Swarm, Kubernetes and Apache

Mesos . 9
2.3.3 Ant Colony Optimization and Scheduling Problems 10

3 Methodology 12
3.1 Kubernetes on Google Cloud Platform (GCP) 12
3.2 Cloud Sim Ant Colony Container Scheduling Process 13

4 Design Specification 14

5 Implementation 15
5.1 Implementation on Google Cloud Platform (GCP) 15
5.2 Implementation on Cloud Sim . 16

5.2.1 Class Diagram . 16
5.2.2 Initialization of Ant Colony Optimization 17

6 Evaluation 18
6.1 Experiment / Scalability test . 19
6.2 Experiment / Single Node Experiment 19
6.3 Experiment / Three Node Experiment 20
6.4 Discussion . 21

7 Conclusion and Future Work 22

8 Appendix - Configuration Manual 24
8.1 Setting up Google Cloud Platform . 24
8.2 Setting up Cloud Sim . 26
8.3 Code And Output . 28
8.4 Miscellaneous Tools . 30

1 Introduction

The term ”cloud” has been associated with computing since the computing infrastruc-
ture and applications became elastic, scalable, location independent and delivery of these
services were on demand as per consumers need. The key enabling technology for cloud
computing was virtualisation. Virtualisation enabled the infrastructure and applications
resources to be used my multiple consumers at once enabling scalability, elasticity and
on demand delivery. Virtualisation of hardware infrastructure up till now was mostly
done by Virtual machines. However,the onset of containers has revolutionized the Infra-
structure virtualisation. Containers are usually known as light weight virtual machines.
Containers these days are widely adopted and are being used at enterprise scale for de-
ployment of applications.

This Section presents the motivations for studying Containers and its orchestration,
it briefly explains the goal of this thesis, the limitations, and targeted audiences. The
last section will gives you an overview of this thesis structure

2

1.1 Inspiration

In a very short span containers have completely revolutionized the way applications are
build,deployed and maintained. With the omnipresence of Docker the quite a few corpor-
ations are using Docker containers to deploy applications on container platforms. These
container platforms help package applications so that a specific set of resources are easily
accessed by these containers hosted either on a virtual or a physical hardware. The micro
services architecture which break up the application further are best suited for contain-
ers. Now, Scalability and management are an operational challenge for containers. The
management of enterprise wide deployment of thousands of containers having multiple
services becomes a big problem. Hence, the container orchestration tools like Docker
Swarm, Kubernetes and Apache Mesos Marathon are being used increasingly to manage
the containers.

Container Orchestration is mainly managing the life cycle of containers in large dy-
namic environments. container orchestration tools like Kubernetes and Docker Swarm
help in deployment and maintenance of large number of containers which in combination
form an application. Kubernetes is an open source orchestration tool that has been de-
veloped by Google and is being used comprehensively for managing and maintenance of
docker clusters. Hence, this way of deploying containers which could be easily managed
by a single source was of great interest and we wanted to know that how this open source
tool schedules and scales containers while its deployment.

1.2 Research Objective

Since Kubernetes is a widely used container orchestration tool we will be looking at the
scheduling of this orchestration tool. Scheduling of containers is very important aspect
of these orchestration tool as it determines that how effectively and efficiently the con-
tainers are scheduled on the machines which could have a huge impact on the application
performance and the overall performance of the system. Container scheduling becomes
more important in cases where the resource distribution is non uniform in the cluster.
Some similar experiments done by (Kaewkasi and Chuenmuneewong; 2017) over Docker
Swarm which is an in house docker container orchestration tool has shown promising
results upon changing the scheduling for docker swarm. Hence its brings to our research
question -

Can container scheduling throughput of Kubernetes be improved via meta
heuristic algorithm like Ant Colony Optimization?

1.3 Target Audiences

This work is mainly targeted towards computer science students and cloud enthusiasts
who have keen interest in cloud technologies specially related to containers and its or-
chestration. It may also interest the Kubernetes orchestration tool administrators and
the people working on devops.

3

1.4 Structure and Outline

The rest of the thesis has been organized into five section which are described as below.

Section 2 of this paper describes the related work on this topic. It explains briefly
Ant colony Optimization and Kubernetes. Section 2.2 Describes Kubernetes and its need
in todays world. Section 2.3 is the literature review of other related work done on cloud,
containers and Virtual machines using ant colony optimization. Section 2.4 compares
Ant Colony optimization with other scheduling meta-heuristic algorithms and how it is
best suited in this scenario. The last section in this compared Ant Colony optimization
with existing scheduling mechanism used by Kubernetes.

Section 3 of this paper details about the setup and the lab environment used for ac-
complishing this work.

Section 4 of this paper provide overview on the implementation of this work and its
intricate details.

Section 5 of this paper gives some results of the experiments that were carried out for
this research work.

Section 6 is the final section which provides the conclusion and future work related
to this research project.

2 Background And Related Work

In this section of report we will taking a background look at ant colony optimization,
what it is and few examples that used ant colony optimization in its preliminary phase.
We will also looking at kubernetes and its need and briefly discuss on its architecture
and functioning. We will be reviewing the implementation of Ant colony optimization
usage in cloud computing and how other researches have used Ant Colony Optimization
in their research work. This will be followed by comparison of Ant colony optimization
with other scheduling algorithms and finally with kubernetes scheduling mechanism.

2.1 Ant Colony Optimization Explained

As per (Dorigo and Sttzle; 2010) Ant colony optimization follows a meta-heuristic ap-
proach to solve hard optimization problems which are combinatorial in nature. The
inspiration of this algorithm came from ant behavior in finding their food. The ants leave
a pheromone trail which are used a communication medium for the following ants which
pick up these trails to find the path to food followed by previous ants.

In ACO, a number of artificial ants build solutions to an optimization problem and
exchange information on their quality via a communication scheme that is reminiscent of
the one adopted by real ants(Dorigo and Sttzle; 2010).

4

2.1.1 History

The behavior of Ants leaving a trail of chemicals called pheromones was noticed by a
French entomologist named Pierre-Paul Grasse. He observed that these trails or secre-
tions by ants can act as a significant stimuli for the ants producing them as well as the
ants that follow them. He coined the term stigmergy for this type of communication.
There are a few main differentiators of stigmergy which help in identifying it from other
form of communication. It is essentially an indirect form of communication done by
modifying the environmental conditions around them. Secondly, its local in nature and
can be accessed by only a type of insects or species that are nearby (Dorigo and Birattari;
2011).

The early examples of this algorithm is Ant Systems (Dorigo et al.; 1996) which was
proposed and applied on the Travel Salesman Problem (Applegate et al.; 2006) with
encouraging initial results, However the Ant System was not able to compete with other
state of art algorithms related to Travel Salesman Problem.

However, it did lay foundation for further research on Ant colony Optimization and
quite a few research work was carried out on this which resulted in better computational
performance.As of now, a considerable application of Ant Colony Optimization exist
where performance obtained is nothing short of word class(Dorigo and Sttzle; 2010).

Below is the list of Successful Ant Colony Optimization Implementations

Table 1: Successful Implementation of ACO

Algorithm Authors Year References

Ant Systems Dorigo ET AL 1991 (Dorigo et al.; 1996)

Elitist AS Dorigo ET AL 1992 (Dorigo et al.; 1996)

ANT -Q GAMBARDELLA & DORIGO 1995 (Gambardella and Dorigo; 1995)

Ant Colony System GAMBARDELLA & DORIGO 1996 (Gambardella and Dorigo; 1996)

Max-Min AS STUTZLE & HOOS 1996 (Stützle and Hoos; 1996)

Rank-Based AS BULLNHEIMER ET AL. 1997 (Bullnheimer et al.; 1997)

ANTS MANIEZZO 1999 (Maniezzo; 1999)

BWAS CORDON ET AL. 2000 (Cordon et al.; 2000)

Hyper-Cube AS BLUM ET AL. 2001 (Blum et al.; 2001)

2.1.2 Applications of Ant Colony Optimization

The advancements in Ant Colony Optimization has lead to a tremendous increase in in-
terest for this algorithm by the scientific community. There has been variety of successful
applications of Ant Colony optimization and some of the popular ones are discussed in
the below sections.

5

Telecommunication Networks
Ant colony Optimization algorithms have been found effective in network routing prob-
lems and hence are used in telecommunications where there are large number of nodes
and their availability overtime could be an issue . The initial applications of Ant Colony
optimization for routing in circuit switched networks and packet switched networks were
first studied by Schoonderwoerd et al. and Di Caro and Dorigo respectively. After the
successful proof of concept performed by these gentlemen telecommunication routing al-
gorithms were inspired by Ant Colony Optimization algorithm so much so that they were
considered state of art for wired networks(Dorigo and Birattari; 2011). AntNet introduce
by Di Caro and Dorigo is an algorithm which is well known as has outperformed other
algorithms in routing applications. It has be tried and tested and the results have shown
this to be highly adaptive and robust algorithm(Dorigo and Birattari; 2011).

Industrial Problems
The successful implementation of ACO in academic problems has prompted many of
the leading organization to look at Ant Colony Optimization in solving the real world
problems. Some of the major organizations which have used Ant Colony optimization
to solve their problems are EuroBios which is using this for capacity constraints, main-
tenance calendars and resource compatibilities.Another major organization AntOptima
(www.antoptima.com) uses this algorithm for optimization of vehicle routing. Some suc-
cessful industrial products based on this algorithm is DYVOIL which is mainly used in
management and optimization of fleet of trucks used for heating oil distribution. AN-
TROUTE another product based on this algorithm is used for routing of vehicles quite
a few major corporations(Dorigo and Birattari; 2011). Gravel, Price and Gagne in their
work explained in (Gravel et al.; 2002) have applied this algorithm in an aluminum cast-
ing center. Another real world industrial application was implemented by Bautista and
Pereira to solve assembly line balancing problem explained in their work (Bautista and
Pereira; 2002).

Dynamic Optimization Problems
The basic characteristic of dynamic problem is that the search criteria changes with
the time duration. This may lead to continuous changes in search conditions problem
definition and ultimately the quality of solutions. In these scenarios it is imperative that
the algorithm used to solve this should be able to adjust to the continuous changes in
the problem state(Dorigo and Birattari; 2011). Some of the pragmatic implementations
of this algorithms in dynamic problem is in the telecommunications sector where the
routing has to highly dynamic to efficient. Ant Colony system a variant of Ant Colony
optimization is also used in vehicle routing solutions as these solutions are extremely
random in nature (Montemanni et al.; 2005).

2.1.3 Recent Advancements

As per Dorigo and Birattari the research work on Ant Colony optimization will be much
more focused on optimization problems which are stochastic, dynamic and will have
multiple objectives. The recent trends in Ant Colony Optimization can be classified into
three categories which are mentioned below -

• Applying ACO to non-standard problems.

6

• Development of hybridized Ant Colony Optimization.

• Parallel implementations of Ant Colony Optimization algorithms.

Application of Ant Colony Optimization to non-standard problems include Multi-objective
Optimization in which evaluation of solutions are done on multiple and often conflicting
objectives. The other examples of non-standard problems are Dynamic NP-Hard Prob-
lems, Stochastic Optimization and Continuous optimization. Examples of applications of
ACO to NP Hard problem are in the area of network routing and vehicle routing solutions.
Stochastic problems are characterized uncertainty in data due to noise, approximation
and other external factors (Dorigo and Sttzle; 2010).

Researches initially focused on developing variants of ACO by modifying the pher-
omone variables that was intended on improving the algorithmic performance.Later the
researched moved on exploring ACO with combinations of other algorithmic techniques.
Some of the noteworthy developments include Hybridization of ACO with other meta-
heuristics,Hybridizing ACO with branch-and-bound techniques and Combining ACO with
constraint programming techniques(Dorigo and Sttzle; 2010).

The basic nature of ACO is what leads to parallelism in this algorithm. As perDorigo
and Sttzle parallelization strategies can be classified into fine-grained and coarse-grained
strategies.Parallel version of Ant Systems have been used for Travel Salesman Problem
are categorized as fine-grained parallelism scheme. Quite a few eminent researchers like
Bullnheimer et al. and Manfrin et al. have recommended that coarse grained parallelism
is extremely promising for Ant colony Optimization.

2.2 Kubernetes And Its Need

In this section will be introducing you to Kubernetes its origin, need and its industry
usage.

2.2.1 History

Kubernetes was developed by Google, it has been well known that Google had been
using containers much before its commercialization by Docker and Google has to create
mechanism for orchestration and scheduling to handle system properties like isolation,
load balancing and placement. Google had an in-house solution named Borg cluster
management system which it has elaborated by Burns et al. in his work.When Docker
had its initial release in March 2013, Google packaged and published its most useful pieces
of Borg Cluster Management System using open source following which Kubernetes was
born(Rensin; 2015).

2.2.2 Containers Explained

Containers are form of Lightweight visualization at the operating system level. Unlike the
virtual machines which share the underlying hardware containers share the host operating
system kernels. Studies conducted by researchers such as (Felter et al.; 2015), suggest
that containers have better performance when compared to virtual machines.

Figure 1 shows the fundamental architectural difference between containers and Vir-
tual machines.

7

Figure 1: Virtual Machine And Container

Containers are isolated with each other with the help container engine or container
management system which sits over the top host operating system. docker is a classic
example of a container engine.

2.2.3 Need for Kubernetes

Containers being lightweight are very flexible in nature.However, this very property leads
them to be fragile and short lived. Hence, to handle the such fragile and lightweight
components we need a robust system that can handle system failures.Kubernetes brings
this robustness to the container cluster by keeping an eye on the individual nodes of the
cluster and replacing them with a healthy node even on hint of failure, it also helps to
scale up the clusters as per the need. This helps in maintaining the system in healthy
states and its Key performance Indexes such as Availability and Performance(Rensin;
2015).Below image shows a basic layout for Kubernetes Figure 2 -

Figure 2: Basic Layout for Kubernetes

2.3 Literature Review

In this section we will taking a look at container scheduling and all the related work done
on container scheduling. We will be also having a look at the meta heuristic algorithm
Ant colony Optimization and its prominent uses in the scheduling problems.

We will be first having a look at the phenomenon of container scheduling.

8

2.3.1 Container Scheduling

Container orchestration systems have recently emerged as the way to manage the con-
tainer clusters. Container orchestration tools are nothing but a cluster management
system for clusters which enables the administrators to have a birds eye view of their
container cluster and enables rapid deployment of the application in cluster. It helps ad-
ministrators to manage the whole cluster from a single interface and speeds up activities
deployment activities. There are quite a few tools in market for container orchestration,
some of the leading tools for container orchestration are Docker Swarm. Google Kuber-
netes and Apache Mesos. Docker Swarm is the propriety toll for Docker used in scheduling
dockers container farm. Google Kubernetes and Apache Mesos are open source and also
widely used.

Scheduling algorithms used in these orchestration tools can have different purposes.
Scheduling algorithms can be targeted at improving the resource utilization of the cluster
and some other algorithms can be used to improve or maximize the application per-
formance by scheduling the requests on the desired containers or virtual machines. The
main architectures used by schedulers are explained in the paper published by -Google
(Schwarzkopf et al.; 2013). This paper presented three main scheduler architectures for
cluster schedulers to achieve their multiple goals like efficient usage of cluster, schedul-
ing and management of cluster pods with user provided constraints and scheduling the
requests as well as resources with degree of fairness being the prime goals. The three
different architectures are Monolithic scheduling, Two level scheduling and Shared State
Scheduling. A schematic overview of these scheduling algorithm are show in the Figure 3

Figure 3: Scheduling Architectures prosed by Google in (Schwarzkopf et al.; 2013)

2.3.2 Comparing scheduling of Docker Swarm, Kubernetes and Apache Mesos

Grillet has compared the container scheduling strategies of the most container orchestra-
tion tools like Docker Swarm, Kubernetes and Apache Mesos. However, the author has
done more of a qualitative comparison rather than a quantitative comparison. All these
container orchestration tools have options to customize the scheduler logic. As per the
author Docker Swarm is an extremely simple orchestration tool and its API can work
in a similar fashion as it works on cluster and an individual machine. To perform his
qualitative analysis on these orchestration tool author has used a few applications to test
them. Firstly, he has used the sample project used in Docker tutorial for beginners which
is nothing but a Food truck application and a voting application which was deployed
on Amazon Web Services. The application were made to run inside containers which
were placed different virtual machines and are scalable in nature. His experiments led to

9

conclusion that docker swarm has a simple and comprehensive scheduler which provides
filters and strategies, however as per the author it lacks certain features to detect node
failures. However, Since Docker Swarm being the in house orchestration tool it fully
compliant with Docker APIs which is a huge advantage. As per the author the concept
user by Kubernetes is pods which is completely different from Docker and Apache Mesos.

Generic Comparison of Docker Swarm and Kubernetes
Docker Swarm and Kubernetes are the most popular container orchestration tools and
hence we do a generic comparison of the capabilities of these two tools in the below table
-

Table 2: Kubernetes vs Docker Swarm

Features Kubernetes Docker Swarm

Scalability Highly Scalable service that can
scale with the requirements.

Very high scalability, up to 5 times
more scalable than Kubernetes

Load Balancing Manual load balancing often re-
quired

Capability to perform automatic
between containers in same cluster

Rollbacks Automatic rollback with ability to
deploy rolling updates

Automatic rollback only available
in Docker 17.04 and higher

Optimization Target Optimized for one single large
cluster

Optimized for multiple smaller
clusters

Networking Overlay network is used in commu-
nication across multiple pods

Docker Daemons is connected by
overlay network and the overlay
network driver is used

Ava liability High availability and health checks
performed directly on pods

High availabilty, containers are re-
started on a new host if a host fail-
ure is encountered

2.3.3 Ant Colony Optimization and Scheduling Problems

There are quite a few work done on Ant colony to be used to solve scheduling problems.
However, many of these are used for solving scheduling problems of virtual machines and
task scheduling in cloud. We will taking a look at scheduling problems and how Ant
colony has been used to solve this and provide a better solution.

The author Zhang et al. in his paper proposed an ant Colony optimization technique
for optimizing Job Shop Scheduling Problem commonly known as JSP. The application
of Ant colony optimization to Job Shop scheduling Problem showed positive results and
the author concluded that this meta heuristic algorithm was an effective way to solve the
scheduling problem related to Job Shop Scheduling.

The author Goyal and Singh implemented Ant colony Optimization in an adaptive
load balancing algorithm for grid computing environment. In this experiment the Ant
colony optimization was compared with other algorithms using the Grid Sim simula-
tion tool. With this experiment they proved that using Ant colony optimization for

10

solving load balancing resulted in better resource utilization when compared with other
algorithms and the standard deviation between them was found to be between 0.71-0.77.
The work done by these authors focused on resource utilization and was performed using
simulation.The experiments proposed by us focus on the Application performance and
response time taken by tasks scheduled on containers. Also, the author has used virtual
machines in his experiment.

In other experiment performed by the author Tawfeek et al. implemented Ant colony
based task scheduling algorithm. This algorithm was then compared with FCFS which
is First-Come-First-Serve and round Robin algorithm. This simulation was carried on
cloud Sim and the results of Ant Colony Optimization was better compared to the other
algorithms in the aspects such as degree of imbalance in cluster and the average response
time of tasks on cluster. Their work was focused on improving the cluster resource utiliz-
ation by improving resource imbalance and reducing make-span. This is in contrast to the
experiments proposed by us which focuses on better distribution of tasks on containers
by scheduling them on a the cluster. The distribution of tasks will be heuristic in nature
and should help in improving the overall application performance.

In paper Gao et al. author developed a multi objective algorithm based on Ant colony
for the efficient placement of Virtual Machines in the cluster. Their work was focused on
solving the placement problem related to Virtual Machine in the cluster and the solution
proposed by them reduced the time frame of Virtual machine placement to a few minutes
in the cluster with having a large set of virtual machine. This helped in improving the
overall Virtual Machine allocation time improving the scalability of cluster.

The experiments done by Kaewkasi and Chuenmuneewong uses a variant of Ant colony
Optimization called ant systems for scheduling of containers on a cluster for improved
utilization. The author carried out experiments on docker Swam and is successful in
showing that Ant colony Optimization can improve the scheduling of containers on the
cluster and its proper placement. It concluded that using Ant Colony Optimization there
could be 15 improvement in container scheduling time when compared with the default
Docker Swarm scheduling algorithm. However, this experiment was carried on docker
Swarm and focused on container placement time, whereas our experiments are focused
on Kubenetes and scheduling of tasks on its cluster with a focus on over application
performance in the cluster.

Below table shows the summary of the related works done on scheduling using Ant
Colony Optimization -

11

Table 3: Summary of Related Work

Author and Year Related Work

(Zhang et al.; 2006) Implementation of an Ant Colony Optimization
technique for job shop scheduling problem

(Goyal and Singh; 2012) Adaptive and Dynamic Load Balancing in Grid Us-
ing Ant Colony Optimization

(Tawfeek et al.; 2013) Cloud task scheduling based on ant colony optimization

(Gao et al.; 2013) A multi-objective ant colony system algorithm for
virtual machine placement in
cloud computing

(Kaewkasi and Chuenmuneewong; 2017) Improvement of Container Scheduling for Docker
using Ant Colony Optimization

3 Methodology

In this of the parer we will taking a look at the methodology followed for our experiments.
The experiment is carried out in two parts. the first part consists of deployment of a
application on Kubernetes cluster and testing its response time. The focus here is to
check the response time for the application as its the single most important factor which
ultimately leads to user satisfaction. This paper aims at finding that if Ant Colony
Optimization is algorithm that is feasible to be used in container scheduling which we
have tried to prove using simulation in cloud Sim. Secondly, we are also measuring the
response time for a task completion once Ant colony Optimization is applied on container
scheduling.

3.1 Kubernetes on Google Cloud Platform (GCP)

Google has a internal Kubernetes Engine called Google Kubernetes Engine (GKE) which
it mainly uses for orchestration of Docker container or container clusters. Google Kuber-
netes Engine is mainly run on Google Compute Engine instances. The Kubernetes
clusters are run on these instances. The Google Kubernetes Engine consists of a master
node to manage th cluster, the interaction of cluster is done through API server which
performs tasks such as service of API requests and scheduling of containers. Apart from
these elements a kubernetes cluster also includes one or more nodes which may be run-
ning a Docker container and a kubelet agent to manage the cluster. Figure 4 shows the
overall architecture of Kubernetes.

The Kubernetes engine organizes containers into pods which is nothing but a logical
representation of a container group which are related to each other. Typically Kubernetes
engine is used for activities like creation and resize of containers, replication controllers,
up-gradation and updation of the cluster. Gcloud command line interface is used to
interact with Google Kubernetes EngineWhat is Google Kubernetes Engine (GKE)? -
Definition from WhatIs.com.

The processes followed to deploy the application in Google Kubernetes Engine is
showed in Figure 5. The application deployed is small application with Go Programming

12

Figure 4: Kubernetes Architecture (Netto et al.; 2017)

over the Docker Container. the image of that container was ten placed on Google Con-
tainer Registry and was download on the container cluster.The application is running a
Go Web server and is accessible externally using external IP address of the cluster.

Figure 5: Kubernetes Application Deployment Process

The above process has been followed for deploying the application on the kubernetes
cluster.

3.2 Cloud Sim Ant Colony Container Scheduling Process

Cloud Sim is a new generalized and extensible framework used fro simulating, modeling
and experimenting on the cloud computing infrastructure and services. This framework
was developed by Rajkumar Buyya and team to allow the researcher community to
simulate the cloud infrastructure entities and extend the framework as per their need.
His work is explained in the paper Buyya et al. in which he explains all the aspects of
Cloud Sim. There are quite a few features provided by cloud Sim, some of the popular
features are that it supports modeling and simulation of cloud Computing Infrastructure
which cloud be on a large scale, it also provides self contained platform for data center
modeling and testing of scheduling and allocation policies. Recently, Cloud Sim 4.0
was introduced which has features and extensions for simulations on containers. Below
Figure 6 that shows cloud Sim setup for our experiment. The process followed to create

13

Figure 6: Cloud Sim Environment Setup

the containers and run the tasks or the user requests in form of cloudlets is shown in the
below Figure 7.

Figure 7: Cloud Sim Container Creation Process

4 Design Specification

Figure 8 depicts the flow followed by using Ant Colony Optimization for scheduling the
containers in order to a improve the application performance. The start of Ant colony
Optimization takes place by initializing the ACO parameters followed by construction
the solution. Solution construction is followed by local Pheromones update. All the ants
visit all the nodes to find the optimal node for scheduling.

14

Figure 8: Flow Chart for Ant Colony Optimization

Below tables show the specifications of the Virtual machines on Cloud Sim as well as
Google Kubernetes Engine.

Table 4: Configuration Table

Number of Instances CPU Total Memory

Cloud SIM Data Center 3 1 Each 11.25 GB

Google Kubernetes Instances 3 1 Each 11 GB

5 Implementation

In this Section we will looking at the details of implementation of the project and its
details.

5.1 Implementation on Google Cloud Platform (GCP)

To test the application and its response in real time we have deployed a sample application
on the Kubernetes Engine on Google Cloud. Figure 9 shows the set of commands that
have been followed for a successful deployment of application Kubernetes cluster. The
application can be accessed using the URL http://35.228.39.205:80/ where port 80 is
listening port. The application is further scaled up to 3 nodes for testing the impact of
response time after scaling up the solution(Deploying a containerized web application |
Kubernetes Engine Tutorials; n.d.).

15

Figure 9: Commands to setup a Kubernetes Cluster

5.2 Implementation on Cloud Sim

In this section we will be taking a look at the actual implementation of the Ant colony
Optimization in Cloud Sim. We will looking at the classes and the initialization of ant
colony parameters that was used to run the simulation.

5.2.1 Class Diagram

The Figure 10 shows the class diagram for the solution that is implemented in cloud Sim
for Ant Colony Optimization. The major class to look out for is the Ant colony Optim-
ization.java class which has the code to run implement the Ant colony Optimization. It
has functions like initlizePheromone and getExecutionTime which helps to initialize the
pheromones and calculates the total execution time. The AWTChart.java class is used
to create the out results of in form of a chart. The AntColonyMain.java class has ll the
functions to create the datacenters, virtual machines and containers. It also invokes the
constructor of Ant Colony Optimization.java class.

16

Figure 10: Class Diagram

5.2.2 Initialization of Ant Colony Optimization

The below table shows the parameters that are used in ant Colony optimization. The
parameter m represents the number of ants that are required for the simulation pro-
cess.We have considered 30 ants as the starting point for this simulation. The parameter
alpha represents the importance of the pheromone trail and the initial value for this has
been taken as 2. The beta parameter represents the ants distance priority and as per
convention beta parameter should have a greater value compared to alpha. This helps
to generate best results during simulation. The value Rho represents the evaporation
variable of pheromones for every iteration, whereas Q denotes the amount of pheromone
trail left by the ants.

Finally, there are some random factors which affect the simulation and helps in bring-
ing randomness in the results.

Table 5: Ant Colony Optimization Parameters

ACO Parameter Settings for experimental Runs

Parameter Interpretation in Code Notation Values

Number of Ants Original Frequency of
Requests

m 30

Pheromone Importance Used in calculating prob-
ability of requests

alpha 2

Ants Distance Priority Used in calculating prob-
ability of requests

beta 1

Original Number Of Trails Used in calculating prob-
ability of requests

gamma 4

Pheromone Evaporation Factor Change in Frequency of
Requests

Rho 0.5

Total Amount of Pheromone left on Trail Minimum number of re-
quests

Q 1

The Ant Colony Optimization code written by us in the Java class ant colony Op-
timization roughly follows the below algorithm while find the optimal path to schedule
the containers on the Virtual machines. In this algorithm the artificial ants after the

17

initialization of parameters and Pheromone trails sets out to find the optimal path to
place the containers and tasks on those containers.

Table 6: Ant Colony Optimization Pseudo Code

High Level Pseudo code for Ant Colony Optimization

Step 1 Set Parameters and Initialize Pheromone Trials
Step 2 While the termination condition is not met

Construct Ant Solutions
Apply Local Search
Update Pheromones

End

This ends the implementation section of the report where we have given brief details
on how to implement the solution.

6 Evaluation

In this section we will be evaluating results of the our experiments. We have done a
comparison between the response time of the tasks scheduled on the cluster between the
default algorithm which is round robin and our proposed algorithm which is Ant colony
Optimization. Furthermore, to test the validity we compared the response time with a
real time application deployment on kubernetes cluster. The kubernetes cluster deployed
on Google cloud was scaled up manually to 3 nodes for testing purposes. The auto scale
feature of the cluster was disabled on purpose to keep the spawning of number of nodes
in check. We carried evaluation in three different experiments which were conducted in a
controlled fashion. We also used ping plotter to keep an eye on the latency from the client
machine to endpoint deployed on Google Cloud. Figure 11 shows the latency between
the client and the end point and was obtained using the tool ping plotter. The latency
between client and the endpoint was around 50 msec. The endpoint is located in Europe
North region of Google Cloud.

Below are the scenarios that were considered for evaluation -

• Scalability test with 20 Nodes and 30 Ants to check the performance

• Single Node ; 3 Instances ; 30 Ants in Ant colony Parameters.

• Three Nodes ; 9 Instances ; 30 Ants in Ant colony Parameters.

18

Figure 11: Latency graph to end point 35.228.39.205

6.1 Experiment / Scalability test

The below test was carried out to check the performance delivery of the Ant Colony
Optimization algorithms for the clusters that are scaled up or have larger number of nodes.
The results have shown that the ACO is able to perform as per the expectations. We can
clearly see from the below graph that the response time for Ant Colony Optimization is
below 2 seconds which is less than the Round Robin algorithm.

Figure 12: Response Time Under Load for Round Robin And ACO

6.2 Experiment / Single Node Experiment

The below response time graph is for the endpoint hosted on Google Cloud platform.
The below graph has been generated using the performance test tool JMeter and shows
the average response time for the endpoint from the user machine located in Dublin is
20 seconds.

The below response time graph is from the simulation of Cloud Sim. The below
graphs represents the comparative study of the results of Round Robin and Ant Colony
Optimization. It can be clearly seen that Ant colony outperforms the default algorithm.

19

Figure 13: Response time under load graph for endpoint

Figure 14: Response Time Under Load for Round Robin And ACO

6.3 Experiment / Three Node Experiment

Figure 15 response time graph is for the endpoint hosted on Google Cloud platform.The
below graph has been generated using the performance test tool JMeter and shows the
average response time for the endpoint from the user machine located in Dublin is 20
seconds.

Figure 16 response time graph is from the simulation of Cloud Sim.The below graphs

Figure 15: Response time under load graph for endpoint

20

represents the comparative study of the results of Round Robin and Ant Colony Op-
timization. It can be clearly seen that Ant colony outperforms the default algorithm.

Figure 16: Response Time Under Load for Round Robin And ACO

6.4 Discussion

Table 7: Results Table

Scalability Test
(Response Time in
Seconds)

Single Node Test
(Response Time in
Seconds)

Three Node Test
(Response Time in
Seconds)

Default
algorithm

ACO % Im-
prove-
ment

Default
algorithm

ACO % Im-
prove-
ment

Default
algorithm

ACO % Im-
prove-
ment

1000
Threads

2.25 1.8 20.00% 14 11 21.43% 12 9 25.00%

In the above table we have considered the peak load scenario to compare the response
time of the tests. The peak load in this case is 1000 threads user load. We can clearly see
that in each case Ant Colony Optimization results were better than that of the Default
algorithm. The percentage improvement over the actual algorithm is 20 percent for
scalability test having 20 nodes and for the other two tests it were 21 and 25 percent
respectively.

In our simulation and experiments, it has been observed that the overall Response
time of Ant colony based scheduling is much better compared to the traditional schedul-
ing mechanism followed by Kubernetes. In all of our experiments the Ant colony Op-
timization showed better results when compared with Round Robin mechanism. The
experiments also proved that Ant colony Optimization is a highly scalable solution and
as the scale of the cluster increases we can expect better outputs for the requests as the

21

ants provide a pheromone trail of shortest path to schedule the task on Virtual Machines
and containers.

7 Conclusion and Future Work

To conclude we can say that the ant colony Optimization as per the simulation results
look promising and have outperformed the traditional scheduling mechanism and can be
looked as a viable option to replace the default algorithm. This research successfully
demonstrates the usefulness of Ant colony Optimization in case of scheduling related
problems and it can also be successfully applied to containers as well.

Furthermore, the future work related to this may the implementation of this Algorithm
on the actual Kubernetes source code and observing the results of the implementation.
The simulation results having being compared with the actual outputs have given us
some good pointers on how this algorithm may behave in real time.

Acknowledgements
I would specially like to thank my supervisor Divyaa Manimarn Elango for helping me
and guiding me through the whole research and implementation process. Her consistent
guidance has helped me achieve the desired results and complete my dissertation work.
Finally, I would like to thank my family an friends for keeping me motivated and helping
me through this duration.

References

Applegate, D. L., Bixby, R. E., Chvatal, V. and Cook, W. J. (2006). The traveling
salesman problem: a computational study, Princeton university press.

Bautista, J. and Pereira, J. (2002). Ant algorithms for assembly line balancing, Interna-
tional Workshop on Ant Algorithms, Springer, pp. 65–75.

Blum, C., Roli, A. and Dorigo, M. (2001). Hc–aco: The hyper-cube framework for ant
colony optimization, Proceedings of MIC, Vol. 2, pp. 399–403.

Bullnheimer, B., Hartl, R. F. and Strauss, C. (1997). A new rank based version of the
ant system. a computational study.

Bullnheimer, B., Kotsis, G. and Strauß, C. (1998). Parallelization strategies for the
ant system, High Performance Algorithms and Software in Nonlinear Optimization,
Springer, pp. 87–100.

Burns, B., Grant, B., Oppenheimer, D., Brewer, E. and Wilkes, J. (2016). Borg, Omega,
and Kubernetes, Communications of the ACM 59(5): 50–57.
URL: http://dl.acm.org/citation.cfm?doid=2930840.2890784

Buyya, R., Ranjan, R. and Calheiros, R. N. (2009). Modeling and simulation of scalable
cloud computing environments and the cloudsim toolkit: Challenges and opportunities,
High Performance Computing & Simulation, 2009. HPCS’09. International Conference
on, IEEE, pp. 1–11.

22

Cordon, O., de Viana, I. F., Herrera, F. and Moreno, L. (2000). A new aco model
integrating evolutionary computation concepts: The best-worst ant system.

Deploying a containerized web application | Kubernetes Engine Tutorials (n.d.).
URL: https://cloud.google.com/kubernetes-engine/docs/tutorials/hello-app

Di Caro, G. and Dorigo, M. (1998). Antnet: Distributed stigmergetic control for com-
munications networks, Journal of Artificial Intelligence Research 9: 317–365.

Dorigo, M. and Birattari, M. (2011). Ant colony optimization, Encyclopedia of machine
learning, Springer, pp. 36–39.

Dorigo, M., Maniezzo, V. and Colorni, A. (1996). Ant system: optimization by a colony
of cooperating agents, IEEE Transactions on Systems, Man, and Cybernetics, Part B
(Cybernetics) 26(1): 29–41.

Dorigo, M. and Sttzle, T. (2010). Ant Colony Optimization: Overview and Recent
Advances, in M. Gendreau and J.-Y. Potvin (eds), Handbook of Metaheuristics, Vol.
146, Springer US, Boston, MA, pp. 227–263.
URL: http://link.springer.com/10.1007/978-1-4419-1665-5 8

Felter, W., Ferreira, A., Rajamony, R. and Rubio, J. (2015). An updated performance
comparison of virtual machines and Linux containers, 2015 IEEE International Sym-
posium on Performance Analysis of Systems and Software (ISPASS), pp. 171–172.

Gambardella, L. M. and Dorigo, M. (1995). Ant-q: A reinforcement learning approach to
the traveling salesman problem, Machine Learning Proceedings 1995, Elsevier, pp. 252–
260.

Gambardella, L. M. and Dorigo, M. (1996). Solving symmetric and asymmetric tsps
by ant colonies, Evolutionary Computation, 1996., Proceedings of IEEE International
Conference on, IEEE, pp. 622–627.

Gao, Y., Guan, H., Qi, Z., Hou, Y. and Liu, L. (2013). A multi-objective ant colony system
algorithm for virtual machine placement in cloud computing, Journal of Computer and
System Sciences 79(8): 1230–1242.

Goyal, S. K. and Singh, M. (2012). Adaptive and dynamic load balancing in grid using ant
colony optimization, International Journal of Engineering and Technology 4(4): 167–
74.

Gravel, M., Price, W. L. and Gagné, C. (2002). Scheduling continuous casting of alu-
minum using a multiple objective ant colony optimization metaheuristic, European
Journal of Operational Research 143(1): 218–229.

Grillet, A. (2016). Comparison of Container Schedulers.
URL: https://medium.com/@ArmandGrillet/comparison-of-container-schedulers-
c427f4f7421

Kaewkasi, C. and Chuenmuneewong, K. (2017). Improvement of container scheduling for
docker using ant colony optimization, Knowledge and Smart Technology (KST), 2017
9th International Conference on, IEEE, pp. 254–259.

23

Manfrin, M., Birattari, M., Stützle, T. and Dorigo, M. (2006). Parallel ant colony op-
timization for the traveling salesman problem, International Workshop on Ant Colony
Optimization and Swarm Intelligence, Springer, pp. 224–234.

Maniezzo, V. (1999). Exact and approximate nondeterministic tree-search procedures for
the quadratic assignment problem, INFORMS journal on computing 11(4): 358–369.

Montemanni, R., Gambardella, L. M., Rizzoli, A. E. and Donati, A. V. (2005). Ant colony
system for a dynamic vehicle routing problem, Journal of Combinatorial Optimization
10(4): 327–343.

Netto, H. V., Lung, L. C., Correia, M., Luiz, A. F. and S de Souza, L. M. (2017).
State machine replication in containers managed by Kubernetes, Journal of Systems
Architecture 73: 53–59.
URL: http://linkinghub.elsevier.com/retrieve/pii/S1383762116302752

Rensin, D. K. (2015). Kubernetes - Scheduling the Future at Cloud Scale, 1005 Gravenstein
Highway North Sebastopol, CA 95472.
URL: http://www.oreilly.com/webops-perf/free/kubernetes.csp

Schoonderwoerd, R., Holland, O. E., Bruten, J. L. and Rothkrantz, L. J. (1997). Ant-
based load balancing in telecommunications networks, Adaptive behavior 5(2): 169–207.

Schwarzkopf, M., Konwinski, A., Abd-El-Malek, M. and Wilkes, J. (2013). Omega:
flexible, scalable schedulers for large compute clusters, Proceedings of the 8th ACM
European Conference on Computer Systems, ACM, pp. 351–364.

Stützle, T. and Hoos, H. H. (1996). Improving the ant system: A detailed report on the
max–min ant system, FG Intellektik, FB Informatik, TU Darmstadt, Germany, Tech.
Rep. AIDA–96–12 .

Tawfeek, M. A., El-Sisi, A., Keshk, A. E. and Torkey, F. A. (2013). Cloud task scheduling
based on ant colony optimization, Computer Engineering & Systems (ICCES), 2013
8th International Conference on, IEEE, pp. 64–69.

What is Google Kubernetes Engine (GKE)? - Definition from WhatIs.com (n.d.).
URL: https://searchitoperations.techtarget.com/definition/Google-Container-Engine-
GKE

Zhang, J., Hu, X., Tan, X., Zhong, J. H. and Huang, Q. (2006). Implementation of an
ant colony optimization technique for job shop scheduling problem, Transactions of the
Institute of Measurement and Control 28(1): 93–108.

8 Appendix - Configuration Manual

8.1 Setting up Google Cloud Platform

Kubernetes Cluster setup and application was deployed Google Cloud Platform using the
following Steps.

Step 1 Login into Google Cloud console (URL - https://console.cloud.google.com)
you will probably need a gmail ID to login into Google console

Step 2 Create new project on google cloud console as shown in the below snapshot

24

Figure 17: Google Cloud console

Step 3-Enable Billing for the selected project by going on the billing dashboard of
Google Cloud Platform

Step 4-Open Google cloud shell as shown in the below snapshot

Figure 18: Google Cloud console Cloud Shell

Step 5-Install Kubectl using the gcloud command line tool.
Step 6 Create a Kubernetes cluster using Google Kubernetes Engine.
Step 7 Configure your Project ID and Compute Zone for the cluster.
Step 8 Download the source code of the application to be deployed.
Step 9 Setup the Project ID environment variable in the shell. This will be used to

tag the container image when you are pushing it on Google container Registry
Step 10 Build and tag the container image for upload in container registry
Step 11- Docker Command Line tool to be configured to authenticate Container

Registry.
Step 12- Upload the docker image to container registry using docker command line

tool
Step 13 - Uploaded image can be locally tested using docker engine
Step 14 Run the command to create a cluster
Step 15 Check the total compute instances allocated using compute instance list

command
Step 16 Deploy your application and make port 8080 as the listener port
Step 17 Check the pods created after the deployment
Step 18 Run commands to expose your application on Internet
Step 19 Check the external IP of your endpoint or the load balancer
Step 20 Finally scale up your application by running replicas.

Manifest of the Docker Container image on Google Cloud

”schemaVersion”: 2, ”mediaType”: ”application/vnd.docker.distribution.manifest.v2+json”,
”config”: ”mediaType”: ”application/vnd.docker.container.image.v1+json”, ”size”: 2007,
”digest”: ”sha256:873c1eae237c0f5e7500704ab3ea473f838ea71ae591a768603b3bcbcd27eb2a”
, ”layers”: [”mediaType”: ”application/vnd.docker.image.rootfs.diff.tar.gzip”, ”size”:
2206931, ”digest”: ”sha256:4fe2ade4980c2dda4fc95858ebb981489baec8c1e4bd282ab1c3560be8ff9bde”
, ”mediaType”: ”application/vnd.docker.image.rootfs.diff.tar.gzip”, ”size”: 2071432,
”digest”: ”sha256:a993e4111f10dbb0d583e0d28cdfbab86ad3064fc331abc7ca4faba91c3aedce”
]

25

Figure 19: Output of Deployed Application

8.2 Setting up Cloud Sim

Below are the steps to setup Cloud Sim on your personal machine.

Step 1 Download the latest version of Java from the link https://www.oracle.com/technetwork/java/javase/downloads/jdk8-
downloads-2133151.html as shown in the below figure.

Figure 20: Java Link Download

Step 2 Install latest version of Java.
Step 3- Setup Java environment variables.
Step 4 Download Eclipse Integrated Development environment from https://www.eclipse.org/downloads/.

Download the latest version of eclipse from this link.
Step 5 Install the latest version of eclipse on your work desktop.

26

Figure 21: Cloud Sim download Link

Step 6- Download the latest cloud Sim version from https://github.com/Cloudslab/cloudsim/releases
as shown in he below figure. Cloud Sim 4.0 is downloaded as it has the latest frameworks
for containers.

Figure 22: Importing Cloud Sim 4.0 Files using Maven

Step 7 Unzip and unpack Cloud Sim 4.0 and Import in eclipse using the Maven for
dependencies as shown in the below figure.

Step 8 You will see the below tree structure if the import is successful.

27

Figure 23: Cloud Sim 4.0 Tree Structure

8.3 Code And Output

The Ant Colony Optimization code is Written in Java File Ant colony Optimization.java.
It has 4 functions and a Constructor. The Functions are Implement, Initialize Pher-
omones, get Execution Time and Vote. Snapshots of these functions are given below.

28

Figure 24: Ant colony Optimization Implement function

Figure 25: Ant Colony Optimization Vote function

Figure 26: Ant colony Optimization Class Constructor

The Output of this is mainly in form of the graphs which are presented in Research
Report, but below are some of the snaps from the Output Logs.

Figure 27: VM Creation in simulations

29

Figure 28: Cloudlets Received Output

Figure 29: Cloudlets Received Output

8.4 Miscellaneous Tools

We have also used some of the other tools for evaluation purposes. The tools used were
JMeter and Ping Plotter.

JMeter is a popular open source performance testing tool developed and managed
by Apache Foundation. Its been widely used for performance testing in industry. We
have used this tool to evaluate response time of our endpoint deployed on Google Cloud.
JMeter can be downloaded from URL https://jmeter.apache.org/download jmeter.cgi as
shown in the below image.

30

Figure 30: Apache JMeter Download Link

It can be used by extracting the zip folder and running the batch file under bin folder
in JMeter folder structure. Upon opening the batch file you will see the JMeter screen
as shown in below image

Figure 31: Apache JMeter Home Screen

The other tool which we have used in Ping Plotter. This can be downloaded from
the link https://www.pingplotter.com/ and we are using the 14-day trial version of this
tool for our experimental evaluation. Ping Plotter is used to track the latency and
trace route over the network. It also helps in identifying any packet loss from source
to destination. The installation of Ping plotter is very straightforward and once the
installation is complete you can see the below screen where you can configure the IP
address you want to ping.

Figure 32: Ping Plotter Screen

31

	Introduction
	Inspiration
	Research Objective
	Target Audiences
	Structure and Outline

	Background And Related Work
	Ant Colony Optimization Explained
	History
	Applications of Ant Colony Optimization
	Recent Advancements

	Kubernetes And Its Need
	History
	Containers Explained
	Need for Kubernetes

	Literature Review
	Container Scheduling
	Comparing scheduling of Docker Swarm, Kubernetes and Apache Mesos
	Ant Colony Optimization and Scheduling Problems

	Methodology
	Kubernetes on Google Cloud Platform (GCP)
	Cloud Sim Ant Colony Container Scheduling Process

	Design Specification
	Implementation
	Implementation on Google Cloud Platform (GCP)
	Implementation on Cloud Sim
	Class Diagram
	Initialization of Ant Colony Optimization

	Evaluation
	Experiment / Scalability test
	Experiment / Single Node Experiment
	Experiment / Three Node Experiment
	Discussion

	Conclusion and Future Work
	Appendix - Configuration Manual
	Setting up Google Cloud Platform
	Setting up Cloud Sim
	Code And Output
	Miscellaneous Tools

