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1 Introduction 
 

This user configuration manual provides a step by step account of the product and process 

requisites to complete the thesis titled “What is the impact of ARIMA and LSTM in the level 

of accuracy for prediction of Litecoin prices?” The steps also include the hardware and 

software requirements. Further, samples of the codes that are run in the different models and 

results are provided for effective guidance. 

 

2 Data Gathering 
 

The data collected is from 2014 to 2019 having 1991 observations. It is collected from 

coinmarketcap.com. Among the different type of prices that is high, low, open and close, 

close price is considered as the predictor variable. The data is read in CSV format and 

formatting of date (pre-processing) is executed.  

 

3 System Setup 
 
The hardware system configuration is Intel core i5+ 8th Gen used with a 4GB ram. The 

software installed is RStudio and RStudio cloud. For the R studio cloud an account is created 

to implement the neural network algorithm. 
 
 
 

4 Libraries Installed 
 

In RStudio and RStudio cloud relevant libraries are installed to process machine learning 

algorithms. The Libraries included are CaTools, Libridate, forecast, Mlmetrics, dplyr, grid, 

stargazer, seasonal, fma, keras, tidyverse.  

 

Using the above setup and running the data in ARIMA and LSTM the results are below- 
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1. Importing library 

 

library(fpp2) 

library(seasonal) 

library(fma) 

library(stargazer) 

library(grid) 

library(forecast) 

library(dplyr) 

library (MLmetrics) 

require(caTools) 

require(lubridate) 

 
 

 

2. Pre-processing, splitting the data into 0.6 train and 0.4 test data 

#Splitting the dataset into train and test data 

set.seed(1)  

bd$date=parse_date_time(bd$date, orders = c("ymd", "dmy", "mdy")) 

bd = bd[,c(1,3)] # we retain the closing price. 

#Summary 

summary(bd) 

 

3. Converting the data to time series 

    v1_d = ts(bd[,2], frequency = 365, start = c(2014,1)) 

 

4. Plotting the data set to examine stationary 
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5. Taking a deeper look at the seasonality for which Seasonal plot and seasonal 

subseries plot has been plotted:  

             # taking a look abt seasonality:  

           ggseasonplot(v1_d, year.labels=TRUE, year.labels.left=TRUE) + 

           ylab("Closing price") + 

           ggtitle("Seasonal plot: Closing price per day") 

 

           ## taking a deep look about seasonality:  

         ggsubseriesplot(v1_d) + 

        ylab("Closing price") + 

        ggtitle("Seasonal subseries plot: Closing price per day") 
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6. Auto correlation 

 
7. Forecasting of mean, random walk 

 
8. Multiplicative decomposition 

 
 

 

 

9. Fit Auto ARIMA in training data set and getting results 
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10. Calculating the absolute value=true value- estimated value 

      result$V1 = days 

      colnames(result) = c("days" , "true_value","Estimated_value") 

      result$absolut_valu = abs(result$true_value-result$Estimated_value) 

 

11. Results: 
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LSTM 

 

CONFIRGURATION MANUAL OF LSTM: 

1. Install and import libraries  

       library(readr) 

       library(tseries) 

       library(tidyverse) 

       library(keras) 

       require(lubridate) 

       require(caTools) 

 

2. Loading and reading the data in csv format 

      data= read_csv("data set.csv") 

3. Data needs to be formatted  

4. Data set is split into 60% train and 40% test.  

           sample = sample.split(data$date, SplitRatio =0.6) 
             train = subset(data, sample == TRUE) 
             test  = subset(data, sample == FALSE) 
 

5. Plotting of closing price  
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6. Testing the stationarity of data set, so doing the kpss test of stationarity.  

 

#stationary  

kpss.test(data$close) 

diffed_close = diff(data$close, differences = 1) 

kpss.test(diffed_close) 

 

         KPSS Test for Level Stationarity 
 
data:  data$close 
KPSS Level = 9.5589, Truncation lag parameter = 8, p-value = 0.01 

 

7. A lag variable has been created because LSTM requires data in supervised learning.  

This basically, differences in closing prices and look back =1.  

 
8. The order of observation is important for time series data, the supervised closed data 

is split into 0.6 test and 0.4 train. 

            N_close = nrow(supervised_close) 

           n_close = round(N_close *0.6, digits = 0) 

           train_close = supervised_close[1:n_close, ] 

           test_close  = supervised_close[(n_close+1):N_close,  ] 
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9. As with any neural network model we scale the X input data into activation function 

range. To normalize the data range, we used the feature range parameter, and selected 

the default value (0, 1) which is typical for data with low dispersion. 

10. The default activation function for LSTM is the sigmoid function, the range of which 

is (-1, 1)  

 
 

 

 

 

 

 

 

 

 

 

11. Inverted scaling 

   invert_scaling = function(Scaled, scaler, feature_range = c(0, 1)){ 

  min = scaler[1] 

  max = scaler[2] 

  t = length(Scaled) 

  mins = feature_range[1] 

  maxs = feature_range[2] 

  inverted_dfs = numeric(t) 

   

  for( i in 1:t){ 

    X = (Scaled[i]- mins)/(maxs - mins) 

    rawValues = X *(max - min) + min 

    inverted_dfs[i] <- rawValues 

  } 

  return(inverted_dfs) 

} 
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12. LSTM Model: 

            #LSTM 

class(x_train_close) 

#x_train_close <- array(data = x_train_close, dim = c(nrow(x_train_close),1, 

look_back)) 

 

dim(x_train_close) <- c(length(x_train_close), 1, 1) 

head(x_train_close) 

 

X_shape2_close = dim(x_train_close)[2] 

X_shape3_close = dim(x_train_close)[3] 

batch_size = 1                 

units = 1 

 #LSTM 
> class(x_train_close) 
[1] "numeric" 
> dim(x_train_close) <- c(length(x_train_close), 1, 1) 
> head(x_train_close) 
[1] 0.03688799 0.03688799 -0.03152247 0.03554661 0.16297787 0.03152247 
> X_shape2_close = dim(x_train_close)[2] 
> X_shape3_close = dim(x_train_close)[3] 
> batch_size = 1                 
> units = 1  
> model_close <- keras_model_sequential()  
> model_close%>% 
+   layer_lstm(units, batch_input_shape = c(batch_size, X_shape2_close, 
X_shape3_close), stateful= TRUE)%>% 
+   layer_dense(units = 1) 

 

 

13. Network loop: - 

The network loop is created which iterates through every window in batch creating 

the batch states as all zeros. The model is structured to remember its learning at 

every iteration by defining the stateful as true.  

model_close <- keras_model_sequential()  

model_close%>% 

  layer_lstm(units, batch_input_shape = c(batch_size, X_shape2_close, 

X_shape3_close), stateful= TRUE)%>% 

  layer_dense(units = 1) 
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14. Defining the loss: - 

    In this the mean square error function is used for the loss to minimize the errors. 

     model_close %>% compile( 

      loss = 'mean_squared_error', 

      optimizer = optimizer_adam( lr= 0.02, decay = 1e-6 ),   

      metrics = c('accuracy') 

      ) 

 

15. The network is trained with 25 number of epochs which we had initialized, and then 

observe the change in our loss through time. The current loss decreases with the 

increase in the epochs as observed, increasing our model accuracy in predicting the 

Litecoin prices. 

 

 

16. Model Summary: 

 
17. 25 iterations is made on train data which is 1194 observations. 
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18. Modelling on 796 observations  

A. Input =1 

            L_close = length(x_test_close) 

scaler_close = Scaled_close$scaler 

predictions_close1 = numeric(L_close) 

for(i in 1:L_close){ 

  X_close = x_test_close[i] 

  dim(X_close) = c(1,1,1) 

  yhat = model_close %>% predict(X_close, batch_size=batch_size) 

  # invert scaling 

  yhat_close = invert_scaling(yhat, scaler_close,  c(-1, 1)) 

  # invert differencing 

  yhat_close  = yhat_close + data$close[(n_close+i-1)] 

  # store 

  predictions_close1[i] <- yhat_close 

} 
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B. Input =2 

            L_close = length(x_train_close) 

scaler_close = Scaled_close$scaler 

predictions_close2 = numeric(L_close) 

for(i in 2:L_close){ 

  X_close = x_train_close[i] 

  dim(X_close) = c(1,1,1) 

  yhat = model_close %>% predict(X_close, batch_size=batch_size) 

  # invert scaling 

  yhat_close = invert_scaling(yhat, scaler_close,  c(-1, 1)) 

  # invert differencing 

  yhat_close  = yhat_close + data$close[(i-1)] 

  # store 

  predictions_close2[i] <- yhat_close 

} 

 

 

 
 

 

 

19. Plotting the predictions for all the 1991 observations:  
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20. Creating the data.final for recording the absolute values which is the difference true 

value and estimated value as shown in the tabulated figure below. 

  datefinal=seq(from = as.Date("2019-06-07"),to = as.Date("2019-07-07"),by = 
"day") 

datafinal=data.frame(date=datefinal, true_value=data$close[(1991-30):1991] , 
estimate_value=predictions_close[(1991-30):1991]) 

datafinal$absol_est=abs(datafinal$true_value-datafinal$estimate_value) 

write.table(datafinal, "LSTM.csv", row.names=FALSE, sep=";",dec=".", na=" ") 
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