

Configuration Manual

MSc Research Project

MSc in FinTech

Ranjani Chandrasekaran

Student ID: X18108423

School of Computing

National College of Ireland

Supervisor: Victor Del Rosal

National College of Ireland

MSc Project Submission Sheet

School of Computing

Student Name:

Ranjani Chandrasekaran

Student ID:

X18108423

Programme:

MSc in FinTech

Year:

2018-2019

Module:

Research Project

Lecturer:

Victor Del Rosal

Submission Due

Date:

12th August 2019

Project Title:

Prediction of Litecoin Prices using ARIMA and LSTM

Word Count:

1083 words Page Count: 16

I hereby certify that the information contained in this (my submission) is information

pertaining to research I conducted for this project. All information other than my own

contribution will be fully referenced and listed in the relevant bibliography section at the

rear of the project.

ALL internet material must be referenced in the bibliography section. Students are

required to use the Referencing Standard specified in the report template. To use other

author's written or electronic work is illegal (plagiarism) and may result in disciplinary

action.

Signature:

……

Date:

12th August 2019

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple

copies)

□

Attach a Moodle submission receipt of the online project

submission, to each project (including multiple copies).

□

You must ensure that you retain a HARD COPY of the project, both

for your own reference and in case a project is lost or mislaid. It is not

sufficient to keep a copy on computer.

□

Assignments that are submitted to the Programme Coordinator Office must be placed

into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

1

Configuration Manual

Ranjani Chandrasekaran

Student ID: X18108423

1 Introduction

This user configuration manual provides a step by step account of the product and process

requisites to complete the thesis titled “What is the impact of ARIMA and LSTM in the level

of accuracy for prediction of Litecoin prices?” The steps also include the hardware and

software requirements. Further, samples of the codes that are run in the different models and

results are provided for effective guidance.

2 Data Gathering

The data collected is from 2014 to 2019 having 1991 observations. It is collected from

coinmarketcap.com. Among the different type of prices that is high, low, open and close,

close price is considered as the predictor variable. The data is read in CSV format and

formatting of date (pre-processing) is executed.

3 System Setup

The hardware system configuration is Intel core i5+ 8th Gen used with a 4GB ram. The

software installed is RStudio and RStudio cloud. For the R studio cloud an account is created

to implement the neural network algorithm.

4 Libraries Installed

In RStudio and RStudio cloud relevant libraries are installed to process machine learning

algorithms. The Libraries included are CaTools, Libridate, forecast, Mlmetrics, dplyr, grid,

stargazer, seasonal, fma, keras, tidyverse.

Using the above setup and running the data in ARIMA and LSTM the results are below-

2

1. Importing library

library(fpp2)

library(seasonal)

library(fma)

library(stargazer)

library(grid)

library(forecast)

library(dplyr)

library (MLmetrics)

require(caTools)

require(lubridate)

2. Pre-processing, splitting the data into 0.6 train and 0.4 test data

#Splitting the dataset into train and test data

set.seed(1)

bd$date=parse_date_time(bd$date, orders = c("ymd", "dmy", "mdy"))

bd = bd[,c(1,3)] # we retain the closing price.

#Summary

summary(bd)

3. Converting the data to time series

 v1_d = ts(bd[,2], frequency = 365, start = c(2014,1))

4. Plotting the data set to examine stationary

3

5. Taking a deeper look at the seasonality for which Seasonal plot and seasonal

subseries plot has been plotted:

 # taking a look abt seasonality:

 ggseasonplot(v1_d, year.labels=TRUE, year.labels.left=TRUE) +

 ylab("Closing price") +

 ggtitle("Seasonal plot: Closing price per day")

 ## taking a deep look about seasonality:

 ggsubseriesplot(v1_d) +

 ylab("Closing price") +

 ggtitle("Seasonal subseries plot: Closing price per day")

4

6. Auto correlation

7. Forecasting of mean, random walk

8. Multiplicative decomposition

9. Fit Auto ARIMA in training data set and getting results

5

10. Calculating the absolute value=true value- estimated value

 result$V1 = days

 colnames(result) = c("days" , "true_value","Estimated_value")

 result$absolut_valu = abs(result$true_value-result$Estimated_value)

11. Results:

6

LSTM

CONFIRGURATION MANUAL OF LSTM:

1. Install and import libraries

 library(readr)

 library(tseries)

 library(tidyverse)

 library(keras)

 require(lubridate)

 require(caTools)

2. Loading and reading the data in csv format

 data= read_csv("data set.csv")

3. Data needs to be formatted

4. Data set is split into 60% train and 40% test.

 sample = sample.split(data$date, SplitRatio =0.6)
 train = subset(data, sample == TRUE)
 test = subset(data, sample == FALSE)

5. Plotting of closing price

7

6. Testing the stationarity of data set, so doing the kpss test of stationarity.

#stationary

kpss.test(data$close)

diffed_close = diff(data$close, differences = 1)

kpss.test(diffed_close)

 KPSS Test for Level Stationarity

data: data$close
KPSS Level = 9.5589, Truncation lag parameter = 8, p-value = 0.01

7. A lag variable has been created because LSTM requires data in supervised learning.

This basically, differences in closing prices and look back =1.

8. The order of observation is important for time series data, the supervised closed data

is split into 0.6 test and 0.4 train.

 N_close = nrow(supervised_close)

 n_close = round(N_close *0.6, digits = 0)

 train_close = supervised_close[1:n_close,]

 test_close = supervised_close[(n_close+1):N_close,]

8

9. As with any neural network model we scale the X input data into activation function

range. To normalize the data range, we used the feature range parameter, and selected

the default value (0, 1) which is typical for data with low dispersion.

10. The default activation function for LSTM is the sigmoid function, the range of which

is (-1, 1)

11. Inverted scaling

 invert_scaling = function(Scaled, scaler, feature_range = c(0, 1)){

 min = scaler[1]

 max = scaler[2]

 t = length(Scaled)

 mins = feature_range[1]

 maxs = feature_range[2]

 inverted_dfs = numeric(t)

 for(i in 1:t){

 X = (Scaled[i]- mins)/(maxs - mins)

 rawValues = X *(max - min) + min

 inverted_dfs[i] <- rawValues

 }

 return(inverted_dfs)

}

9

12. LSTM Model:

 #LSTM

class(x_train_close)

#x_train_close <- array(data = x_train_close, dim = c(nrow(x_train_close),1,

look_back))

dim(x_train_close) <- c(length(x_train_close), 1, 1)

head(x_train_close)

X_shape2_close = dim(x_train_close)[2]

X_shape3_close = dim(x_train_close)[3]

batch_size = 1

units = 1

 #LSTM
> class(x_train_close)
[1] "numeric"
> dim(x_train_close) <- c(length(x_train_close), 1, 1)
> head(x_train_close)
[1] 0.03688799 0.03688799 -0.03152247 0.03554661 0.16297787 0.03152247
> X_shape2_close = dim(x_train_close)[2]
> X_shape3_close = dim(x_train_close)[3]
> batch_size = 1
> units = 1
> model_close <- keras_model_sequential()
> model_close%>%
+ layer_lstm(units, batch_input_shape = c(batch_size, X_shape2_close,
X_shape3_close), stateful= TRUE)%>%
+ layer_dense(units = 1)

13. Network loop: -

The network loop is created which iterates through every window in batch creating

the batch states as all zeros. The model is structured to remember its learning at

every iteration by defining the stateful as true.

model_close <- keras_model_sequential()

model_close%>%

 layer_lstm(units, batch_input_shape = c(batch_size, X_shape2_close,

X_shape3_close), stateful= TRUE)%>%

 layer_dense(units = 1)

10

14. Defining the loss: -

 In this the mean square error function is used for the loss to minimize the errors.

 model_close %>% compile(

 loss = 'mean_squared_error',

 optimizer = optimizer_adam(lr= 0.02, decay = 1e-6),

 metrics = c('accuracy')

)

15. The network is trained with 25 number of epochs which we had initialized, and then

observe the change in our loss through time. The current loss decreases with the

increase in the epochs as observed, increasing our model accuracy in predicting the

Litecoin prices.

16. Model Summary:

17. 25 iterations is made on train data which is 1194 observations.

11

18. Modelling on 796 observations

A. Input =1

 L_close = length(x_test_close)

scaler_close = Scaled_close$scaler

predictions_close1 = numeric(L_close)

for(i in 1:L_close){

 X_close = x_test_close[i]

 dim(X_close) = c(1,1,1)

 yhat = model_close %>% predict(X_close, batch_size=batch_size)

 # invert scaling

 yhat_close = invert_scaling(yhat, scaler_close, c(-1, 1))

 # invert differencing

 yhat_close = yhat_close + data$close[(n_close+i-1)]

 # store

 predictions_close1[i] <- yhat_close

}

12

B. Input =2

 L_close = length(x_train_close)

scaler_close = Scaled_close$scaler

predictions_close2 = numeric(L_close)

for(i in 2:L_close){

 X_close = x_train_close[i]

 dim(X_close) = c(1,1,1)

 yhat = model_close %>% predict(X_close, batch_size=batch_size)

 # invert scaling

 yhat_close = invert_scaling(yhat, scaler_close, c(-1, 1))

 # invert differencing

 yhat_close = yhat_close + data$close[(i-1)]

 # store

 predictions_close2[i] <- yhat_close

}

19. Plotting the predictions for all the 1991 observations:

13

20. Creating the data.final for recording the absolute values which is the difference true

value and estimated value as shown in the tabulated figure below.

 datefinal=seq(from = as.Date("2019-06-07"),to = as.Date("2019-07-07"),by =
"day")

datafinal=data.frame(date=datefinal, true_value=data$close[(1991-30):1991] ,
estimate_value=predictions_close[(1991-30):1991])

datafinal$absol_est=abs(datafinal$true_value-datafinal$estimate_value)

write.table(datafinal, "LSTM.csv", row.names=FALSE, sep=";",dec=".", na=" ")

14

