
3D-stacked memory for shared-memory
multithreaded workloads

Sourav Bhattacharya Horacio González–Vélez
Cloud Competency Centre, National College of Ireland

Sourav.Bhattacharya@gmail.com, horacio@ncirl.ie

KEYWORDS

3D-stacked memory; memory latency; computer archi-
tecture; parallel computing; benchmarking; HPC

ABSTRACT

This paper aims to address the issue of CPU-memory
intercommunication latency with the help of 3D stacked
memory. We propose a 3D-stacked memory configura-
tion, where a DRAM module is mounted on top of the
CPU to reduce latency. We have used a comprehensive
simulation environment to assure both fabrication feasi-
bility and energy efficiency of the proposed 3D stacked
memory modules. We have evaluated our proposed ar-
chitecture by running PARSEC 2.1, a benchmark suite
for shared-memory multithreaded workloads. The results
demonstrate an average of 40% improvement over con-
ventional DDR3/4 memory architectures.

INTRODUCTION

High Performance Computing (HPC) systems typi-
cally use custom-built components such as enterprise-
grade GPUs, millions of custom CPUs, and above all
super-fast interconnection mechanisms for networking
and memory. But, despite using the most cutting-edge
materials and components available today, it has become
clear that one clear limitation relates to the memory-
wall challenge, i.e. the imbalance between memory and
core/processor performance and bandwidths which has a
cascading effect on the overall performance [12], [13].
In fact, memory latency has been identified as a lead-
ing cause of overall performance degradation. The fastest
memory available today that is used in high performance
systems is Error Correcting Code Double Data Rate Syn-
chronous Dynamic Random-Access Memory, also known
as ECC DDR SDRAM. DDR4 SDRAM, is an abbre-
viation for Double Data Rate Fourth-Generation Syn-
chronous Dynamic Random Access Memory. It is a
type of memory that has a high bandwidth (“double data
rate”) interface with a latency under 10 nanoseconds [20].
When this latency is magnified by the number of distant
nodes, the overall latency of the supercomputing platform
increases. This is the scalability challenge where even the
smallest of CPU-RAM latency per node becomes magni-
fied thousands of times and thus results in lower perfor-
mance [26].

In order to address the latency and scalability chal-
lenges in HPC, the solution must be one that works at a
granular level. While there are multiple sources through
which latency is introduced, we aim to address the most

relevant cause of lag: the CPU-memory intercommunica-
tion latency, with the help of 3D stacked memory.

Conventional DDR RAM has four primary timing in-
dicators which are used to indicate the overall speed of
the DRAM. They are as follows:

1. CAS Latency (tCL/tCAS): number of cycles taken to
access columns of data, after getting column address.
2. RAS to CAS Delay (tRCD): It is the time taken be-
tween the activation of the cache line (RAS) and the col-
umn (CAS) where the data is stored.
3. Row Precharge Time (tRP): number of cycles taken to
terminate the access to a row of data and open access to
another row.
4. Row Active Time (tRAS): number of cycles taken to
access rows of data, after getting row address.

These four parameters are cumulatively known as
memory timings. The motivation behind our research is
to study 3D stacked memory architectures which can have
significantly faster memory timings than the conventional
DDR-4 RAM used in HPC. The future for high-speed
memory seems to favour 3D-stacked configurations, as
demonstrated by the patent fillings from a number of
memory manufacturers[18], [4].

Since the experimental fabrication of multiple new
memory modules based on 3D stacked memory is not
economically feasible for low yields [27], we will use a
combination of simulators—namely DESTINY [25], [23]
and CACTI-3DD [8]—in order to create a feasible model
of 3D stacked memory. These simulators will help us
design and architect the underlying architecture and iden-
tify the best possible configuration needed to achieve the
highest bandwidth and lowest of latency while keeping in
mind the temperature, power consumption, power leak-
age, area efficiency and other relevant parameters. After a
suitable design and architecture sample, satisfying the en-
ergy efficiency criteria and other parameters is obtained,
we will use it to simulate a full system benchmark us-
ing Gem5, a simulator that is a modular, discrete event
driven platform for computer architecture, comprising
of system-level architecture as well as processor micro-
architecture [7]. The overall objective is to model a 3D-
stacked memory subsystem, running on top of a generic
X86 CPU, and then run a performance benchmark nor-
mally used in supercomputing environments to evaluate
the performance gains the 3D stacked memory architec-
ture provides when compared with a traditional DDR-4
memory based architecture. Figure 1 describes the high
level the approach we have taken to model the 3D stacked
memory architecture.

Communications of the ECMS, Volume 34, Issue 1, 
Proceedings, ©ECMS Mike Steglich, Christian Mueller, 
Gaby Neumann, Mathias Walther (Editors) 
ISBN: 978-3-937436-68-5/978-3-937436-69-2(CD) ISSN 2522-2414 

Sourav.Bhattacharya@gmail.com
horacio@ncirl.ie


Fig. 1: High Level Approach to Modelling 3D Stacked Memory.

LITERATURE REVIEW

At the turn of this century, researchers focused on mak-
ing improvements to DRAMs native performance. Dur-
ing any instruction execution, the CPU would have to ob-
tain the next set of instructions from the DRAM. How-
ever, as DRAMs locations are off-chip, the apparent at-
tempt was to address delays in accessing data off-chip.
By adding components to a chip to increase the mem-
ory available in a module, the complexity involved in ad-
dressing memory increased significantly [9], [21]. Con-
sequently, the design of a useful interface became more
and more challenging. It became evident that communi-
cation overhead accounted for some 30% of the DRAM
performance, and as a result, moving the DRAM closer
to the CPU has become obvious [24].

The next logical step was to try enhancing cache per-
formance, after having failed to solve the latency chal-
lenge by improving DRAM performance. The objective
was to increase the overall effectiveness of cache memory
attached to the processor. Some original ideas in improv-
ing cache performance included improving latency toler-
ance and reduction in cache misses.

Caching can help improve tolerance by doing aggres-
sive prefetching. However, Simultaneous Multithread-
ing or SMT [11] suggested that the processor could be
utilised for other work while it was waiting for the next
set of instructions. Other approaches included:
1. Write-buffering: When a write operation to a lower
level of cache initiates, the level that generated the write
operation no longer has to wait for the process to com-
plete, and can move to the next action. This action can
take place assuming there is enough buffer to enable write
buffers. This action ensured that a write operation to the
DRAM would not result in the latency of DRAM refer-
ence.
2. Compression of memory: A compressed memory
hierarchy model proposed selectively compressing L2
cache and memory blocks if they could be reduced to
half their original size [21]. The caveat with this model
was that the overhead for compression and decompres-
sion must be less than the amount of time saved by the
compression.
3. Critical-word first: Proposed by [17], in the event of a
cache miss, the location in the memory that contains the
missed word is fetched first. This allows for immediate
resolutions to a cache miss. Once the missed word is re-
trieved and loaded into memory, the rest of the block is

fetched and loaded. This allows for faster execution as
the critical word is loaded at the beginning.

These proposals to improve latency tolerance and im-
prove cache performance worked well when the perfor-
mance gap between CPU-memory was not extensive.
However, some strategies, such as the critical-word first
approach did not help much in case the missed word was
the first word of the block [1]. In that case, the entire
block loading happened the same way it would be loaded
typically, which was through contiguous allocation. Sim-
ilarly, compressing memory did not avoid latency in case
of single memory locations, which was the most cru-
cial and significant factor that needed elimination. The
only approach that made substantial gains was the write-
buffering approach, which was useful if the speed gap be-
tween the CPU-memory was huge [10]. The caveat was
the size of the buffer, that would keep increasing as the
gap in speed between CPU-memory increased.

Similarly, trying to optimise the write performance had
minimal use, as most instruction fetch operations are
reads. So these approaches also did nothing to reduce
the impact of latency. And again, tolerating latency and
improving the cache performance becomes extremely dif-
ficult when the CPU-DRAM speed differential increases
exponentially.After failing to improve the cache perfor-
mance, researchers looked at reducing the cache misses.
A cache miss is when the instruction to be executed is
not in the L1 or L2 cache memory and must be retrieved
from the main memory [10]. This involves communicat-
ing with the main memory, thus invoking the latency issue
again. As is evident, by reducing a cache miss, one can
bypass the latency tolerance conundrum altogether.

However, improvements in any form of associativity
and methods such as memory compression will have
much less influence in reducing latency as the cache size
keeps growing. Also, managing caches through software
will most likely provide the best benefit. Now the biggest
challenge in managing cache on a processor using soft-
ware is the cost involved in losing instructions when using
a replacement strategy that is less effective. And as we
can see, improving the cache performance is the fastest
way to lower the CPU-memory gap in speed. Also, en-
hancing associativity in cache memory will also provide
benefits when leveraged with multithreaded processors,
as multithreading and multitasking can hide DRAM la-
tency.



(a) Read-Latency & Bandwidth Comparison.

(b) Write-Latency & Bandwidth Comparison.

Fig. 2: Comparison of StackDie count vs Read-Latency
& Bandwidth.

Contribution

To highlight the key elements mentioned above in an
approach that will solve the memory wall problem, par-
ticularly at an exascale computing level, we are going
to detail in the next section our approach to adding 3D
stacked memory to a CPU. This architecture will improve
the bandwidth, lower the latency while supporting paral-
lelism, associative caching and scalable to the degree that
may arguably benefit exascale computing clusters in su-
percomputers.

METHODOLOGY

In this section, we will describe in detail our approach
to create a feasible, energy efficient, working prototype
of 3D stacked memory using Destiny, Cacti-3DD, and
Gem5.

Using DESTINY to evaluate 3D stacked memory latency
and bandwidth

Created as a collaborative design space exploration
tool, DESTINY can be used to model 2D and 3D
SRAM, eDRAM (enhanced DRAM), STT-RAM (Spin-
Transfer Torque Magnetic RAM), and ReRAM (Resistive
RAM) [23]. It is a comprehensive modelling tool which
can model 22nm to 180nm technology nodes. It can
model both conventional and emerging memories, and the
results of the modelling are validated against several com-
mercial prototypes. In our case, six parameters have been
employed to create a representative 3D-stacked mem-
ory architecture: StackedDieCount, PartitionGranular-
ity, LocalTSVProjection, GlobalTSVProjection, TSVRe-

TABLE I: Output Parameters and their valid ranges for
the memory size

Output Parameters Valid Range
Timing - Read Latency <13 nano seconds
Timing - Write Latency <13 nano seconds
Timing - Refresh Latency <13 nano seconds
Bandwidth - Read Bandwidth >40 GB per second
Bandwidth - Write Bandwidth >30 GB per second

dundancy, and MonolithicStackCount, which are aligned
with best practices [22]. We have run a parameter sweep
ranging from 128 MB to 8192 MB, and each memory
configuration running on varying data bus width, ranging
from 32 bits to 1024 bits. For each run, the following
output parameters were piped to an output file, with the
acceptable values as per the valid range specified in Ta-
ble I:

After compiling the results of the test runs and sim-
ulations, we observed that by varying the parameters:
StackedDieCount and MonolithicStackCount, relevant
3D stacked memory configurations are visible. We then
run the results through a bar plot to visualise the results
and look for the optimum size memory capacity with low
latency a high bandwidth capability, which will display
the most appropriate quantity of the 3D stacked memory
wafer.

Based on Figures 2a and 2b, the 2GB configuration
has been chosen as the prime candidate for the next set of
tests with Cacti-3DD, which would help us to model the
energy efficiency and power consumption aspects of the
selected 3D stacked memory configuration.

Using CACTI-3DD to evaluate Area Efficiency, Power
Consumption and Energy Leakage of 3D stacked mem-
ory

We have then used the 3D-stacked memory configu-
ration obtained from DESTINY to evaluate the area ef-
ficiency, power consumption, and thermal efficiency of
the 3D stacked memory module. Using a 2GB eDRAM
wafer, we had StackedDieCount(SDC)of 1-16 in multi-
ples of 2 and MonolithicStackCount(MSC): 1-16 in mul-
tiples of 2. MSC was increased in multiples of 2, from
1,2,4,8,16,32, and for each MSC count, SDC count was
kept constant. For each configuration, Cacti-3DD was run
to evaluate the area efficiency of the proposed configura-
tion, along with power consumption, power leakage and
thermal efficiency. In our case, area efficiency of < 100%
and Power-Leakage < 1 Watt.

For the chosen 2GB memory module, the area effi-
ciency and power leakage parameters have been evaluated
in order to find the most energy efficient design, with the
lowest power leakage. We see a sharp drop in area effi-
ciency after the SDC & MSC with counts up to 16, as dis-
played in Figures 3a and 3b respectively. We then overlay
the area efficiency plots over the power leakage plots, in
order to find the SDC & MSC configuration that has the
highest bandwidth and lowest latency.

When we evaluate the power leakage parameter and
compare it with the area efficiency parameter, with in-
creasing SDC & MSC, we observe that the area efficiency



(a) Read/Write-Latency Comparison.

(b) Read/Write-Bandwidth Comparison.

Fig. 3: Efficiency and power leakage evaluation

is high at 91% with power leakage under 1 Watt, when
the SDC & MSC count is at 16 and 4, as is evident in Fig-
ures 4a and 4b. And while this configuration isn’t very
low in terms of energy leakage, it does showcase the low-
est power leakage combined with the lowest latency and
highest bandwidth. Hence, we choose this layout for the
actual design specification section. In the next section, we
will showcase the actual design specification of the 3D
stacked memory, based on the configuration parameters
detailed above, in the Gem5 simulator. After a successful
3D stacked memory configuration is obtained in Gem5,
we will then run a simple hello-world test using Gem 5 to
validate the architecture and the simulation of the chip.

Based on the figures 3a, 3b, 4a and 4b, the 2GB can-
didate with the following specifications using Cacti-3DD
and DESTINY was selected for the next stage of design
specification using gem5:

Bank Organization: 256 x 256 x 8
- Row Activation : 1 / 256 x 1
- Column Activation: 1 / 256 x 1
Mat Organization: 1 x 2
- Row Activation : 1 / 1
- Column Activation: 1 / 2
- Subarray Size : 32 Rows x 512 Cols
Mux Level:
- Senseamp Mux : 1
- Output Level-1 Mux: 1
- Output Level-2 Mux: 2
Local Wire:
- Wire Type : Local Aggressive
- Repeater Type: No Repeaters

(a) Power Efficiency-Power Leakage-Latency

(b) Power Efficiency-Power Leakage-Bandwidth

Fig. 4: Power Efficiency-Power Parameterisation for
Leakage-Latency and Leakage-Bandwidth

- Low Swing : No
Global Wire:
- Wire Type : Global Aggressive
- Repeater Type: No Repeaters
- Low Swing : No
Buffer Design Style: Latency-Optimized
Area:
- Total Area = 3.93101mm x 39.1354mm
- Mat Area = 15.3555um x 152.872um
- Subarray Area = 15.3555um x 73.9001um
- TSV Area = 1.96umˆ2
- Area Efficiency = 91.9679%
Timing:
- Read Latency = 11.5334ns
- Write Latency = 6.31317ns
- Refresh Latency = 3.40672us
- Read Bandwidth = 49.2234GB/s
- Write Bandwidth = 39.741GB/s
Power:
- Read Dynamic Energy = 294.026pJ
- Write Dynamic Energy = 293.86pJ
- Refresh Dynamic Energy = 7.16835uJ
- Leakage Power = 786.093 mW

DESIGN SPECIFICATIONS

A. Creating a basic CPU with Cache & Memory Con-
troller in Gem5

When trying to architect the basic 3D-stacked Wide
I/O DRAM memories, we are faced with three massive
changes to be modelled:



Fig. 5: Simple CPU Layout in Gem5.

1. How to enable 3D stacking of DRAM dies with the
help of Through Silicon Via (TSV) interconnects.
2. How to support a minimum of four independent mem-
ory channels.
3. How to extend I/O interfaces to x128 bits per channel

Now, when compared to conventional DRAM, a 3D-
stacked DRAM architecture offers increased memory
bandwidth plus improved energy efficiency, due to the
largely increased I/O interface width and significantly re-
duced I/O power consumption. The reduction in power
consumption is achieved by stacking DRAM dies using
low capacitance TSVs, compared to the traditional hori-
zontal organisation of DRAM chips on one single plane.

We begin by creating a simple CPU in gem5, with stan-
dard CPU core connected to a system-wide memory bus.
Please note that setup, installation and configuration of
gem5 are not covered in this section. With that, we will
connect a simple DDR3 memory channel, also connected
to the bus. As gem5 is a modular design simulator, most
of its components can be simulated as Sim-Objects such
as CPUs, memory controllers, cache memories, buses etc.
So we import all the SimObjects from the m5 library, in-
stantiate the system we are going to simulate, set the clock
on the system, specify a voltage domain. Next, we need to
simulate the memory timings mode for the memory sim-
ulation. We also create a simple CPU timing based CPU
which executes one single instruction in one clock cycle
and then create a memory bus that is connected system-
wide. Connecting the cache ports to the CPU, such as the
instruction cache port and the data cache port, is the next
step. A system cannot function without an interrupt con-
troller, so we create the I/O controller and connect it to
the memory bus. So we create a special port in the sys-
tem to allow the system to read and write memory.

The next step is to create a memory controller and
connect it to the memory bus. We use a simple DDR3
controller and connect it to the membus. This creates a
system with no caches, temporarily. The next step is to
add caches to the CPU model. We create caches sepa-
rately and import them into the main CPU model file. We
create L1 cache, instruction and data, and give it param-
eters such as associativity, tag latency, data latency, re-
sponse latency, miss status handling registers etc. Next,
we instantiate each cache type, such as L1 data and L1
instruction, and add a size value to each, 16kB for L1 In-

struction and 64kB for L1 Data. Similarly, we create an-
other L2 cache with similar parameters and size 256kB.
Now, we need to instantiate the caches and connect them
to the interconnect. Once this is done, the process that the
CPU needs to execute needs to be set up. Gem5 operates
in two modes, syscall emulation mode (SE mode) and full
system mode (FS mode).

For now, we will run our system in the SE mode by
providing it with a pre-compiled executable. We use a
simple ”hello world” C program, after we create a process
and set the process command to the command we want to
run, we set the CPU to use the process as its workload
and create the functional execution context in the CPU.

The CPU created by the steps mentioned above is de-
tailed in Figure 5. This CPU is our reference CPU which
will be later used to run the PARSEC benchmarks, by
leveraging the 3D stacked memory architecture. The ob-
jective is to create a CPU model Gem5 understands, and
then give it a memory subsystem it can use to load and
store data, just like a regular CPU uses DRAM to load
and store data.

IMPLEMENTATION

With inputs from [3], [2], [19], [16], we set out to cre-
ate the 3D stacked memory architecture in Gem5. The
overall architecture that was created is displayed below
in Figures 6 and 7. This memory architecture was created
in a separate file, and was imported into the CPU cre-
ated in the previous section. It uses the following com-
ponents unique to the 3D stacked memory architecture:
Vault Controllers, Serial Links, Internal Memory Cross-
bars.

The 3D stacked configuration is arranged in layers of
DRAM wafers, each layered on top of the other, and con-
nected to each other with the help of TSVs or Through
Silicon Vias. A vault is a vertical interconnect across the
four layers, each layer containing 128 MB of DRAM,
thus creating a vault size of 512 MB. This can be in-
creased or decreased by adding or removing more layers
of DRAM stacked on top of each other. The logic layer
and the 3D stacked memory crossbar sits under the base
layer of DRAM, and provides routing and access to the
vaults. The crossbar helps vaults connect to each other.
The system designed here contains four DRAM layers
and one logic layer die. Within each cube, the mem-
ory is organised and stacked vertically. Each vault has
a vault controller that manages memory operations such
as timing, refresh, command sequencing. Each vault can
be configured with a maximum theoretical bandwidth of
10GB/s, thereby giving the 3D stacked architecture with
8GB of memory a total bandwidth of 160GB/s, which is
possible using 2GB wafers with 40GB/s bandwidth, as
we have explained previously. After a vault is accessed,
we have configured a delay which prevents the vault from
being accessed again, just like in regular DRAM. Each
crossbar is assigned 4 vaults considered to be local. The
other 12 vaults are considered remote, and can be ac-
cessed with the help of the crossbar switch. The 3D
stacked memory must be refreshed periodically, and it is
handled internally by the vault and logic controller.

At the bottom of the 3D stacked memory, we have the



Fig. 6: 3D Stacked Memory Design Architecture

Fig. 7: 3D Stacked Memory - Vaults & Layers

serializer and deserializers, and the high speed links that
are comprised of 16 different lanes that can be used to
transmit in both transmit and receive directions. There-
fore, a theoretical maximum bandwidth of 320 GB/s can
be attained with the help of this 3D stacked architec-
ture. Each lane can be configured to run in a full width
or half width configuration. From a programmable per-
spective, the lanes can run in a 16X16, 16X8, 8X16, or
8X8 lane configuration. Figure 8 indicates the relation-
ship between the local vaults, quadrants, crossbars and
the remote vaults. The 3D stacked memory architecture
created with the parameters and configurations previously
described, was compiled and run in Gem5.

EVALUATION

In order to test and evaluate our 3D stacked mem-
ory based CPU architecture, we need to run our cus-
tom CPU on a clean system that does not have any ad-
ditional software on it. Table II reports the performance
of the custom architecture running PARSEC[5], [6]. We
have compared the run times and execution times for the
benchmarks using our custom architecture against a stan-
dard DDR3/DDR4 memory based system at DDR3/4-

Fig. 8: Vaults, Quadrants and Crossbars

Fig. 9: PARSEC - Multi Core Normalized Execution
Times, DDR3/DDR4/3D Stacked Memory.

Fig. 10: PARSEC - Normalized Execution Times,
DDR3/DDR4/3D Stacked Memory.

Fig. 11: Performance Gains & Improvement over
DDR3/4 memory

Fig. 12: PARSEC Benchmark Execution times compared
by size - 3D Stacked Memory Sizes



TABLE II: Performance Gains - Single and Multi Core
PARSEC Tests
Benchmark Improvement-Single Core Improvement-Multi Core
blackscholes 67% 67%
bodytrack 43% 50%
dedup 60% 56%
fluidanimate 55% 51%
canneal 51% 46%
swaptions 63% 45%
vips 50% 49%
x264 63% 65%

3200 with 15-15-15-35 (2T) timings, running the same
X86 CPU running at 3.0 GHz.

Figure 10 shows the normalised execution time for 8
of the 13 benchmarks available in PARSEC. The run-
times were compiled for each memory system, using a
reference x86 CPU at 3 GHz. Memory capacity was set
to 8 GB for each memory type. As is evident from the
results, there’s not much of a difference between DDR3
and DDR4 in terms of execution speed. However, when
we look at our 3D stacked memory architecture, there
is an average of 40%-60% reduction in execution time
for each benchmark. The benefit is especially evident in
memory intensive benchmarks such as Fluidanimate and
Vips, both of which are data-parallel models with medium
working set data. This was the result of a single core ex-
ecution, where the reference CPU was launched with just
one core running at 3 GHz.

The next set of tests have been executed with multi-
ple cores being launched at runtime. As some of the
benchmarks leverage multi threading and multiple cores
as well, observing the performance in a multi CPU and
multi threaded environment would be extremely relevant.
By using the -n switch to specify number of CPUs, we
were able to simulate a multi CPU environment. The per-
formance difference, while not hugely different from the
single CPU benchmark result, still indicates that some
benchmarks are inherently more CPU dependent than
memory dependent. In Figure 9, we see the results of us-
ing 4 cores assigned to each CPU at run time. As before,
all results were normalised according to the execution
time of the target architecture with main memory imple-
mented with DDR3. As is evident from the results of two
benchmarks displayed in Figure 10 and 9, the 3D stacked
memory configuration displays a significant improvement
in performance in industrial benchmarks, while deliv-
ering improved read & write bandwidth, lower latency
than traditional DDR3 and DDR4 memory, while satis-
fying the area efficiency, power consumption and tem-
perature parameters. By comparing the normalised exe-
cution times, we observe the following gains in perfor-
mance over conventional DDR-3/DDR-4 based memory
systems.

For each of the benchmarks evaluated in this paper,
performance gains visible, as displayed in Table II and
Figure 11, by providing the reference 3.0 GHz CPU with
a 3D stacked memory architecture varies from a mini-
mum of 43% in a single-core environment to a maximum
of 67% in a multi-core environment. This is a defini-

Fig. 13: PARSEC Benchmark Execution times - 2GB -
3D Stacked Memory

Fig. 14: PARSEC Benchmark Execution times - 4GB -
3D Stacked Memory

tive indication that supercomputing and indeed the mem-
ory wall challenge will benefit from 3D stacked memory.
By observing significant reduction in the execution times
of supercomputing standard benchmarks, we can confi-
dently say that the overall performance gains achievable
with 3D stacked memory in the configuration detailed in
this paper should be a step in the right direction towards
achieving exascale levels of computing.

We have also run the same set of benchmarks by mod-
ifying the 3D stacked memory size. By altering the num-
ber of stacked monoliths, we have evaluated the perfor-
mance of 3D stacked memory for sizes ranging from
2GB, with just one 3D stacked memory wafer, to 16GB,
comprising of 8 3D stacked memory wafers, each of size
2GB. The normalised execution times are displayed in
Figures 12, 13, 14, and 15. We see conclusive evidence,
especially in memory size intensive benchmarks such as
vips & x264 encode, where higher the memory size, the
lesser is the execution time.

Fig. 15: PARSEC Benchmark Execution times - 16GB -
3D Stacked Memory



CONCLUSIONS AND FUTURE WORK

As we approach exascale levels of computing, we have
realised that not just compute, but every single aspect of
computing needs to scale massively in order to deliver
the expected performance boost. This includes storage,
memory, interconnects, space, power consumption and
cooling. Not to mention the availability of structured par-
allel programming frameworks [14], [15] and administra-
tion as well. This paper has taken on one of the many
challenges we as a race face in achieving and breaching
exascale levels of computing. This paper has taken on the
challenge of implementing a full scale 3D stacked mem-
ory architecture, creating a workable X86 architecture
that is compatible with existing CPUs and benchmarks
capable of evaluating hardware at supercomputing levels.
The results look promising to say the least, with signif-
icant improvements visible in memory-intensive bench-
marks such as Fluidanimate and Vips, and the system also
looks capable of scaling and performing under multi-core
environments as well.

This exercise intends to showcase that existing chal-
lenges in computing require a different, non-conventional
approach such as 3D stacking. The future work on this
topic would be to incorporate a machine learning algo-
rithm to evaluate the results of multiple memory sizes,
multiple cores, on the PARSEC benchmarks and run the
benchmarks at a proper computationally-demanding en-
vironment in order to see how much gains are possible
in terms of FLOPS. Not just supercomputers, but cloud
computing will also benefit from the 3D stacked mem-
ory architecture, as many cloud service providers today
provide custom instances tailored to running memory in-
tensive workloads. CSPs such as AWS provide X1 in-
stances that are custom built and designed for large-scale
and in-memory applications in the cloud, which will ben-
efit tremendously from leveraging a 3D stacked memory
architecture.

By providing additional bandwidth, lowered latency,
increased and efficient power consumption metrics for
systems leveraging 3D stacked memory, cloud service
providers will be able to provide high-performance in-
stance capable of running memory intensive workloads
such as running in-memory databases such as SAP
HANA, big data processing engines like Apache Spark or
Presto, and HPC applications. The potential benefits ob-
tainable from such instances will go a long way in provid-
ing cheap, high-performance compute platforms to end
users.

REFERENCES

[1] K. Ahmed, J. Liu, A. Badawy, and S. Eidenbenz. A brief history
of HPC simulation and future challenges. In 2017 WSC, pages
419–430, Las Vegas, Dec. 2017. IEEE.

[2] J. Ahn, S. Yoo, and K. Choi. Low-power hybrid memory cubes
with link power management and two-level prefetching. IEEE
Transactions on Very Large Scale Integration (VLSI) Systems,
24(2):453–464, 2016.

[3] E. Azarkhish et al. High performance AXI-4.0 based interconnect
for extensible smart memory cubes. In 2015 DATE, pages 1317–
1322, Grenoble, Mar. 2015. IEEE.

[4] Z. Z. Bandic and other. Multilayer 3D memory based on network-
on-chip interconnection. US Patent US 10,243,881 B2, Western
Digital Technologies, Irvine, CA, Mar. 2019.

[5] C. Bienia, S. Kumar, J. P. Singh, and K. Li. The PARSEC bench-

mark suite: Characterization and architectural implications. In
PACT ’08, pages 72–81, Toronto, Oct. 2008. ACM.

[6] C. Bienia and K. Li. PARSEC 2.0: A new benchmark suite for
chip-multiprocessors. In MoBS 2009, pages 1–9, Austin, June
2009.

[7] N. Binkert et al. The Gem5 simulator. SIGARCH Comput. Archit.
News, 39(2):1–7, Aug. 2011.

[8] K. Chen et al. CACTI-3DD: Architecture-level modeling for 3D
die-stacked DRAM main memory. In 2012 DATE, pages 33–38,
Dresden, Mar. 2012. IEEE.

[9] V. Cuppu, B. Jacob, B. Davis, and T. Mudge. High-performance
drams in workstation environments. IEEE Transactions on Com-
puters, 50(11):1133–1153, 2001.

[10] R. Das. Blurring the lines between memory and computation.
IEEE Micro, 37(6):13–15, 2017.

[11] S. J. Eggers et al. Simultaneous multithreading: A platform for
next-generation processors. IEEE Micro, 17(5):12–19, 1997.

[12] A. Geist and D. A. Reed. A survey of high-performance com-
puting scaling challenges. Int. J. High Perform. Comput. Appl,
31(1):104–113, 2017.

[13] S. Ghose, T. Li, N. Hajinazar, D. S. Cali, and O. Mutlu. De-
mystifying complex workload-dram interactions: An experimen-
tal study. Proc. ACM Meas. Anal. Comput. Syst., 3(3), Dec. 2019.

[14] M. Goli and H. González-Vélez. Formalised composition and in-
teraction for heterogeneous structured parallelism. Int. J. Parallel
Program., 46(1):120–151, 2018.

[15] H. González-Vélez and M. Leyton. A survey of algorithmic skele-
ton frameworks: high-level structured parallel programming en-
ablers. Softw. Pract. Exp., 40(12):1135–1160, 2010.

[16] R. Hadidi et al. Demystifying the characteristics of 3D-stacked
memories: A case study for Hybrid Memory Cube. In 2017
IISWC, pages 66–75, Seattle, Oct. 2017.

[17] J. Handy. The Cache Memory Book. Academic Press Professional,
Inc., San Diego, CA, USA, 1993.

[18] J. Hopkins and other. 3D memory. US Patent US 10,170,639 B2,
Micron Technology, Boise, ID, Jan. 2019.

[19] G. Kim et al. Memory-centric system interconnect design with
hybrid memory cubes. In PACT ’13, pages 145–156, Edinburgh,
2013. IEEE.

[20] D. Lee et al. Design-induced latency variation in modern DRAM
chips: Characterization, analysis, and latency reduction mecha-
nisms. Proc. ACM Meas. Anal. Comput. Syst., 1(1):26:1–26:36,
June 2017.

[21] W.-F. Lin. Reducing DRAM latencies with an integrated memory
hierarchy design. In HPCA ’01, pages 301–, Monterrey, Jan. 2001.
IEEE.

[22] S. Mittal. A survey of architectural techniques for managing pro-
cess variation. ACM Comput. Surv., 48(4):54:1–29, Feb. 2016.

[23] S. Mittal, R. Wang, and J. Vetter. DESTINY: a comprehensive
tool with 3D and multi-level cell memory modeling capability. J.
Low Power Electron. Appl., 7(3):23, 2017.

[24] H. A. D. Nguyen et al. A classification of memory-centric comput-
ing. J. Emerg. Technol. Comput. Syst., 16(2):13:1–26, Jan. 2020.

[25] M. Poremba et al. DESTINY: A tool for modeling emerging 3D
NVM and eDRAM caches. In 2015 DATE, pages 1543–1546,
Grenoble, Mar. 2015. IEEE.

[26] M. Qureshi. With new memories come new challenges. IEEE
Micro, 39(1):52–53, 2019.

[27] C. Weis, M. Jung, and N. Wehn. 3D stacked DRAM memories. In
P. Franzon, E. Marinissen, and M. Bakir, editors, Handbook of 3D
Integration: Design, Test, and Thermal Management, volume 4,
chapter 8, pages 149–185. Wiley, Weinheim, 2019.


	Creating a basic CPU with Cache & Memory Controller in Gem5



