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Malware Classification using Km-SVM 
 

Ashish Ghorpade  

X18147461  
 

 

Abstract 

Malware identification and classification is a problem faced even in this decade. This is majorly 
due to the fact that advance malware are more sophisticated in nature and have state of the art 

abilities to remain hidden or change their code/behaviour more like a smart malware. Hence, old 

detection and classification techniques are no longer as effective. This resulted in pivoting 
towards machine learning for better detection and classification of such malware. This is the 

motive behind the topic of this research thesis. Through this thesis, effort has been made to better 

classify malware using a combination of supervised and unsupervised machine learning while 

keeping the accuracy at acceptable levels and reducing training time. This led to conducting 
study not only in malware classification but also in other fields such as speech recognition and 

medical research to identify different techniques which could possibly be used for successful 

malware classification. 

 

1 Introduction 

This research aims to find a better way to classify malware using a combination of 

existing machine learning techniques. Efforts were made to not only classify malware 

with accepTable 1ccuracy but also to reduce training time which could prove to be useful 

when dealing with huge malware datasets. This encouraged the creation of a tool that can 

be used for malware classification and outputs results from 3 different machine learning 

models for the purpose of evaluation. The primary goal of this project is to verify the 

hypothesis that Km-SVM (Kmean-SVM) can be used as a malware classifier with results 

as good as a supervised learning model (SVM) and a lower training time. 

 

2 Related Work 

A thorough literature review was conducted to better understand the background on 

research conducted in the area of Malware Identification and Classification based on 

various techniques. This was divided into 4 significant parts. Evolution of existing 

malware detection techniques helped to understand the trends and current status in the 

area of malware detection. A study was also conducted on how malware files are 

analysed and converted to a format usable for analysing the data. Further literature 

review was conducted to study various machine learning and prediction models used for 

analysis of malware and other areas such as medical science (cancer prediction) and 

voice recognition. This study was further extended to understanding how feature 

extraction and selection worked and its impact and significance on analysis and 

prediction. This review was crucial in hypothesising the basis of the research topic. 

Hence the hypothesis, Malware classification can be improved in accuracy over basic 

Kmeans(unsupervised) and reduce training time as compared to SVM(supervised) while 
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providing similar accuracy to supervised learning. This will be attempted by combining 

Kmeans and SVM using HMM as a complementing feature selection technique. 

2.1 Evolution of Malware Detection Techniques 

Accurate malware detection has been a major concern in the Cyber Security 

community. This has resulted in the evolution of detection techniques. The techniques 

described in [1] have evolved significantly from anomaly, specification and signature-

based detection to sophisticated behaviour-based detection using various machine 

learning techniques such as SVM [2] and Deep learning [3]. This change in detection 

techniques was ineviTable 4ue to the development of sophisticated malware capable of 

polymorphism [4]. Modern malware has the capability to remain hidden, detect the host 

and Anti-Virus configuration, change behaviour and connect to a remote server for 

instructions [5],[6]. Although effective and accurate, machine learning techniques have 

short comings such as scarce availability of labelled data for supervised learning such 

as SVM [2]. This problem can be addressed though unsupervised machine learning 

such as K-means [7] but usually lack in accuracy as compared to supervised machine 

learning [8].  

2.2 Dynamic Analysis of Code and MIST 

Machine learning techniques require data in numerical format. However, malware 

files/executables contain code which is executed on a machine. This code is written in 

High level languages which is then converted into machine level and then as binary 

instructions [9]. The paper [10] proposes the use of online sandbox for execution of 

such code in a simulated environment and capturing the behaviour. This consists of 

sequences of API calls made by the malware file. Similar methodologies have been 

mentioned in [11] and [12]. The Dynamic code analysis technique mentioned in [10] 

was deemed to be effective based on the output and ease of use. CWSandbox was 

recommended for this analysis. A sample XML based output can be seen in Figure 1. 

 
Figure 1 
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The literature in [13] and [14] further facilitated the use of CWSandbox and conversion 

Of XML based output to a Hexadecimal representation. This representation has been 

referred to as the Malware Instruction Set (MIST) in [14]. Figures B and C depict the 

XML representation and the MIST representation respectively. Figure 4 represents a 

generic view and interpretation of this format. 

 
Figure 2 

 
Figure 3 

 
Figure 4 

2.3 Km-SVM Algorithm 

After referring to multiple papers on machine learning techniques for malware 

detection and classification and finding the optimum way to represent the API calls, the 

major focus was on hypothesizing an Algorithm that can utilize supervised and 

unsupervised learning techniques for malware analysis. This was encouraged due to the 

literature in [15] and [16]. Paper [16] suggested the use of semi-supervised learning for 

malware analysis which can be a potential solution for the problem of limited labelled 

data. It uses the LLGC (Learning with Local and Global Consistency) algorithm for 

classification. However, the accuracy obtained with 50% labelled data was about 80% 

which is lower that supervised learning accuracy. Paper [17] suggested use of the 

wKm-SVM (weighted Kmeans SVM) algorithm for cancer prediction. This facilitated 

further research in the use of Kmeans along with SVM. Papers [18], [19] and [20] have 

mentioned the use of Km-SVM algorithm. This was proposed to over come the 

problem of data being separated into subclasses. This is relatable to our problem of 

malware classification wherein, the malware can be further classified into sub-types 

based on their function, polymorphism and behaviour. These papers suggest that once 

the data has been clustered for each sub-class, this can be classified using SVM. This 

technique has an added advantage of low training time as compared to the former. 

2.4 Feature Selection Techniques and HMM 

Another crucial factor to consider while performing machine learning is the extraction 
and selection of features. These features form the basis of segregating/classifying the 
data. This is important for malware analysis as malware often have the tendency to 
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disguise as a benign file to trick Anti-Virus engines. Often, malware is not detected if 
they are dormant. While the API sequence calls discussed in [13] and [14] are useful, the 
features can be hidden. Papers [21], [22] and [23] discuss ways for extracting and 
selecting these features. Literature in [21] and [23] promotes the use of PorTable 
5xecutable (PE) headers. A porTable 5xecuTable 6ile contains various headers in the 
form of a Key – Value pair. However, it was found that it is useful only for the 
identification problem and not for classification. This observation can be better 
understood from the further description of these papers. The papers suggest using few of 
these pairs as features to be analysed for identification of malware. Below are few of the 
headers suggested as features: 

• DebugSize – The value shows the size of the debug directory. Debug directories 
tend to have a non-zero value in case of benign files and zero in case of 
malicious. Note that this can only be used for a possible identification of malware 
but not for classification of malware. 

• ExportSize – This may also be a non-zero value for benign files as this directory 
may contain multiple DLLs. Malicious files do not tend to have many DLLs as 
their intent is limited. 

• NumberOfSections – This feature may vary in both malicious and benign files. 

Based on the above factors it can be confirmed that this method of feature extraction and 
selection CANNOT be used for malware classification but provides more insights into 
generic malware files and the importance of feature extraction and selection. 

Further study led to [13] which provided a comparison of various feature extraction and 
selection techniques. The paper studies techniques such as unigram binary, unigram 
frequency, bigram binary, bigram frequency and HMM (Hidden Markov Models). The 
study concluded that HMM was the most optimum way to extract features. This 
observation was confirmed though studies mentioned in [24], [25] and [26].  

HMM: Hidden Markov Model is a further derivation of the Markov Model. It is 
classified as a statistical model that can be trained on multiple observation sequences. 
This model can identify hidden states in the sequences and calculate the likelihood of a 
sequence occurring [27]. This model is used for solving the following three basic 
problems: 

• Problem 1 – Calculate probability of an observation sequence based on a 
trained/fitted model. 

• Problem 2 – Finding the best sequence/occurrence of hidden states for a trained 
model. 

• Problem 3 – Model training to maximise the probability of the observation 
sequences. 

These problems were found to be similar to the API call sequences being used for 
malware classification [28]. 
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3 Research Methodology 

The research methodology is based on the conclusions of the literature. The proposed 

approach is to utilise the MIST represented data available through the CWSandbox and 

encoding it for use in feature extraction and scoring. This is further used for performing 

clustering and finally SVM. These trained models are used for predicting the test data. 

The sub-sections below provide complete details on the methodology followed. 

3.1 Data selection 

Given the nature and possible damage, malware data and files are hard to obtain. As 

such, the malware dataset used in [13] and [14] is used. It is available at [29]. The 

dataset comprised of 29,661 malicious files belonging to various malware families. 

However, the number of files per malware family varied significantly. Hence, files 

belonging to only 9 families was considered. Table 1 shows the number of files per 

malware type: 

MALWARE TYPE FILE COUNT 

Agent 748 

Allaple 869 

Patched 816 

Autoit 1191 

Nothingfound 6003 

Swizzor 1037 

Texel 5993 

Virut 2092 

Table 1 

3.2 Data Pre-processing 

Pre-processing of data was carried out to ensure that the data did not contain any 

discrepancies. This was achieved by balancing the files used per malware type and then 

encoding each file. The Table 2 shows the number of files per type that were used. 

 

MALWARE TYPE SET 1 

Agent 200-300 

Allaple 200-300 

Patched 200-300 

Autoit 200-300 

Nothingfound 200-300 

Swizzor 200-300 

Texel 200-300 

Virut 200-300 

Table 2 

The number of files used was decided based on the hardware limitations of the device 

used for training and testing and the literature mentioned in [24]. 
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After selection of dataset, an encoding was performed on the MIST represented 

sequences to make the data compatible for Machine Learning. This was performed by 

referring to [13] and [14]. Table 3 shows the original and encoded values, below. 

 
Table 3 

Based on the reference Table 3, each unique call was encoded by a value ranging from 

1-120. This was determined based on the 120 unique calls found in the MIST 

representation. This resulted in sequences of variable length with values ranging from 1 

to 120. Each sequence represents the API call sequence for a single malicious file. 

After the completion of encoding, the dataset was split into Train and Test sets. 10% of 

the dataset files were used for testing. This ratio was chosen based on the hardware 

limitations which in-turn limited the testing files used. 

3.3 Feature Extraction using HMM 

The Hidden Markov Model (HMM) was chosen for the purpose of feature extraction 

due to its compatibility with sequences of variable length. Problem 3 of the HMM was 

the basis of training 9 unique HMMs for the 9 unique malware types used [28]. The 

trained HMMs were used to calculate the log likelihood scores. These trained models 

were then used to score each file in the test dataset. This was done using the solution 

for Problem 1 of HMMs [28]. 

3.4 Training and Testing 

K-Mean: The K-Mean clustering algorithm [7] was used to create clusters based on the 

HMM scores for the files. The number of clusters was based on the number of unique 

malware types. This part was conducted in batches of 4 or 5 malware types to 

overcome the hardware limitations faced during the execution of the complete code. 

Only the scores were used for the purpose of Kmeans to ensure that the data is 

unlabelled. 

 

SVM: The SVM algorithm was used to classify the malware file by appending the 

scores generated from the malware files to the respective labels. This resulted in the 

generation of labelled data for performing SVM. However, this was done without using 

the cluster output from K-mean. 
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Km-SVM: Finally, a Km-SVM model was trained and used for testing. This was 

achieved by using the clustered output from K-Mean and performing SVM. This 

resulted in the creation of labels from the clusters and feeding the output to SVM for 

further classification. 

4 Design Specification 

This section depicts the complete design of the model created. This acts as a complete 

tool for malware classification. This tool is capable of mining data from separate 

malware MIST files, encoding, saving cache, splitting the dataset into train and test parts, 

performing HMM, Kmean, SVM and Km-SVM on the train and test data. Figure 5 

shows the complete process flow and the design of the tool. As seen from the Figure 5, 

malicious exe and dll files are placed in the CWSandbox and a MIST represented output 

is obtained. This output is encoded for usability. The encoded data is then stored in a 

cache file for possible future use. This cache file is then split into train and test data. The 

train data is used to fit the HMM model on set of observation sequences. The number of 

models trained is equal to the number of unique malicious file types. The train files are 

scored and these scores are used for Kmeans clustering. The same scores are labelled and 

used for fitting an SVM model. Separately, the clustered output from Kmeans is used for 

SVM to generate the output of a Km-SVM model. The output contains a Graph, Model 

Accuracy and Training time. This process is again repeated for the test data but on the 

trained models obtained from the previous iteration. This tool was designed with the 

intent of comparing the output results from three separate models – Kmeans, SVM and 

Km-SVM. 

 

 
Figure 5 
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5 Implementation 

This part explains the complete implementation of the developed tool. Information on the 

technologies used and creation of an environment is explained further. 

 

Hardware Specifications: For the purpose of this project, a 4th Gen i7 Processor Laptop 

with 8 GB Ram was used. Due to these limitations, the training and testing was limited 

to 200-300 files per type of malware. Additionally, to further reduce the load on the 

hardware, analysis was performed in batches of 4-5 malware file types. 

Software Specifications: The host operation system is Windows 8.1 Professional 64-

Bit. Below is the list of software used for the purpose of this project. 

• Python 3.7.4 – Python is a robust language which is easy to learn and use. This 

language is supported by a number of IDEs. Moreover, it has a vast community 

support and packages available for machine learning and other data analytic 

models. This encouraged the use of Python for the creation of the proposed tool. 

• Visual Studio Code – This is an IDE that requires minimum resources to 

function. Additionally, it supports the use of Python which was the basis of 

selection of this software. 

• Python Packages – Multiple python packages were used for performing 

operations such as data mining, cleaning, encoding and machine learning. A list 

of these packages and their respective versions is made available in the 

Configuration Manual. 

Code Tuning and Setup: It is recommended that Visual Studio Code be used for setting 

up the tool. This tool has 3 major components: 

• Dataset.py – This file contains the code to mine, encode and save data in cache 

file. 

• Hmmmodels.py – This script contains the complete code for training and testing 

the data through HMM, Kmeans, SVM and Km-SVM. 

• Dataset – This folder contains the raw files belonging to different malware 

families. The number of files can be varied based on the System Configuration of 

the Machine used to run the tool. 

Output: The output consists of Graphs, Accuracy out of 1 and Training/Testing time for 

Kmeans, SVM and Km-SVM on the Train and Test data. This is useful for evaluation 

purpose of the models. 

 

 

6 Evaluation 

For the purpose of this report, only the output values for the test set are considered. 

Three separate case studies are performed with varying set of malware types and number 

of files per malware type limited to 200-300. 
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6.1 Batch 1 – AutoIT, Allaple, NothingFound, Swizzor 

Classification results of the test on Batch one can be seen in Figures F,G and H. Model 

Accuracy can be seen in Figure 9 and Training time for SVM and Km-SVM can be 

seen in Figure 10. 

 
Figure 6 

It can be seen that AutoIt dominates cluster 2 while Allaple and Swizzor dominate 

cluster 0 and 3 respectively. Cluster 1 is shared between NothingFound and Swizzor. 

Traces of NothingFound are found in Cluster 0 as well. 

 

 
Figure 7 
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Figure 7 depicts 4 distinct graphs for the 4 malware families based on SVM model. 

NothingFound was the only one that shared Graph 0 and Graph 2. 

 
Figure 8 

Figure 8 shows results similar to Figure 7. This implies that the output for SVM and 

Km-SVM was similar. This can be confirmed from the test accuracy Figure 13entioned 

in Figure 9. 

 

Figure 9 

The accuracy for Km-SVM was similar to SVM. However, accuracy for Kmean was 

only half of the other two models. 

 

Figure 10 
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The training time for Km-SVM was found to be significantly lower than SVM. This 

can be seen from the first and last lines in Figure 10. 

6.2 Batch 2 – Allaple, AutoIt, Patched, Virut 
 

Classification results of the test on Batch one can be seen in Figures K, L and M. 

Model Accuracy can be seen in Figure 14 and Training time for SVM and Km-SVM 

can be seen in Figure 15. 

 
Figure 11 

Cluster 0 and 2 are occupied by Virut and AutoIt respectively. Cluster 3 has a very 

small number of Patched files whereas, cluster 1 is shared majorly by Pathced and 

Allaple and a small number of Virut files. 

 

 
Figure 12 
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SVM classification is observed to be significantly better as compared to Kmeans. Only 

the graph 2 is shared by majority of Patched files and a small amount of Virut files. 

 
Figure 13 

Figure 13 was once again found to be similar to Figure 12 which implies that the results 

for Km-SVM were similar to SVM. 

 

Figure 14 

The accuracy for Km-SVM and SVM was 0.91 out of 1. However, accuracy for Kmean 

was only very low in comparison to the other two models. 

 

Figure 15 
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The training time for Km-SVM was found to be almost similar to SVM. Not much 

significant difference could be found since the number of training files were low. 

6.3 Batch 3 – Agent, Allaple, AutoIt, Patched, Swizzor 
 

Classification results of the test on Batch one can be seen in Figures P,Q and R. 

Model Accuracy can be seen in Figure 19 and Training time for SVM and Km-SVM 

can be seen in Figure 20. 

 
Figure 16 

AutoIt and Swizzor were found to the the dominant families in clusters 2 and 1 

respectively. The clusters appear to be unbalanced. 

 

 
Figure 17 
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The graph in Figure 17 implies that SVM classification was significantly better than 

Kmeans. All the malware families are adequately classified. 

 
Figure 18 

The results for Km-SVM were different than SVM for this batch of malware files. 

 

Figure 19 

The accuracy for Km-SVM was 71% which is lower than SVM at 86%. However, 

accuracy for Kmean was even lower than the other two models. 

 

Figure 20 

The training time for both the models was almost similar as observed for the batch 2. 
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6.4 Discussion 

Observations from the 3 different tests conducted on the separate sets of malware 

families show that the results obtained from Km-SVM were significantly higher than 

Kmeans for all three tests and equal to SVM in two tests and 16% lower in test 3. The 

training time for Km-SVM was lower than SVM in test 1 and equal to SVM in test 2 and 

test 3. These results are subject to the configurations used in the tool and the family 

types. The malware families of Allaple, AutoIt and Swizzor were found to be 

significantly different and dominant than the other families over all 3 tests performed.  
 

7 Conclusion and Future Work 

The results obtained from the tests show strong affirmation towards the stated hypothesis 

for use of Km-SVM for malware classification. However, due to time constraints and 

hardware limitations, a more extensive assessment could not be carried out. However, 

based on the literature review and the test results for this research, it can be stated that 

the results were satisfactory. These shortcomings could be addressed in as part of the 

future work. Additionally, appending the LLGC (Learning with Local and Global 

Consistency) algorithm will compliment the existing tool as the test results can be used 

to retrain the model further in-turn improving the overall test accuracy for further 

iterations. Future work may also include the implementation of KFold Cross Validation 

or Leave one out Cross Validation for achieving more reliable results. 
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