

Comparative Analysis of the Automated

Penetration Testing Tools

MSc Internship

Cybersecurity

Mandar Prashant Shah

Student ID: x18139469

School of Computing

National College of Ireland

Supervisor: Dr. Muhammad Iqbal

National College of Ireland

MSc Project Submission Sheet

School of Computing

Student Name:

Mandar Prashant Shah

Student ID:

X18139469

Programme:

MSc Cybersecurity

Year:

2019

Module:

Internship Thesis

Supervisor:

Dr Muhammad Iqbal

Submission Due

Date:

08/01/2020

Project Title:

Comparative analysis of the automated penetration testing tools

Word Count:

8573 Page Count 25

I hereby certify that the information contained in this (my submission) is information

pertaining to research I conducted for this project. All information other than my own

contribution will be fully referenced and listed in the relevant bibliography section at the

rear of the project.

ALL internet material must be referenced in the bibliography section. Students are

required to use the Referencing Standard specified in the report template. To use other

author's written or electronic work is illegal (plagiarism) and may result in disciplinary

action.

I agree to an electronic copy of my thesis being made publicly available on NORMA the

National College of Ireland’s Institutional Repository for consultation.

Signature:

……

Date:

……

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple

copies)

□

Attach a Moodle submission receipt of the online project

submission, to each project (including multiple copies).

□

You must ensure that you retain a HARD COPY of the project,

both for your own reference and in case a project is lost or mislaid. It is

not sufficient to keep a copy on computer.

□

Assignments that are submitted to the Programme Coordinator Office must be placed

into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

1

Comparative Analysis of the Automated Penetration

Testing Tools
Mandar Prashant Shah

X18139469

Abstract
 The requirement of performing security audit is growing day by day as the cyber threat

is increasing. One of the key components in this process of securing the network is to

perform penetration test of the network and web applications. With this growing need

there is also a growing need of standardisation/benchmarking in the processes followed

and tools used by penetration testers. In this research based thesis we look at the modern

day automated web penetration testing tools and compare them with industry known

OWASP Benchmark for vulnerabilities. We also address the lack of literature for

framework which evaluates scanners with 360-degree view. To evaluate scanner, we

performed two case studies with 4 scanners.

Our research shows that, scanners with web proxy and configured crawling perform

better as compared to point and shoot scanners. It was also observed that scanners with

active maintenance life cycle performed better. The conclusion drawn from this research

is, to detect multiple vulnerabilities more than one automated scanning tools should be

used. This gives more reliable results.

1 Introduction

According to the Internet Security Threat Report 2019 by Symantec there was 56%

growth observed in web based attacks in 2018, with on an average 30 to 40 million attacks

detected per month1. In the recent years web application exploitation have been used

excessively against internet based applications. The penetration testing is a process of

simulating cyber-attacks against the target system. The penetration test is a controlled process

of penetrating into the network or web application environment in order to identify the

vulnerabilities [1].

The difference between a hacker and a penetration tester is that the penetration test is

carried out with the permission, signed contract and licences. At the end of the penetration test

a report with all the observations and vulnerabilities is prepared and presented to the client.

The penetration test can be performed manually in which a professional penetration tester

assesses the network environment or the web application for the known vulnerabilities. The

manual penetration test lacks repeatability and is largely dependent on the testers skills to

identify the flaws in the application. The automated penetration test on the other hand is

performed using software tools which analyses the application for vulnerabilities. The

automated penetration testing tools have repeatability in their analysis, and it can produce

consistent results for a target system or network. Penetration test has become an essential and

critical activity not only in the information technology (IT) industry but all the industries which

have online presence.

1 Symantec Internet Security Threat Report Volume 24, February 2019:
https://www.symantec.com/content/dam/symantec/docs/reports/istr-24-2019-en.pdf

https://www.symantec.com/content/dam/symantec/docs/reports/istr-24-2019-en.pdf

2

The are many automated penetration testing tools available with different capabilities

and qualities. The specifications which these automated penetration testing tools have vast

range which is from scanning a simple single page web application to scanning a complex

enterprise level multi-layered application with multiple workflows. To measure the

effectiveness of the web security scanners, Benchmarking is one of the processes. There are

well known benchmarks available for web vulnerability scanners, such as Web Input Vector

Extractor Teaser (WIVET) [2], Web Application Vulnerability Scanner Evaluation Project

(WAVSEP) benchmark [3]. In the Penetration testing industry, the automated tool is selected

based on its ability to detect critical vulnerabilities and ease of usability factor. This has given

the motivation to identify the efficient automated penetration testing tool which suffice the

current day trends in the industry.

This research was conducted with an objective of developing a framework to compare

the automated penetration testing tools. We demonstrate the frameworks efficiency and

usability using automated penetration testing tool case studies. The research framework is

based on the previous research done by the Mayur Turuvekere and Anala A. Pandit proposing

automated penetration testing tools evaluation based on vulnerabilities identified [4]. This

research widens the evaluation matrix and provides a broader scale which includes not only

vulnerability detection, but also other parameters of the penetration testing tools. The research

is performed using statistical investigations of the outcomes obtained from the penetration

testing tools.

Research Question:

• To identify efficient automated penetration testing tool to suffice the current day

industry requirement.

Objective:

• Develop Framework to compare the web applications penetration testing tools.

• To do the research based comparative analysis of automated penetration testing tools

on recent trends in the industry.

• To demonstrate statistical investigations of the outcomes obtained from the penetration

testing tools.

The research paper is presented as follows, Section 2 covers the literature review and

related work of our research, Section 3 discusses the research methodology and framework

design. Afterwards, section 4 and 5 discusses specifications of the framework, evaluation and

case study of automated penetration testing tools. Further discussion and conclusion are

presented in Section 6 and 7.

2 Related Work

The initial discussion in this chapter focuses on the related work in the area of penetration

testing and automated testing tools. It talks about some of the research work and describes

penetration testing processes. The rest of the chapter talks about different automated

penetration testing tools and discussion of various approached taken in this area of research.

2.1 Penetration test

Our research started with the literature review of penetration testing methodologies. A

penetration test or PEN Test is a process of identifying security vulnerabilities in the system.

A vulnerability is a software or hardware loophole in a system which may allow unintended

use of the system [5]. As discussed by Alireza Nowroozi, Mahin Mirjalili, Mitra Alidoosti in

[6], the penetration test use for has increased significantly by large corporations to secure their

3

information systems and services. This allows organisations to fix security issues before it is

exploited. There are two ways to conduct a penetration test: 1) Manual Penetration test, 2)

Automated Penetration test.

2.1.1 Manual Penetration Test:

Ideally Manual penetration test is conducted by an experienced and skilled professional

who can control all the parameters during the testing. On a System under test (SuT) manual

penetration tester analyses all the entry points of the application and performs tests to identify

potential vulnerabilities. As discussed in [7], some vulnerabilities are difficult to find and can

be found only by manual penetration test. These penetration testers consider custom logic of

each application which may or may not be identified by an automated scanner. Based on the

business logic of the application penetration testers develop test cases for the security testing.

As suggested in [5], a penetration tester should posses’ comprehensive knowledge of web

application vulnerabilities and detection methods. It also says that the coverage of such a test

is largely dependent on the penetration testers skills and experience. Penetration testers follow

industry accepted standards to perform penetration test, such as OWASP [8]. The shortfall of

this process is at times it is slow and cumbersome process. It is also a costly process as hiring

an experienced penetration tester requires lot of money.

2.1.2 Automated Penetration Test:

An automated penetration testing is a technique in which a software is used to scan the

application request by request [7]. The scanner application actively interacts with the target

application server and analyses each request and response for known vulnerabilities. The

scanner also injects various payloads in the request to detect vulnerabilities in the application.

There are tools which are designed only for the identification of single vulnerability which

have higher accuracy rate. But using multiple individual tools to scan complete application is

not always viable option and it also requires deeper understanding of vulnerabilities, which a

professional penetration tester has. Modern day web vulnerability scanners address this issue.

These automated tools provide a complete framework of tools to which are required to test the

application. Such tools make use of industry approved standards such as OWASP TOP 10 [8]

and National Vulnerability Database by NIST2.

The automated penetration testing tools have advantage over manual penetration test

that they can perform scan using multiple connection (threads) to the web application.

Automated scanners aide penetration testers to cover larger area of the application. On the other

hand, automated tools suffer from large amount of false-positive detection rate [9]. This

shortfall can be addressed by configuring the tool for individual web application, to obtain

better results. The figure 2.1 shows the automated penetration testing process.

2 National Institute of Standards and Technology: https://nvd.nist.gov/

https://nvd.nist.gov/

4

Figure 2.1: Automated Penetration test process [10]

Following table compares manual penetration test and automated penetration test in brief,

 Manual Automated

Testing Procedure • Work-Intensive, inconsistent

and prone to error, without

any specific quality standards.

• Requires a lot of different

tools.

• The results may vary

considerably from test to test.

• Generally, the running and

interpretation of tests requires

highly paid, skilled security

people.

• Quick, simple and secure.

• Eliminates errors and tedious

manual tasks.

• Centralized and standardized

to produce reliable and

repeatable findings.

• Easy to operate and offers

clear, actionable reports.

Network

Modification

Tester might unintentionally

modify the system.

Systems remain the same.

Exploit Expansion

and Management
• It takes time to develop and

manage an exploit database

and requires substantial

expertise.

• Public exploits are suspicious

and can be risky to run.

• For cross-platform

functionality, re-writing and

porting code is required.

• All exploits are developed

and maintained by the

software vendor.

• Exploits for maximum

effectiveness are

continuously updated.

• Professional exploits are

developed, thoroughly tested

and safe to run.

• Exploits for a variety of

platforms and attack vectors

are written and optimized.

Clean up • All changes must be

remembered and undone by

the tester.

• Leading scanners deliver

thorough cleaning and never

install backdoors.

5

• It is possible to leave

backdoors behind.

Reporting • Requires a great deal of time,

manually tracking and

gathering all data.

• All reports can be customized

as per client’s requirement.

• Comprehensive history and

documentation of results are

generated automatically.

• Customizable files.

Logging/Reviewing • Tester has to enable logging

for each test and tool that he

performs.

• Reports all events in detail

automatically.

Training • Testers need to know non-

standardized forms of ad-hoc

testing.

• Users can know as small as

one day training and install it.

Table 1.1: Comparison Manual and Automated Penetration test [10]

2.2 Penetration test Methodology

The penetration test approaches can be categorised broadly in three types:

• Black Box Test

• Grey Box Test

• White Box Test

2.2.1 Black Box test:

This type of test is also known as ‘Zero Knowledge’ test as the tester has no knowledge

of the application and underlying infrastructure [11]. It depends only on the information

obtained from the web application. Most of the automated scanners are designed to perform

black box test.

2.2.2 Grey Box test:

It is a mix of white and grey box test. Here the penetration tester has knowledge of the

infrastructure and the target web application. Tester also has user credentials for the

application, using which business logic and internal vulnerabilities can be tested and identified

[11]. Automated tools if configured can perform grey box tests. It does not come naturally to

automated tool to perform a grey box test, but manual intervention and configuration is required

time to time.

2.2.3 White Box test:

In white box test, all the information about the web application such as, application code,

infrastructure diagram, user privilege details and server configuration details are provided to

the penetration tester. Static and dynamic code analysers are used for this test. It is called as

full information test [11].

2.3 Web Vulnerability Scanner Evaluation

In the cyber security industry and academia there is growing interest in web application

scanners and automated tools evaluation. There are multiple benchmark applications available

for web security scanner evaluation. In 2017 Mansour Alsaleh et al. [12] has critically assessed

6

four penetration testing automated tools, namely, Skipfish3, Arachni4, Wapiti5, IronWASP6.

The authors have compared open source web application vulnerability scanners based on the

performance parameters such as scanning speed and crawling coverage. The case study was

conducted on following evaluation criteria as shown in figure 2.2.

 Figure 2.2: Vulnerability evaluation matrix [12]

The evaluation of these tools was specific to the version considered in the test case.

Scanners speed were evaluated using three vulnerability test websites: (1) Web Scanner Test

Site7 and (2) Acunetix site8. The paper compares scanner behaviour, speed, detection accuracy

and crawler coverage. The research observed that Skipfish was one of the fastest scanners to

complete the scan but had lesser crawler coverage as compared to Arachni, which took more

time to complete the scan. Arachni obtained 94% scanning coverage, whereas average crawler

coverage observed was 48%. The paper concludes that there were considerable

3 Skipfish: https://code.google.com/archive/p/skipfish/
4 Arachni: https://www.arachni-scanner.com/
5 Wapiti: http://wapiti.sourceforge.net/
6 IronWASP: http://blog.ironwasp.org/
7 Web Scanner Test Site, 2015: http://webscantest.com/
8 Test Website for Acunetix Web Vulnerability Scanner: http://testaspnet.vulnweb.com/

https://code.google.com/archive/p/skipfish/
https://www.arachni-scanner.com/
http://wapiti.sourceforge.net/
http://blog.ironwasp.org/
http://webscantest.com/
http://testaspnet.vulnweb.com/

7

inconsistencies between outputs of the scanners in scope. This might be because of

performance factors of each scanning tool.

In [13], the author has proposed a combinatorial testing. The case study was performed

to provide a framework for Cross-site scripting (XSS) attack and SQL injection attack, using

manual as well as automated testing. The research considers Burp Suite9 and OWASP ZAP10

tool for the evaluation. The test suggests that out of two test applications DVWA and Mutillidae

the Burp suite was able to detect 66.6% XSS instances. On the other hand, OWASP ZAP was

able to detect 80% of the XSS attacks. The research also states that out of all the test scans

made, OWASP ZAP performed 25% better as compared to Burp Suite. We have also used

these tools in our research and broadened the scope of comparison to all the features of the tool.

In a research conducted by Jose Fonseca and Marco Vieira and Henrique Maderia [14] also the

researcher has compared web application scanners on serious vulnerability detection such as

XSS and SQL injection attack. In this research three scanners were tested, which resulted in

higher percentage of false positive rate.

In an attempt to provide comparative analysis of web application vulnerability

assessment (VA) and Penetration testing (PT) in [7], the author has studied and compared three

web vulnerability scanners. Acunetix11, Burp Suite, OWASP ZAP are the web vulnerability

scanners included in the research. Although two of the tools in this research are commercial

and have better post sales support the OWASP ZAP also has a strong open source community

to support and add features. The research compares results obtained from the manual

penetration test with the results obtained from the web vulnerability scanners. The research

concluded that in though the detection rate of web application scanners is not as par with

manual test, but this approach gives advantage when money and time factors are considered.

The web application scanner also performs scanning of web services. In this approach

Nuno Autunes and Marco Vieira [15], evaluates automated tool from web services point of

view. Author has discussed HP Webinspect12, IBM Rational Appscan13 and Acunetix web

vulnerability scanners results after scanning web service included in ‘Benchmark for SQL

injection vulnerability detection tools’ [16]. The paper compares false positive vulnerabilities

reported and confirmed vulnerability reported. The evaluation performed on more than 20 web

services shows that signature-based approach to identify vulnerabilities obtain better results.

The false positive rate of reporting was observed to be reduced by a large margin. A coverage

rate of ~70% was observed.

The research done by Mayur Turuvekere and Anala A. Pandit [4] on comparative study

of pen testing tools studies 5 well known penetration testing tools. The tool set includes 3

commercial tools Acunetix, Burp suite, Netsparker and 2 freeware tools Wapiti, Arachni.

Objective of research is to evaluate the various pen testing tools. The research has utilised

WIVET (Web Input Vector Extractor Teaser) for measuring crawling coverage. Acunetix was

able to get highest coverage of crawling 94% in test application. The pen testing tools were

compared on 21 vulnerability detection.

9 Burp Suite: https://portswigger.net/burp
10 OWASP ZAP: https://www.zaproxy.org/
11 Acunetix: https://www.acunetix.com/
12 Web inspect: https://www.microfocus.com/en-us/products/webinspect-dynamic-analysis-dast/overview
13 IBM Appscan: https://www.ibm.com/cz-en/security/application-security/appscan

https://portswigger.net/burp
https://www.zaproxy.org/
https://www.acunetix.com/
https://www.microfocus.com/en-us/products/webinspect-dynamic-analysis-dast/overview
https://www.ibm.com/cz-en/security/application-security/appscan

8

OWASP scanner benchmark has been used to evaluate the web application vulnerability

scanners [17]. The author also compares OWASP benchmark and WAVSEP benchmark as

many research papers have discussed WAVSEP previously. The research found that after

combining the performance of two scanners in both the benchmarks the version of Arachni

performed better in SQLI, XSS and CMDI (Command Injection) attack detection.

The author Zoran Duric in [18] has developed a web application penetration testing tool

(WAPTT) by combining static (SAST) and dynamic security (DAST) analysis approaches. The

objective was to develop a reliable black box vulnerability scanner. Further author has

compared performance of WAPTT with six other well-known tools. The test targets were JSP,

JSF and PHP applications. Although the authors own tool performed well in detecting

vulnerabilities, but Acunetix had performed best amongst those sever tools with least false

positive rate. The author says that as compared to other commercial tools his tool has advantage

of modularity. This will allow end-user to easily extend functionalities in the scanner tool.

Since the major research done till now is related to open source scanners performance and

their evaluation based on limited benchmarks, we intend to provide a framework for scanner

evaluation based on the latest demands and vulnerabilities in the cyber security domain. The

objective of this study is to provide a framework for scanner evaluation and test the framework

against industry accepted scanners. The second objective of this thesis is to provide a

comparative study of key features and capabilities of the scanners.

3 Research Methodology

In this chapter we discuss research methodology for web application penetration test

scanner comparison framework and evaluate selected web application security scanners.

Following figure shows steps undertaken in methodology.

Figure 3.1: Methodology

3.1 Selection of Tools:

Our research started from selection of tools for our research. The objective was to select

and evaluate well known tools in cyber security industry. We had considered well known tools

based on Gartner Magic Quadrant for application security testing [19] such as Netsparker,

Acunetix, Micro Focus Webinspect and IBM appscan. But due to the unavailability of licenced

version of the application it was not possible to proceed with their research. Taking learnings

from the work done during the internship period, we shortlisted three widely used open source

tools and one licensed tool.

The tools were divided in two categories 1) Proxy tools and 2) Scanner tools. The Proxy

tools are used as web proxy as well as they have scanner tools embedded in them. This type of

tools provides more fine control over the target request-response interaction. It also enables

penetration tester to scan post login requests with much ease. The proxy component allows

testers to perform manual penetration test. The scanner tools are standalone scanners which are

used in Point and Shoot (PaS) configuration to perform automated scan. Table 3.1 lists all the

tools evaluated in this thesis.

9

Table 3.1: Evaluated Scanners

3.1.1 OWASP ZAP:

OWASP ZAP proxy is an open source web application penetration testing tool. The

tool is actively maintained by OWASP community and volunteers [20]. ZAP proxy tool

provides many functionalities such as Man-in-the-middle proxy, Spider tool, Active scanner,

Passive Scanner, In app browser for manual test, Web socket scanner, SSL scanner and code

review vulnerability detection [20]. It also has mature module for web services and API

scanning. OWASP ZAP also has a marketplace option which allows users to add optional add-

ons to the tool.

3.1.2 Burp Suite:

Burp Suite is most widely used penetration testing tool by security professionals. It is

published by PortSwigger Ltd14. It is a graphic user interface (GUI) based tool. It provides

community version of the tool with limited functionalities. The tool features include web

proxy, automated scanner, intruder, spider module, repeater, inbuilt decoder, comparer and

sequencer modules. Similar to OWASP ZAP, Burp Suite also provides options to add

extensions in the tool [21].

3.1.3 Nikto 2:

Nikto is a command line based freeware tool for penetration test and automated

scanning [22]. The tool is a pearl based security scanner. Nikto makes use of various switches

for configuration and to use various modules. Switch such as ‘-evasion’ will use various

techniques to evade firewall or detection system on the target system. It has various plugins to

detect vulnerabilities as per CVE15 details. It is a lightweight web application scanner which

can run on a system with lower configuration.

3.1.4 Arachni:

Arachni is another widely used web application penetration testing tool. It is similar to

Nikto. It is a command line based tool. Arachni work on all the major operating systems. As

per its developer’s recommendation, we have used this tool on Linux based environment. It

provides output results in 7 formats which is the maximum number of formats encountered till

now. Arachni has been popular in academic community and been discussed in [9], [12] and

[7].

The next section will discuss about the framework used to evaluate these tools and our

contribution to the process in depth.

14 PortSwigger Ltd: https://portswigger.net/contact
15 Common Vulnerabilities and Exposure: https://cve.mitre.org/

https://portswigger.net/contact
https://cve.mitre.org/

10

3.2 Framework Design and Specifications

This section describes our framework which is a comparative matrix. We will discuss

parameters selected in our matrix in depth. This section addresses the first objective of our

research.

After studying existing web application scanner evaluation frameworks such as Web

Input Vector Extractor Teaser (WIVET) [2], Web Application Vulnerability Scanner

Evaluation Project (WAVSEP) [3] and OWASP Benchmarking project [23] which focuses

towards specific areas of the automated scanners, we are proposing a framework which covers

larger ground as compared to existing frameworks.

The are 14 parameters which we will be considering while evaluating the web application

scanners. We propose a score based comparative analysis of tools. Each key parameter has a

score system of up to 5 points.

3.2.1 Parameters

1) Type of tool:

There are two types of tools: 1) Graphic user interface (GUI) based, 2) Command line

interface (CLI) tools. This parameter plays a key role in ease of access factor. While using the

scanner many penetration testers prefer tools having GUI interface. On the other hand, CLI

based tools are lighter and puts less efforts for graphical processing hence are faster. We will

also discuss whether it is a web proxy tool, which runs by intercepting a browser request or a

scanner tool which directly interacts with the target for scanning.

2) Type of Penetration test:

Initially penetration test automated tools were used for Black box test only as they lack

the capability to handle the session cookies required for authenticated scan. Modern scanning

tool however have ability to handle the application session and can detect irregularities in

application code as well.

Score for type of penetration test:

• 1 - Black box test

• 2 – Black box and Grey box test

• 3 – Black, Grey and White box test

3) Crawling types:

Crawling is a type of scan which involves mapping the application by navigating

request by request. The crawler catalogues the links found during the process, later these links

are utilised for scanning purpose. There are two types of crawling 1) Active crawling and 2)

passive crawling. Active crawler interacts with the application and sends requests to the

application server to get the active links. Passive crawler works silently with out actively

engaging the application. The passive crawler works while manually navigating through the

application. Hence it can cover more links and paths in the application, proving a greater

coverage.

 Score for crawling function:

• 1- only Active crawler

• 2- Active and Passive Crawler

4) Crawler coverage:

Web application crawling is a part of information gathering stage in the penetration

testing process. In this stage a penetration tester would like to gather as much information as

11

possible about the web application. Therefore, it is crucial that automated scanner covers as

much application it can without manual intervention. The crawler coverage can be measured

by number of URL crawled by scanner.

Score for Crawling coverage:

• 1- Less than 25% coverage

• 2- 25% to 50% coverage

• 3- 50% to 70% coverage

• 4- 70% to 90% coverage

• 5- More than 90% coverage

5) Scanning Speed:

The automated tool is utilised by the penetration tester to cover the greater area in a

large application. Therefore, time taken by the application to completely scan the application

is essential to understand the efficiency. In our evaluation we will scan a benchmark application

and record the time taken and number of requests made by each scanner.

Score for Scanning Speed:

• 1- More than 6 Hours

• 2- More than 3 Hours

• 3- More than 2 Hours

• 4- More than 45 minutes

• 5- Less than 30 minutes

6) Scan type:

There are two scan types when it comes to application scanning, Passive scan and

Active scan. The passive scan analyses request and responses gathered from manual crawling

or interaction by the penetration tester and does not send additional data to the application

server. The passive scanning includes identifying issues such as missing response security

headers, SSL certificate misconfigurations. It also includes client side Java Script analysis.

Active scan phase can detect presence of vulnerabilities by interacting with the web application

server. The scanner sends crafted requests to the server and tries to exploit the vulnerabilities.

Scanner will try to find common vulnerabilities such as listed in OWASP Top 10.

Score for Scan Type:

• 1- Only active scan

• 2- Active and Passive scan

• 3- Active, Passive and static script vulnerabilities detection

7) Vulnerability Detection Rate:

The vulnerability detection rate would be the number of vulnerabilities detected in a

test against a benchmark application. The detection rate would tell us how many vulnerabilities

the application was able to detect successfully. It will also show the ability of application to

detect various vulnerabilities.

i) Formula for vulnerability detection:

Vulnerability detection rate =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑣𝑢𝑙𝑛𝑒𝑟𝑎𝑏𝑖𝑙𝑖𝑡𝑖𝑒𝑠 𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑 𝑏𝑦 𝑡ℎ𝑒 𝑠𝑐𝑎𝑛𝑛𝑒𝑟

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑣𝑢𝑙𝑛𝑒𝑟𝑎𝑏𝑖𝑙𝑖𝑡𝑖𝑒𝑠 𝑝𝑟𝑒𝑠𝑒𝑛𝑡 𝑖𝑛 𝑎 𝑏𝑒𝑛𝑐ℎ𝑚𝑎𝑟𝑘 𝑎𝑝𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛
∗ 100

 Equation number: 3.1

ii) Score for Vulnerability detection rate:

• 1- 10% vulnerabilities detected

• 2- Up to 25% vulnerabilities detected

12

• 3- Up to 50% vulnerabilities detected

• 4- Up to 75% vulnerabilities detected

• 5- 100% vulnerabilities detected

8) False Positive reported:

False positives are the vulnerabilities which were reported by the scanner as positives

but not present in the application [23]. The scanner which provides lesser percentage of false

positive results is preferred.

i) Formula for False positive rate:

FP rate =
𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
∗ 100

Equation number:3.2

ii) Score for False positive reported:

• 1- Greater than 50%

• 2- Grater than 30%

• 3- Lesser than 30 %

9) True Positive reported:

A True positive is a vulnerability which is accurately detected by the scanner and

reported as well [23]. The true positive rate is always desired as high as possible. It is also

known as precision rate [24]. The figure 3.2 shows the OWASP benchmark results

interpretation guide. According to the guide the ideal value of the results should come in the

marked region.

i) Formula for True Positive:

TP rate =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
∗ 100

 Equation number:3.3

ii) Score for True Positive reported:

• 1- Less than 10%

• 2- Up to 25%

• 3- Up to 50%

• 4- 50% and greater

13

Figure 3.2: OWASP interpretation guide [23]

10) Reporting Features:

There are various formats in which automated tool generate reports, but few common

points such as executive summary, list of vulnerabilities detected, list of request response and

details of target scanned are expected in the report. Common formats such as PDF, HTML and

XML are also commonly provided by scanners. On top of that compliance reports with various

standards such as PCI-DSS16, HIPAA17 and OWASP top 10 are also provided by the scanner

which allows user to quickly analyse if they have achieved desired standard.

11) Addons and Extension features:

The automated tools have functionality extension feature, which allows user to add new

features to the scanner. Extension feature enables user to add tools to the scanner which can be

available from time to time.

12) Ease of configuration:

The ease of configuration defines how easy it is to use the scanner and what are its

dependencies. We define three levels of configuration, 1) Easy (Plug and Play) out of the box

ready to use application, 2) Hard: having some dependencies such as Java, php installation, 3)

Difficult (Expert level): Having specific requirements such as server and database

configuration.

13) Scan logs:

In penetration testing process logging of each request and response is essential. As these

logs serve as proof of the actions performed on the customers application environment.

Automated tool makes number of requests to the application server while scanning. These

16 PCI-DSS: https://www.pcisecuritystandards.org/pci_security/
17 HIPAA: https://www.hhs.gov/hipaa/for-professionals/security/laws-regulations/index.html

https://www.pcisecuritystandards.org/pci_security/
https://www.hhs.gov/hipaa/for-professionals/security/laws-regulations/index.html

14

requests also contain crafted payloads for various vulnerability detection. This should be

recorded in a log file and can be reproduced if required. Automated tools provide options to

store logs in .csv, html or xml formats.

14) Cost of the tool:

The cost factor plays major role in the selection of a tool. Many tools have similar

functionalities and features, but the cost difference due to their brand is major. Some freeware

tools also have better performance and features than commercial tools because of its strong

development community.

We have considered above all the parameters for automated tool evaluation. Our framework

proposes a scoring scale of 30 points. We can put any automated penetration testing tool against

it to identify which tool is better.

4 Implementation

In this section we will discuss the artefact implementation. We have taken two approached to

evaluate the scanning, crawling and vulnerability detection capabilities of the tool. We have

utilized OWASP Benchmark test [23] tool to evaluate the vulnerability detection and crawling

coverage of the tool.

Figure 4.1: Scanner evaluation process

4.1 OWASP Benchmark test:

The OWASP benchmark test is an open source JAVA based vulnerability test case suite

designed to evaluate accuracy of vulnerability detection, speed and crawler coverage of

automated scanners. It is state of the art benchmarking tool which in regularly updated. It has

over 2740 instances of vulnerabilities ranging across OWASP top 10. It has not been used to

evaluate the current versions of OWASP ZAP, Burp suite, Nikto 2 and Arachni till now. It runs

on Tomcat 8.x server and default port is 8443.

The application can be accessed from the browser at URL: https://127.0.0.1:8443/benchmark/.

https://127.0.0.1:8443/benchmark/

15

Figure 4.2: OWASP Benchmark application

4.2 Test Approach:

We evaluated scanners based on following two testing approaches:

1) Point and Shoot (PaS) scan

In this approach we only give the URL of the target system to the application and allow

it to run on a default profile. We have not done any changes to the setting of the tool and no

extra switched are added to the scanner command. This approach is usually taken by first time

users and beginners. It allowed us to analyse the natural capability of an automated tool to

crawl the application and scan the same for vulnerabilities. The penetration tester relies on

scanner ability to detect vulnerabilities with little human interaction.

2) Configured Scan

In configured scan, we tweak the settings as per the application requirements. We

performed manual crawling to train the scanner as per the application. This involved clicking

on each URL in the application and visiting each page, visiting each page with proxy mode

enabled so that scanner can gather list of all the URLs.

4.3 Environment Setup:

The evaluation process contains following setup. The setup is configured in Kali Linux VM

and Windows host machine:

Step 1: Setting up the environment includes installing the scanner (Burp suite, OWASP

ZAP, Arachni and Nikto) to attack the OWASP benchmark application. It also included

installation of dependency applications and services. For Burp suite and OWASP ZAP we first

setup the proxy to the browser and intercept the application in web proxy. Then we crawled

the application manually, request by request. We then performed active crawling on the

application from both the tools. This discovered further URLs in the application and listed then

under target scope. We added target URL to the scope section of the tool. By doing this the

tool will only intercept and scan the target URL. Then we perform the scan on the benchmark

target system by clicking ‘Active scan’ button in ZAP and ‘Scan’ button in Burp Suite’.

16

For Arachni and Nikto, we perform the scan using command line interface. We install

Arachni and Nikto as discussed in configuration manual. We execute the point and shoot scan

using command ‘arachni’ and ‘nikto’ command followed by application root URL. We also

add switches to the command to save the scan results to our project folder.

Step 2: To get the benchmark evaluation we need ‘.xml’ output from each tool. For Burp

suite, OWASP ZAP and Nikto we take scan output in ‘.xml’ format by default. For Arachni

the default output format is ‘.afr’ (Arachni Framework Report) the report was then converted

in ‘.xml’ format using ‘arachni_reporter’ tool.

Step 3: The OWASP benchmark analyses the tool results and provides compliance output.

The XML result files from all the scanners were copied to ‘results’ folder in ‘benchmark’ root

folder. Run command ‘createScorecard.sh’ to create the results from benchmark.

We have primarily considered five vulnerabilities given in the OWASP benchmark for

evaluation. These ten vulnerabilities include command injection, LDAP injection, XSS, SQL

injection, and Secure cookie flags [23]. Apart from these ten vulnerabilities we also consider

other vulnerabilities reported by the scanners for overall evaluation of the scanning tool.

We have discussed results obtained from the benchmark test and other parameters of the

framework in the following section.

5 Evaluation

In this chapter we present our findings from running experimental scan on OWASP benchmark

test application. We also compared the scanners based on our framework and calculate test

score for each of the scanner and rank them. This chapter addresses second and third objective

of our research.

5.1 Case Study 1: OWASP ZAP and Burp suite

The tools considered in this case study are GUI based. We have performed this case study with

manual crawling of the application which would enable the tool to cover maximum area of the

application and selecting the configuration such as audit speed to ‘Thorough’ in Burp suite and

making concurrent scanning per host to ‘2’ in OWASP ZAP. We will compare OWASP ZAP

and Burp Suite on points mentioned in framework.

1) Type of tool:

The OWASP ZAP and Burp Suite both are GUI based tools and also are web proxy tools. GUI

based tools are easy to use for any level of user. During our experiment we found ZAP to be

more user friendly, since all the modules were clearly specified and easily accessible. OWASP

ZAP provides an option to launch a browser from within the tool. This browser is pre-

configured with ZAP proxy so that user does not have to manually configure it. On the other

hand, the Burp suite has to be manually configured with the browser by changing the proxy

configurations under the ‘settings’ or ‘options’ tab.

2) Type of Penetration test:

Primarily both the scanners can perform Black box test without any manual interaction. For

grey box type of test, both the scanners have add-ons which can handle login request and

credentials. In Burp suite this can be performed using ‘macro’ function and in OWASP ZAP

this can be handled using ‘session properties’ settings. These add-ons can handle login logout

requests which can keep session active throughout the scanning process. Both the tools perform

Dynamic Security Application Test (DAST) type of test and perform above two types of tests.

17

3) Crawling types:

Both the tools have active and passive scanning feature which allows application crawl logging

while browsing the application.

4) Crawler coverage:

The OWASP benchmark has nearly 5500 URLs including the pages and actions (Login, submit

etc), in the OWASP benchmark project ZAP was able to discover 5335 URLs which is 97% of

the URLs and Burp Suite was able to discover 4775 URLs which is 87% of the URLs. Shown

in figure 5.1.1.

5) Scanning Speed:

As shown in the figure 5.1.2, during the experiment the OWASP ZAP performed scan in 7

hour and 50 minutes and Burp suite performed in 6 hours and 20 minutes. Both the scanners

were unable to score high points in this section. This might be due to the benchmark being a

large completely vulnerable application. But this is not the case always.

Figure: 5.1.1 Crawler Coverage Figure 5.1.2 Scan duration

6) Scan type:

The scanners were able to perform active as well as passive scan successfully on the benchmark

tool. But none of the CSS or java script based vulnerabilities were detected.

7) Vulnerability Detection Rate:

The total number of vulnerabilities detected by ZAP is 18 and by the Burp suite is 26. This

includes High, Medium, Low level and informational findings as well. Considering the

OWASP Benchmark vulnerabilities figure. 5.1.3 shows the percentage of the selected

vulnerabilities detection. Using equation 3.1, we calculate the rate of vulnerability detection.

Figure 5.1.3 Rate of vulnerability detection

18

8) True Positive and False Positive reported:

The figure 5.1.4 shows true positive and false positive detection rate by both the tool. The Burp

suite was able to detect 24.82% of vulnerabilities which were actually present in the application

whereas OWASP ZAP was able to detect 7.86% of the vulnerabilities in the application. Note

that these are all the vulnerabilities which were present in the application. ZAP also reported

few vulnerabilities which actually were not present in the application. Its percentage was

0.20%.

Figure 5.1.4 False positive and True positive ratio

9) Reporting Features:

The OWASP ZAP has advantage over the Burp suite when comparing reporting feature. The

Burp suite can generate report in 2 formats HTML and XML, whereas the OWASP ZAP can

generate report in 4 formats HTML, XML, JSPN and markdown report format.

10) Addons and Extension features:

We found that in OWASP ZAP we can make use of ‘Market place’ tab to add extensions.

During the analysis there were 66 extensions available in zap marketplace. The Burp suite has

200+ extensions whereas its community version has 150+ extensions

11) Ease of configuration:

We found that both the tools can be categorised as easy to configure and use. There were very

less dependencies such as JAVA for Burp suite.

12) Scan logs:

Burp suite and OWASP ZAP logs all the requests under history tab. For OWASP ZAP

maximum number of requests to be stored is set to 1000 by default.

13) Cost of the tool:

OWASP ZAP is opensource tool will all the functionalities. Burp suite has three versions

Enterprise, Professional and Community version. The Community version is free and has

limited number of functionalities. Enterprise and Professional versions costs €3499 and €349

respectively per year.

19

Sr.

No
Parameters Burp Suite

OWASP

ZAP

1 Type of tool GUI Proxy GUI Proxy

2 Type of Penetration test 2 2

3 Crawling types 2 2

4 Crawler coverage 5 4

5 Scanning Speed 1 1

6 Scan type 2 2

7 Vulnerability Detection Rate 3 2

8 False Positive reported 3 3

9 True Positive reported 2 1

 Total Score: 20/30 17/30

Table: 5.1

5.2 Case Study 2: Arachni and Nikto2

This case study has been performed with tool in Point and shoot (PaS) configuration. The

command line interface was used without any extra switches applied to the application.

1) Type of tool:

Arachni and nikto are both command line based scanners. Arachni also provides additional

web interface for ease of use.

2) Type of Penetration test:

Both the scanners can perform only black box test. Arachni does have credential handling

option is its manual but it is not always effective. But we will consider that in our analysis.

3) Crawling types:

As the scanners do not have a web proxy interface, hence user cannot perform passive crawling.

The Arachni and Nikto perform active crawling only.

4) Crawler coverage:

In the scanning report of both scanners there were no significant crawl results obtained. The

Crawler performed dictionary based directory brute forcing in both the scanners, but it turned

unfruitful.

5) Scanning Speed:

As there were few URLs to be scanned the scan completed in 30 minutes and15 minutes for

Arachni and Nikto 2 respectively. Multiple scans were performed to check if the application is

being scanned properly. This is represented in figure 5.2.1.

Figure: 5.2.1 Scan duration

20

6) Scan type:

Both scanners performed Active scanning only, depending on the crawler coverage.

7) Vulnerability Detection Rate:

The scanners did not identify any significant vulnerability in the Benchmark application. The

detection was limited to missing request-response headers and TLS suite identification.

8) Reporting Features:

The reporting feature of Arachni is strongest from what we have studied till now. It can produce

report in 8 formats which are stdout, XML, YAML, HTML, Marshal, json, ap, txt. Nikto also

has 5 formats in its reporting structure, which are text, CSV, HTML, XML, MSF.

9) Addons and Extension features:

Arachni and Nikto does not have active support for add-ons but do have pre-configured

switches for scan improvement. Arachni do have one additional feature which is web interface.

This can be used using command ‘arachni-web’ in ‘usr/share/arachni/’ directory.

10) Ease of configuration:

Both the tools were used on Kali linux. If the user is aware of basic Linux commands, then the

installation and use would be fairly simple. Each action can be performed using single

commands.

11) Scan logs:

Both the tools generate scan logs by using command line switch ‘--reroute-to-logfile’ in

Arachni and ‘-Format’ in Nikto in form of report.

12) Cost of the tool:

Both the tools are opensource tools. Arachni does provide enterprise support in a paid version.

Sr. No Parameters Arachni Nikto 2

1 Type of tool CLI Scanner CLI Scanner

2 Type of Penetration test 1 1

3 Crawling types 2 1

4 Crawler coverage 1 1

5 Scanning Speed 5 5

6 Scan type 1 1

7 Vulnerability Detection Rate 1 1

8 False Positive reported 0 0

9 True Positive reported 0 0

 Total Score: 11/30 10/30

 Table: 5.2

6 Discussion

This chapter discusses the results of case studies and four scanners. The analysis will allow us

to discuss the objective of this research. We will discuss outcomes of all the scanners with a

high-level overview.

21

Figure 6.1 Framework Score ranking

The figure 6.1 shows the points achieved by each tool on our 30 points frameworks. It was

observed that tools with web proxy perform better than command line tools. The OWASP

Benchmark has its own set of limitations when it comes to testing a DAST tool. It only

challenges a tool to identify specific vulnerabilities. Also, it was observed that the Benchmark

tool does not identify NIKTO results. As a result, the scan output was analyzed manually.

Arachni and Nikto were unable to identify the vulnerabilities which we considered for the test.

This was surprising as Arachni has performed well in previous research done in [12], [25]. This

might be due to the version upgrade and mismatch with Benchmarks present format. The

configured scan produced more and confident results as compared to point and shoot scan. This

is because of the visibility of the application and its internal URL which passive crawling

provides is difficult to get in active scanner.

Crawl coverage of the ZAP was maximum with 5335 URLs, but this also resulted in longer

scan duration. ZAP was able to determine highest number of command line injection attacks,

XSS attacks and SQL injection attacks. Some crawling and scanning difficulties were observed

by Arachni and Nikto, which resulted into lesser vulnerabilities reported. The Burp Suite had

maximum number of true positive findings with maximum successful detection SQL injection

attacks. Burp and ZAP can incorporate reporting tool such as the one in Arachni. Despite being

an opensource tool OWASP ZAP performed better in the test scan. It has detected almost all

the vulnerabilities which were detected by commercial Burp suite.

Apart from Benchmark expected vulnerabilities scanners detected many other vulnerabilities

such as potential buffer overflow, anti-clickjacking header not present, session cookies related

issues.

Automated tools comparison framework which are at present published focuses more on the

vulnerabilities detected. But as understood from the internship wok the scanner tool, its

features, ease of usability and the services which it can offer are equally important. Hence, our

comparative framework covers these points to analyze and compare automated tool with a 360-

degree view.

7 Conclusion and Future Work

The objective of this research was to find popular web application scanner which will cover

present industry needs. For this we proposed and evaluated a framework which will work as a

22

guideline for future tools evaluation. The evaluation was conducted on 4 well known tools in

the industry. Overall the tools with web proxy were found to be more efficient against the

benchmark application. ZAP and Burp suite performed better over each other in different

categories. Our comparison framework evaluation showed Burp Suite has scored maximum

points in the experiments. The test showed that for various vulnerabilities no single scanner

can be used. Detection rate of each scanner is different. Therefore, appropriate scanner should

be used to detect particular vulnerability. The test also shows that, open source tools also

perform better than commercial tools in many cases. For Dynamic web application penetration

test its better to have hold on more than one scanner. Not all scanners report all the

vulnerabilities.

In this research we evaluated four tools based on OWASP Benchmark application. The

vulnerabilities found or missed were limited to this application and its build. However, there

are many other benchmarking applications available on which this research can be performed

and further evaluated.

Future work of this research could be, 1) Improvement in scanners based on the benchmark

results, 2) Evaluation of new open-source scanners, 3) Comparison based on multiple

benchmarks. A better future work would be evaluation based on real world application, which

would give a more realistic picture on the scanner abilities.

8 Acknowledgement
I would like to thank my supervisor Dr. Muhammad Iqbal for encouraging and guiding me

throughout the research process. I would also like to thank entire team of BSI CSIR, Dublin

for providing me an opportunity to do internship and their support in research. Lastly, I express

my gratitude towards my family and friends who have always been my support and backbone.

9 References

[1] D. D. Bertoglio and A. F. Zorzo, "Overview and open issues on penetration test," Journal of the Brazilian
Computer Society, pp. DOI 10.1186/s13173-017-0051-1, 2017.

[2] E. T. İslam and B. Urgun, "WIVET—Benchmarking Coverage Qualities of Web Crawlers," The Computer
Journal, vol. 60, no. 4, p. 555–572, March 2017.

[3] S. Chen, "WAVSEP – Web Application Vulnerability Scanner Evaluation Project," 10 November 2017.
[Online]. Available: http://sectooladdict.blogspot.com/. [Accessed 12 November 2019].

[4] M. Turuvekere and A. A. Pandit, "A Comparative Study of Pen Testing Tools," International Journal of
Computer Applications, vol. 179, no. 50, pp. 26-30, 2018.

[5] P. Xiong and P. Liam, "A Model-Driven Penetration Test Framework for Web applications," in Eighth
Annual International Conference on Privacy, Security and Trust, Ottawa, ON, Canada, 2010.

[6] M. Mirjalili, A. Nowroozi and M. Alidoosti, "A survey on web penetration test," Advances in Computer
Science: an International Journal (ACSIJ), vol. 3, no. 6, pp. 107-121, 2014.

[7] S. Nagpure and S. Kurkure, "Vulnerability Assessment and Penetration Testing of Web Application," in
Third International Conference on Computing, Communication, Contril and Automation (ICCUBEA), Pune,
India, 2017.

[8] O. Communicaty, "OWASP," 2017. [Online]. Available:
https://www.owasp.org/images/7/72/OWASP_Top_10-2017_%28en%29.pdf.pdf. [Accessed 15
November 2019].

[9] S. Alavi, N. Bessler and M. Massoth, "A Comparative Evaluation of Automated Vulnerability Scans versus
Manual Penetration Tests on False-negative Errors," in CYBER 2018 : The Third International Conference
on Cyber-Technologies and Cyber-Systems, Germany, 2018.

23

[10] V. Casola, A. D. Benedictis, M. Rak and U. Villano, "Towards Automated Penetration Testing for Cloud
Applications," in IEEE 27th International Conference on Enabling Technologies: Infrastructure for
Collaborative Enterprises, Italy, 2018.

[11] K. Shaukat, A. Faisal, R. Masood, A. Usman and U. Shaukat, "Security quality assurance through
penetration testing," in 19th International Multi-Topic Conference (INMIC), Islamabad, Pakistan, 2016.

[12] M. Alsaleh, N. Alomar, M. Alshreef, A. Alarifi and A. Al-Salman, "Performance-Based Comparative
Assessment of Open Source Web Vulnerability Scanners," Hindawi Security and Communication
Networks, vol. 2017, no. Article ID: 6158107, p. 14, 2017.

[13] B. Garn, I. Kapsalis, D. E. Simos and S. Winkler, "On the applicability of combinatorial testing to web
application security testing: a case study," in JAMAICA 2014: Proceedings of the 2014 Workshop on
Joining Academia and Industry Contributions to Test Automation and Model-Based Testing, San Jose,
USA, 2014.

[14] J. Fonseca, M. Vieira and H. Madeira, "Testing and comparing web vulnerability scanning tools for SQL
injection and XSS attacks," in 13th IEEE International Symposium on Pacific Rim Dependable Computing,
Portugal, 2007.

[15] N. Auntunes and M. Vieira, "Evaluation and Improving Penetration Testing in Web Services," in IEEE 23rd
International Symposium on Software Reliability Engineering, Coimbra, Portugal, 2012.

[16] N. Antunes and M. Vieira, "Benchmarking Vulnerability Detection Tools for Web Services," in IEEE
International Conference on Web Services, Miami, FL, USA, 2010.

[17] B. Mburano and W. Si, "Evaluation of Web Vulnerability Scanners Based on OWASP Benchmark," in 26th
International Conference on Systems Engineering (ICSEng), Sydney, Australia, Australia, 2018.

[18] Z. ĐURIĆ, "WAPTT - Web Application Penetration Testing Tool," Advances in Electrical and Computer
Engineering, vol. 14, no. 1, pp. 93-102, 2014.

[19] A. Tirosh, M. Horvath and D. Zumerle, "Magic Quadrant for Application Security Testing," Gartner, 18
April 2019. [Online]. Available: https://b2bsalescafe.files.wordpress.com/2019/09/gartner-magic-
quadrant-for-application-security-testing-april-2019.pdf. [Accessed 25 November 2019].

[20] S. Bennetts, R. Pereira and R. Mitchell, "OWASP Zed Attack Proxy Project," OWASP, 2019. [Online].
Available: https://www.owasp.org/index.php/OWASP_Zed_Attack_Proxy_Project. [Accessed 15
September 2019].

[21] P. Swigger, "The basics of using Burp," Port Swigger, 2019. [Online]. Available:
https://portswigger.net/burp/documentation/desktop/penetration-testing. [Accessed 20 November
2019].

[22] C. Sullo, "Nikto v2.1.6," 2014. [Online]. Available: https://cirt.net/nikto2-docs/. [Accessed 15 November
2019].

[23] D. Wichers, "OWASP Benchmark," OWASP, 05 June 2016. [Online]. Available:
https://www.owasp.org/index.php/Benchmark#tab=Main. [Accessed 10 November 2019].

[24] D. M. W. Powers, "Evaluation: From Precision, Recall and F-Factor to ROC, Informedness, Markedness &
Correlation," School of Informatics and Engineering, Flinders University, Adelaide, Australia, 2007.

[25] E. I. S, B. N, G. F and G. M, "Performance Evaluation of Web Application Security Scanners for Prevention
and Protection against Vulnerabilities," International Journal of Applied Engineering Research, vol. 12,
no. 21, pp. 11068-11076, 2017.

