

1

Improvising Jumbling Salting algorithm

using even or odd technique

MSc Internship

Cybersecurity

Thamarai Kannan Sabapathy Venkatachalapathy

Student ID: X18105114

School of Computing

National College of Ireland

Supervisor: Imran Khan

2

National College of Ireland

MSc Project Submission Sheet

School of Computing

Student Name:

Thamarai Kannan Sabapathy Venkatachalapathy

Student ID:

X18105114

Programme:

MSc. Cyber Security Year: 2019-2020

Module:

Academic Internship

Supervisor:

Imran Khan

Submission

Due Date:

12th December 2019

Project Title:

Improvising Jumbling Salting algorithm using even or odd

technique.

Word Count: 5268 Page Count: 22

I hereby certify that the information contained in this (my submission) is information

pertaining to research I conducted for this project. All information other than my own

contribution will be fully referenced and listed in the relevant bibliography section at the rear

of the project.

ALL internet material must be referenced in the bibliography section. Students are required

to use the Referencing Standard specified in the report template. To use other author's written

or electronic work is illegal (plagiarism) and may result in disciplinary action.

Signature:

………………………………………………………………………………………………

Date:

………………………………………………………………………………………………

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple

copies)

□

Attach a Moodle submission receipt of the online project

submission, to each project (including multiple copies).
□

You must ensure that you retain a HARD COPY of the project, both

for your own reference and in case a project is lost or mislaid. It is not

sufficient to keep a copy on computer.

□

Assignments that are submitted to the Programme Coordinator Office must be placed into

the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

3

Improvising Jumbling Salting Algorithm using even or odd

technique
 Thamarai Kannan Sabapathy Venkatachalapathy

 X18105114

Abstract

This research paper presents a secure method to encrypt a plaintext password into server’s database.

The main process in password security is encryption. Password security faces lot of challenges from

many attacks. A new methodology for making passwords more secure is the Jumbling Salting

algorithm. In this algorithm the jumbling block consists of shuffled plaintext and random values

generated from a predefined set with modulus function. Jumbling block is ordered according to the

length of the initialized password, whether it is even or odd. Salt values are initialized by the value

of the timestamp at which a user registers and is added to a final jumbled block. At last AES is

executed to get final block with hash values and stores them in database. This encryption technique

is more unique and random in storing values, making it more secured from many attacks and more

improvised with encryption decryption throughput.

Keywords: Plaintext, Encryption, Decryption, Salt, AES, Cryptography

1 Introduction

"There are cyber threats out there, this is a dangerous world, and we have to be safe, we have to

be secure no matter the cost” by Edward states that there are many cyber threats happening all

around the world, and he emphasizes on safeguarding our data from hackers.

Using a password is the first stage in securing personal data where a string of characters is used

for identifying themselves in secured websites with username for integrity, storing information for

confidentiality and secrecy for authorization. Passwords are mostly used in accessing bank

accounts, online purchase with money and private information. Cryptography is used for securing

passwords by providing secrecy and integrity to data, authentication and anonymity to

communication by encryption and decryption process of the given password i.e. plaintext entered

will be changed into a cipher text with mathematical algorithms.

Nowadays it has become easy for attackers with many new techniques to crack passwords and get

confidential information from the victims. Numerous methods are used by the attackers to crack

passwords like Brute-Force, Dictionary Attack, Trojan Horse Attack, Phishing, Virus and worms

etc. In Brute-force the password will be guessed with trial and error method at multiple intervals

of time by automated tools; Dictionary attack, the passwords are all guessed from the previously

stored list; Trojan Horse attack, steals the passwords that are stored in the computer; whereas in

Rainbow table attack, the passwords are guessed from rainbow tables which will have large

database of hashes. (Gautam and Jain, 2019)

Research Question

4

Can the Jumbling Sorting Algorithm be more improvised as compared to the previous algorithm?

This research paper proposes a new method to secure passwords using Jumbling-Salting algorithm

in the area of Cryptography. The previous method was on encrypting passwords using JS algorithm

where the length of cipher-text after adding sub-block is a prime number, the cipher text will be

reversed before salting and applying Advance Encryption standard algorithm.

This research paper is on encrypting the passwords using Jumbling-Salting algorithm with some

changes from the previous method, where in Case I, when the length of password is odd, the

plaintext will be shuffled in shuffled password block and added in sequence with jumbled block,

salt block and stored in the database, whereas in Case II, if the length of plaintext is even, first the

jumbled block is added with shuffled password block followed by salt block and stores the final

ciphertext in database. The principle thought of this proposed algorithm is utilized to alleviate the

issues looked in the past work. Existing algorithm and methods secure the fundamental issues of

encoding passwords with specific imperfections in it. Utilization of Jumbling Salting algorithm in

this proposed methodology can defeat the issues by evolving plain-message progressively complex

by expanding size and expanding the security of secret word from being hacked from attacker.

This algorithm is new, exceedingly effective to encrypt and keeps the password secret.

This research paper is organized as follows. Section I Introduction, this section covers research

question, motivation to do this research and a summarized brief explanation about work. Section

II Related Work contains literature review of previous works findings, state of the art, comparison

and justification for this thesis question. Section III Research Methodology explains about how

this model is designed through research procedure and evaluation methodology with detailed

explanation of each practice and resources used in this section. Section IV explains the

implementation of this project through diagrams like UML, State and use case diagrams. Section

V Implementation explains about the execution of proposed idea step by step containing code

written, developed models and the language used in this section. Section VI Evaluation provides

a complete study of the results and findings from academic and practitioner view in an inside, out

and thorough examination of the outcomes through graphs, charts and plots. Section VII

Conclusion and future work states how effective the research has accomplished its goals by

rehashing key discoveries pursued by a potential future work. The last section contains all the

references used as the source for doing this project from research papers and websites.

2 Related Work

Passwords must be secure as they are used by the servers to identify users and authorize them. In

encrypting passwords, cryptography plays a major role as there are many cryptographic algorithms

previously used for encrypting passwords. This section will provide a critical audit of previous

research work relating to algorithms used by briefing advantages and disadvantages faced in

present state from the findings.

5

2.1 Data Encryption Standard Algorithm:

DES algorithm is the first encryption algorithm to be standardized by National Institute of Standard

and Technology. It is a symmetric encryption algorithm with two inputs plaintext and the secret

key works by using 128 bits for encryption, dividing them into 64 bits to initialize input block 54,

and 8 bits for checking odd parity. 16 rounds of process where the block encrypts and decrypts in

direction of keys.

(Saikumar, 2017) in her research journal explained the advantages of using DES algorithm.

⮚ DES algorithm encrypts input message of 64 bits with a secret key where the encrypted

key will be the cipher key used for further operations on a large scale.

⮚ They use many numbers of rounds making them more complicated to crack.

⮚ DES algorithm is fast in encryption and decryption when compared with RSA Encryption

algorithm. (Saikumar, 2017)

(Zodpe, Wani and Mehta, 2012) in their research paper designed an algorithm for DES

Cryptanalysis based on known plaintext attack using brute force. For known plain-text attack the

attacker will have access to one plaintext where the ciphertext block is decoded with all possible

keys and the resultant plaintext is contrasted with known plaintext. The key for which the resultant

plaintext matches with the known plaintext is viewed as the right key.

Figure 1 : DES cryptanalysis attack. (Zodpe, Wani and Mehta, 2012)

From the above diagram of the research paper every DES Decryption block decrypts the ciphertext

with various set of keys. Along these lines with 'n' nos. of DES Decryption blocks 'n' diverse keys

can be looked in one clock cycle in this way decreasing the time required for key hunt by a factor

of 'n'. The no. of DES Decryption blocks 'n' relies upon the accessible rationale assets in a FPGA

and the rationale use of one DES Decryption block.

DES encryption uses small size of secret making them insecure and easy to crack by brute force

search with all possible set of keys within a day.

2.2 Triple Data Encryption Standard Algorithm:

6

Triple data encryption algorithm practices DES algorithm thrice where the cipher encrypts its

information three times. Due to the weakness in DES algorithm, 3DES was implemented and

became a general encryption algorithm. In 3DES instead of utilizing single key as in DES, they

run the DES algorithm thrice with 56-bit keys.

⮚ Key 1 used to encrypt plaintext

⮚ Key 2 used to decrypt the encrypted plaintext with key1

⮚ Key 3 used to encrypt the plaintext that was decrypted with key2. (Lake, 2019)

Figure 2: 3DES algorithm

(Potlapally et al., 2007) in their research paper performed cryptanalysis attack on 3DES stated that

48 rounds maps 64 bits of plaintext into 64 bits of ciphertext parameterized on 168-bit secret key.

To conduct cryptanalysis attack and crack 3DES a minimum of four plaintext and ciphertext pairs

are enough making 3DES also vulnerable to hackers.

2.3 Blowfish Algorithm:

The Blowfish algorithm is a 64-bit block cipher utilized as a swap for DES calculation by taking

length key variable of 32 bits to 448 bits with 16 rounds, each round including change of key

conditions and key or information subordinate substitution. Each activity done by the XORs and

32-bit expressions of increments with four ordered exhibit information queries per round quoted

by Dr. Dobb in his journal. (Scheneir, 1995)

Presenting to (Wang and Que, 2009) paper’s examination done on blowfish calculation. It is

anything but difficult to learn and execute with all subkeys that are made through

Blowfish_Encrypt() which makes all the keys and information mixed together to make it confused

to analyze the key.

In (Poston and Dhandania, 2019) research paper, it demonstrated that the blowfish algorithm

requires more memory designation contrasted with DES calculation to introduce sub-keys and S-

boxes. Blowfish algorithm additionally sets aside a great deal of effort to encode information

making them more secure from brute-force attacks while plaintexts with little block size of 64 bits

are defenseless against birthday attack.

2.4 Bcrypt:

7

In 1999, Provos and Mazieres developed the password hash technique - Bcrypt. The origin of this

algorithm is from the Blowfish algorithm that has an expensive key setup, expand key and user

input.

In Expensive key setup, initialization of the values are done by populating the P-array and S-box

whereas in Expand Key, the initialized values are added with salt and passwords. In User input the

mathematical algorithm is initialize with 18 or 32-bit subkeys.

Due to its slow hashing process, Bcrypt algorithm has been adopted/deployed by Yahoo, Dropox

and AshleyMadison, to prevent offline hackers from cracking passwords.

The paper 'Economics of Offline Password Cracking', published by Jermiah, Ben and Samson,

describes about the security breaches faced by Yahoo, Dropbox, Ashley Madison and Lastpass.

70 million usersof Yahoo faced a security breach due its hash iteration τ.

Dropbox also faced breach of 68.7 million dropbox users. Dropbox used Bcrypt with 256 hash

iterations to hash passwords. Zipf’s law parameters for datasets along with RockYOu allows them

to predict the passwords used.

AshleyMadison’s 40 million password hashes were stolen in 2015. AshleyMadision used Bcrypt

at level 12 to hash passwords. Like Dropbox these passwords were predicted using Zipf’s law

parameters.

2.5 Advanced Encryption Standard:

AES is a symmetric block cipher implemented by NIST to overcome the problems faced by the

DES algorithm. AES is a round-based well-defined 128 bit block size for key lengths of 128, 192

and 256 bits with SubBytes, ShiftRows, MixColumns and AddRoundkey. Encryption, Decryption

and Round key Generator are the three main modules used in the AES algorithm. (Biglari, Qasemi

and Pourmohseni, 2013)

Advantages of AES Algorithm:

⮚ AES provides more security as they are implemented in hardware and software.

⮚ Key sizes used in AES have a higher length like 128, 192 and 256 bits of encryption

⮚ To crack 128-bit encrypted text 2128 tries are needed making it harder. (Rfwireless-

world.com, 2019)

(Kumar and Farik, 2017) in their journal reviewed the software that can crack AES easily. From

their journal there are several tools used to crack the AES algorithm which is available free and

used mainly as mentioned in the below table 1.

8

Table 1

From this journal there is a clear evidence that there are many free tools to crack the AES algorithm

making them less secured from hackers. Hence a better encryption technique for securing

passwords is to be implemented.

2.6 Jumbling Salting Algorithm:

Encryption technique used for passwords in previous algorithm does provide security by

preventing them from many attacks, but still are defenseless to attacks like brute-force or

dictionary attack. To avoid this problem (Churi, Ghate and Ghag, 2015) proposed a new

improvised encryption technique called Jumbling-Salting Algorithm.

 Initially, in Jumbling process addition, selection and reverse processes take place.

1. Additional Sub-block: Original plaintext is added with an additional sub-block consisting

of random values in this block.
2. Selection Sub-block: This block will select the random values to be added in additional

block with a pre-defined set of character, digits and special symbols as shown in the below figure

3.

Figure 3 Predefined Set for Jumbling Salting Algorithm. (Churi, Ghate and Ghag, 2015)

3. Reverse Sub-block: This block reverses the entire block with the mathematical condition

stating if the length of the sub-block even making the text more complex.

Salting block: After Jumbling process salting block will be added to the final jumbled block.

Where the standards of salt are user’s timestamp value. Format of salt array will YYYY MM DD

HH mm ss.

Where, Y = Year, M = Month, D = Date, H = Hours in 24 hours, m = Minute, s= Seconds

In (Churi, Ghate and Ghag, 2015) research paper they conducted an analysis of the plain text size

and cipher text size where the size of encrypted cipher text using JS algorithm is three times more

than the size of plain text, with no straight relationship between cipher and plaintext. Study of

research conducted by (Prasad et al., 2018) tested the plaintext of length size 16 for 11 number of

times to encrypt into cipher text using Jumbling Salting algorithm, the outcome of cipher text size

varied from 1732 to 946 lengths with an average of 1444. This research proves that the JS

algorithm randomly generates cipher text with no replication for providing more security from

guessing the length or size of the cipher text.

Alphabets A, B, …….., Y, Z

 a, b, ………, y, z

Digits 0, 1, 2, 3, 4, 5, 6, 7, 8, 9

Special symbols ! ` @ # $ % ^ & * () _ - + = [] : ; “ ‘ < >, . ? /

9

Figure 4 Plaintext vs Ciphertext. (Prasad et al., 2018)

Encryption Time is the time taken to encrypt plain text into cipher text.

JS Encryption Time = Encryption Time for Jumbling Process + Encryption Time taken for Salting

+ Encryption Time for AES algorithm. With the examination of AES and DES calculation the

encryption time of Jumbling Salting calculation is increasing because of numerous means

occurring in it. Quickest in encryption is DES calculation pursued by AES then Jumbling Salting

where the time taken to encode in Jumbling Salting is thrice the time taken to scramble in DES

calculation roughly as mentioned in (Churi, Ghate and Ghag, 2015). Conferring to (Prasad et al.,

2018) paper the plain text with the length of 16 for multiple times set aside divergent effort to

scramble beginning from 43.74 milliseconds to 64.9 milliseconds with a normal of 54.23

milliseconds.

Figure 5: Encryption time of JS, AES, DES Algorithm. (Churi, Ghate and Ghag, 2015)

Decryption Time is the time taken to decrypt cipher text into original plaintext.

JS Decryption Time = Decryption Time of Jumbling Process + Decryption time taken for Salt and

AES algorithm. Contrasted with AES and DES calculation the decoding time of disordering salting

calculation is high with less millisecond’s distinction where the unscrambling time taken by

16 16 16 16 16 16 16 16 16 16 16

1732 1840

1104

1424

1779

1241
1456 1442

1688

1240

946

0

200

400

600

800

1000

1200

1400

1600

1800

2000

1 2 3 4 5 6 7 8 9 10 11

Size of Plain Text and Cipher
Text

Plain Text Cipher text

114
104

119 125
115

0

50

100

150

Prathamesh cOOlguy123 09o2862o349 PraThamEsH1991 FSt/SghP*T

En
cr

yp
ti

o
n

 T
im

e

Password String

Encryption Time of AES, DES, JS

AES DES JS Linear (JS)

10

muddling salting calculation is less contrasted with the time taken or encryption. As in (Prasad et

al., 2018) paper 11 cipher texts are being decrypted to 16 plaintexts where each took decoding

from 14.57 to 26.52 milliseconds with a normal of 22.292 milliseconds from this decoding time is

less contrasted with the time taken to encode.

Figure 6: Decryption time of AES, DES, JS. (Churi, Ghate and Ghag, 2015)

Throughput Time is the total time calculated by encryption and decryption time. Various

plaintext sizes are utilized in (Saikumar, 2017) paper to inquire about in AES, DES and Jumbling

Salting calculations. From (Churi, Ghate and Ghag, 2015) paper, we come to realize that littler the

plain-content size decryption byte and time taken to scramble and decode are less contrasted with

greater plain-text size. A length of 10 plain-text changes to 176 bytes after encryption with 112

milliseconds to encode with JS calculation while 6808 length of plaint content size changes to

18568 bytes after encryption and takes 375 milliseconds to encrypt. In (Prasad et al., 2018) paper

throughput of encryption time is determined by isolating size of Plaintext by Encryption time and

throughput of unscrambling time by partitioning Size of figure message by Decryption time. (Bali,

Udgata and Churi, 2018) in their research paper tried to encrypt files and send using Jumbling

Salting Algorithm resulted in linear throughput where all the files are split and sent as chunk.

2.7 Proposed Methodology

Previous methods have certain flaws in it which allows the attacker to crack password easily. To

provide more security, a new methodology of encrypting the password has been implemented with

a new technique in Jumbling Salting Algorithm according to the pre-defined conditions to

overcome all the problems faced in previous technique. The time period required is talked about

in the assessment area with the adequacy and the likelihood of password encryption.

3 Research Methodology

Until now we have examined the requirement for password phrase security. To show the proposed

idea, a user’s password being stored is secured into the database. The research idea used for this

11

paper has been taken from the paper proposed by Prathamesh and Vaishali and Kranti in [12].

Methodology used in [12] had only one condition where if the length of plaintext is even the final

process after encryption is reversed and stored in a database, whereas in proposed idea there will

be two different operations taking place if the length of plaintext is even or odd.

3.1 Tools and Software Used:

This research is implemented with the help of two languages and one software tool.

Software tool: Microsoft Visual Studio

Languages: .NET for front end, C sharp for back end

3.2 Enhanced Jumbling Salting Algorithm for password encryption:

After registration of user the plaintext will undergo processes in different blocks for encryption.

A) Shuffled Password Block is the block where the password entered is rearranged in random

order to move them left, right, back and forth to change them more trickily. For example, if the

plain text is ABC in password block. Then the Shuffled password block will be BAC.

B) Jumbled Block is the block where the random values are generated from a pre-defined set of

character, digits and special symbols as shown in the below figure 7.

Figure 7: Random Values

C) Salt Block is the block where the salt to be added to for ciphering password will be stored. The

standard of the salt to be added into this research follows the timestamp’s table where the format

of the salt array is YYYY MM DD HH mm ss.

D) Advanced Encryption Block After salt block AES rijndael algorithm will be implemented for

both encryption and decryption of plaintext with sha-256 hashing.

The password undergoes two different phases to encrypt according to the conditions followed in

case1 and case2.

Case 1 (odd)

In case1 if the length of password is odd, then the Cipher block to be stored in database will be

Shuffled Password Block + Jumbled Block + Salt Block.

For example, if we take password as Abc

Length: 3

Alphabets A, B, …….., Y, Z

 a, b, ………, y, z

Digits 0, 1, 2, 3, 4, 5, 6, 7, 8, 9

Special symbols ! ` @ # $ % ^ & * () _ - + = [] : ; “ ‘ < > , . ? /

12

Shuffled password block: bac

Jumbled block: 1#k

Salt block: 26073019162045

Jumbling Salting Block: bac1#k26073019162045.

Final ciphertext to be stored in database after AES encryption

edwqnlfih214235otr94rlnenfsko4284o123

Case 2 (even)

In case2 if the length of password is even, then the Cipher block to be stored in database will be

Jumbled Block + Shuffled Password Block + Salt Block.

For example, if we take password as Abcd

Length: 4

Shuffled password block: dbca

Jumbled block: 1#k%

Saltblock: 26073019162045

Jumbling Salting Block: 1#k%dbca26073019162045.

Finalciphertext to be stored in database after AES encryption oiwqfeno1oi3h8493oeifnfu139

4 Design Specification:

In this section execution and practice of the plan are explained by the architecture of the effective

working of the proposed idea. The activity diagram for this research is displayed below. The plan

consists of plaintext, shuffled password block, jumbled block, salt block and two cases of operation

happening according to the conditions and final cipher text block. This area outlines diverse UML

graphs in connection to the proposed model. For instance, activity and sequence diagram.

Figure 8: Activity Diagram

13

Figure 9: Sequence Diagram

5 Implementation

5.1 User Registration:

The procedure begins by the user creating a new account starting by filling the registration form

by providing personal information. The data taken from the user are saved into database to check

information when they login again. Screenshot of registration page is as displayed in below figure

10.

. Figure 10: User Registration Page

5.2 Password Encryption and Decryption Implementation:

Input: Plaintext

Output: Ciphertext

14

1. Storing a password into database by creating a connection through SQL.

2. Passing the password variable into the JumblingSalting function.

3. Defining the password length to zero.

4. Using Random function to generate random values.

5. Defining Salting algorithm using time stamp value to fetch datatime value as salt.

6. Implementing modValus to shuffle and swap the characters with jumbledblock.

7. Creating a condition where the password length is an even number, add the shuffled block first

followed by jumbled block.

8. Values obtained by the random function are added to jumbling block followed by shuffled

password.

9. If the password length is an odd number, random values are first added to jumbling block

followed by shuffled password.

10. Salt values generated through timestamp value are added to final block.

11. RijndaelManaged class is initialized for AES encryption with 256 bytes key size and 128

bytes of block size.

12. SHA256 is used to add hashing to the encrypted jumbled block.

13.For encryption and decryption process AES algorithm using Rijndael method is used.

14. The encrypted password is finally stored in the variable name encryptedBytes.

15. To calculate Encryptiontime in milliseconds the Datetime.Now function is used.

5.3 Database:

All the information given by the user while registering, length of password, Encrypted password

and salt are all stored in sql database server using VisualStudio as shown in below figure 11.

Figure 11: Database table

6 Evaluation:

15

6.1 Case Study 1

Password Length, Salt length and Cipher text length

To check the length of plaintext vs cipher text I have taken 5 usernames with password length 11,

10 and 14 with salt length of 12 and found that the resultant ciphertext length as shown in below

table 2 and figure 12.

Password length Salt Length Ciphertext length

11 12 24

10 12 24

11 12 24

14 12 24

10 12 24

Table 2: Password length, Salt length and Ciphertext length

Figure 12: Plaintext vs Ciphertext vs Salt

According to the above graph the when the password entered was non-linear the ciphertext

length was showed to be linear irrespective of the password length.

6.2 Case Study 2

Encryption Time

Encryption Time is calculated by the time taken to encrypt the plaintext given by the user from the

starting time and time taken for the plaintext to be encrypted and stored in the database.

Encryption time calculated in milli seconds as given in below table 3 and graph.

Password String

JS

Improvised

(ms)

JS

(ms)

AES

(ms)

DES

(ms)

Pr@thamesh1 30.9513 114 81 34

C00lguy@23 36.899 104 81 40

09o2862@34B 38.9282 119 77 45

Pr@ThamEsh199

1 26.9261 125 80 55

FSt/5ghP*t 27.9228 115 87 45

0

20

40

1 2 3 4 5

Plaintext vs Ciphertext vs Salt

Password length Salt Length Ciphertext length

16

Figure 13 Encryption Time

The time taken by the previous research for encrypting the password using JS, AES and DES

algorithms was much more as compared to the improvised algorithm.

6.3 Case Study 3

Decryption Time is calculated from the time taken to login the page after the user logs in with

password. This time will be based on the time taken to decrypt the ciphertext stored in the database.

Password String

JS

Improvised

in

Milliseconds

JS

in

Milliseconds

AES

in

Milliseconds

DES

in

Milliseconds

Pr@thamesh1 27.9275 70 64 26

C00lguy@23 31.9476 69 60 30

09o2862@34B 31.9151 94 64 30

Pr@ThamEsh1

991 25.8948 95 65 38

FSt/5ghP*t 25.9311 69 72 26

0

20

40

60

80

100

120

140

A1= 11 A2 = 10 A3 = 11 A4 = 14 A5 = 10

Encryption Time

Text Size For Decryption (In Bytes) JS imrpvosied in Milliseconds

JS in Milliseconds AES in Milliseconds

17

Figure 14. Decryption Time

The time taken by the previous research for decrypting the password using JS, AES and DES

algorithms was much more as compared to the improvised algorithm

6.4 Case Study 4

Encryption Time of Improvised Js, Js, AES, DES algorithm for throughput

calculation:

Text Size

for

Encryptio

n (In

Bytes)

Text Size

For

Decryptio

n (In

Bytes)

JS

imrpvosied

(ms)

JS

(ms)

AES

(ms)

DES

(ms)

11 12 30.9513 112 99 71

10 12 36.899 145 128 111

11 12 38.9282 185 163 129

14 12 26.9261 240 203 167

10 12 27.9228 375 311 269

TP 56 60 161.6274 1077 904 747

0

20

40

60

80

100

120

140

A1= 11 A2 = 10 A3 = 11 A4 = 14 A5 = 10

Decryption Time

Text Size For Decryption (In Bytes) JS imrpvosied in Milliseconds

JS in Milliseconds AES in Milliseconds

18

Figure 15. Encryption Time for Throughput Calculation

6.5 Case Study 5

Decryption Time of Improvised Js, Js, AES, DES algorithms for throughput

calculation:

Text

Size for

Encrypti

on (In

Bytes)

Text Size

For

Decrypti

on (In

Bytes)

JS

imrpvosied

in

Milliseconds

JS

in

Milliseconds

AES

in

Milliseconds

DES

 in

Milliseconds

A1= 11 12 30.9513 114 81 34

A2 = 10 12 36.899 104 81 40

A3 = 11 12 38.9282 119 77 45

A4 = 14 12 26.9261 125 80 55

A5 = 10 12 27.9228 115 87 45

Tp= 56 Tp = 60 160.4274 577 346 219

0

100

200

300

400

500

600

700

A1= 11 A2 = 10 A3 = 11 A4 = 14 A5 = 10 Tp= 56

Encryption Time for Throughput Calculation

Text Size For Decryption (In Bytes) JS imrpvosied in Milliseconds

JS in Milliseconds AES in Milliseconds

DES in Milliseconds

19

Figure 16. Decryption Time for Throughput Calculation

6.6 Case Study 6

Encryption and Decryption Throughput:

Text

Encryption

Throughpu

t in m/s

Decryption

Throughpu

t in m/s

A1= 11 2.813 2.53

A2 =10 3.6899 3.19

A3 =11 3.5389 2.9

A4 =14 1.9232 1.84

A5 =10 2.79 2.593

0

100

200

300

400

500

600

700

12 12 12 12 12 Tp = 60

A1= 11 A2 = 10 A3 = 11 A4 = 14 A5 = 10 Tp= 56

Decryption Time for Throughput Calculation

JS imrpvosied in Milliseconds JS in Milliseconds

AES in Milliseconds DES in Milliseconds

0

0.5

1

1.5

2

2.5

3

3.5

4

Text A1= 11 A2 =10 A3 =11 A4 =14 A5 =10

Encryption and Decryption Throughput

Series1 Series2 Series3 Series4

20

Figure 17. Encryption and Decryption throughput

Encryption Throughput is the total password bytes divided by the average encryption time. The

result of this process in the last research was high as compared to the new research algorithm

defined in this project.

6.7 Discussion

The size of cipher text in each process is same from Case Study 1. For example, if we take a

password length of 11, 10 and 14 the encrypted cipher text length stored in the database is 24,

making them more vulnerable to linear cryptanalysis.

From Case Study 2 the encryption time taken by Improvised Jumbling Salting algorithm

with the same plaintext is less than the time taken by Jumbling Salting, AES and DES algorithms.

For example, the time taken for encryption by the Improved Jumbling Salting Algorithm is 30ms

whereas the time taken by the above-mentioned algorithms is 115ms, 87ms and 45ms respectively.

The Case Study 3 shows the decryption times taken by various algorithms including the

algorithm under research. The Improvised Jumbling Salting algorithm proved to be more time

efficient when compared to other algorithms namely the Jumbling Salting algorithm, AES and

DES algorithms.

The Case Study 6 reports encryption and decryption throughput which shows that the

improvised jumbling salting algorithm has a good result over the previously implemented

algorithms with lot of complexity in the algorithm.

7 Conclusion and Future Work

Jumbling Salting Algorithm used in this research produces an encrypted form of plaintext. There

is no real way to stop cyber-attacks. They can be made less compelling by using Jumbling Salting

algorithm due to randomization of value.

An improvement of more involvement in this calculation can bring about validation of password

from the first stage. Jumbled passwords give uniqueness and increases complexity. AES algorithm

is additionally utilized in this calculation to give greater security to encryption and decryption

process.

Being a password encryption algorithm, the time complexity also plays an important role along

with security. By running this algorithm on a website, I found the result in a neutral format. The

average encryption and decryption time calculated at 32.284 ms/p and 31.80 ms/p which is a decent

result by adding shuffled password, random values, salt and hash compared to the previous

algorithm’s time which took a lot of computation power.

21

In future, this encryption technique can be implemented by randomizing the length of ciphertext

value to prevent linear cryptanalysis attack and random values generated from a set of predefined

set of characters can also be made more complex to provide a more secured randomization process.

8. References

 Gautam, T. and Jain, A. (2019). Analysis of brute force attack using TG — Dataset.

Saikumar, I. (2017). DES- Data Encryption Standard. International Research Journal of

Engineering and Technology (IRJET), (2395 -0056).

 Zodpe, H., Wani, P. and Mehta, R. (2012). Design and implementation of algorithm for DES

cryptanalysis. 2012 12th International Conference on Hybrid Intelligent Systems (HIS).

Lake, J. (2019). What is 3DES encryption and how does DES work? | Comparitech. [online]

Comparitech. Available at: https://www.comparitech.com/blog/information-security/3des-

encryption/ [Accessed 9 Aug. 2019].

Potlapally, N., Raghunathan, A., Ravi, S., Jha, N. and Lee, R. (2007). Aiding Side-Channel Attacks

on Cryptographic Software With Satisfiability-Based Analysis. IEEE Transactions on Very Large

Scale Integration (VLSI) Systems, 15(4), pp.465-470.

Scheneir, B. (1995). The Blowfish Encryption Algorithm. Dr. Dobb's Journal.

Wang, M. and Que, Y. (2009). The Design and Implementation of Passwords Management System

Based on Blowfish Cryptographic Algorithm. 2009 International Forum on Computer Science-

Technology and Applications.

Poston, H. and Dhandania, K. (2019). Blowfish: The first well-known encryption algorithm in

public domain | CommonLounge. [online] Commonlounge.com. Available at:

https://www.commonlounge.com/discussion/d95616beecc148daaa23f35178691c35 [Accessed 9

Aug. 2019].

Blocki, J., Harsha, B. and Zhou, S. (2018). On the Economics of Offline Password Cracking. 2018

IEEE Symposium on Security and Privacy (SP).

Biglari, M., Qasemi, E. and Pourmohseni, B. (2013). Maestro: A high performance AES

encryption/decryption system. The 17th CSI International Symposium on Computer Architecture

& Digital Systems (CADS 2013).

Rfwireless-world.com. (2019). Advantages of AES | disadvantages of AES. [online] Available at:

https://www.rfwireless-world.com/Terminology/Advantages-and-disadvantages-of-AES.html

[Accessed 9 Aug. 2019].

22

Kumar, J. and Farik, M. (2017). Cracking Advanced Encryption Standard-A Review. International

Journal of Scientific Technology Research.

Churi, P., Ghate, V. and Ghag, K. (2015). Jumbling-Salting: An improvised approach for password

encryption. 2015 International Conference on Science and Technology (TICST).

Prasad, M., Oruganti, M., Shah, M., Pavri, M. and Churi, P. (2018). Improvised E-commerce

Transaction Security using JSSecure Algorithm. 2018 IEEE International Conference on System,

Computation, Automation and Networking (ICSCA).

Bali, M., Udgata, M. and Churi, M. (2018). Symmetric Jumbling-Salting Encryption Algorithm

for Files. 2018 Fifth HCT Information Technology Trends (ITT).

