

Configuration Manual

MSc Internship Msc. CyberSecurity

Chirag Sharma Student ID: X18151485

School of Computing National College of Ireland

Supervisor: Dr. Muhammad Iqbal

National College of Ireland

MSc Project Submission Sheet

School of Computing

Student Name:	Chirag Sharma		
Student ID:	X18151485		
Programme:	MSc. Cybersecurity	Year:	2019-2020
Module:	Cybersecurity		
Lecturer: Submission Due	Dr. Muhammad iqbal		
Date:	8 Jan 2020		
Project Title:	Feed Forward MLP SPAM domain Detection Using A Email Log	uthoritativ	ve DNS Records and
Word Count:	800 words		
Page Count:	ovo nords		

I hereby certify that the information contained in this (my submission) is information pertaining to research I conducted for this project. All information other than my own contribution will be fully referenced and listed in the relevant bibliography section at the rear of the project.

<u>ALL</u> internet material must be referenced in the bibliography section. Students are required to use the Referencing Standard specified in the report template. To use other author's written or electronic work is illegal (plagiarism) and may result in disciplinary action.

I agree to an electronic copy of my thesis being made publicly available on NORMA the National College of Ireland's Institutional Repository for consultation.

Signature:

Date: 8 Jan 2020

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple copies)	
Attach a Moodle submission receipt of the online project submission, to each project	
(including multiple copies).	
You must ensure that you retain a HARD COPY of the project, both for your own	
reference and in case a project is lost or mislaid. It is not sufficient to keep a copy on	
computer.	

Assignments that are submitted to the Programme Coordinator Office must be placed into the assignment box located outside the office.

Office Use Only	
Signature:	
Date:	
Penalty Applied (if applicable):	

Internship Report

18. Appendix G - Monthly Internship Activity Report

The Internship Activity Report is a 1 page monthly summary of the activities performed by you and what you have learned during that month. The Internship Activity Report must be signed off by your Company and uploaded to Moodle on a monthly basis.

Student Name:	Chirag Sharma	Student number:	18151485	
Company:	CRH plc	Month Commencing:	Sep 19 - Nov 19	
Core Ta	sk and Activities:			
Qualys Symar Email ISO 27	tec Email Security.clo Incident Response Tra 2001 Training (with C	aining (with Colm and R	lichard)	

Employer comments

Chirag successfully completed	a number qu'training
modules, adding to his she	Neset. Chiray completed
all take given to him u	Rhin regained deadlines.
Student Signature:	Date

Student Signature:		Date:	
Industry Supervisor Signature:	-H	Date:	06/01/20

MSc Internship Handbook 2018/19, School of Computing, National College of Ireland.

Page 55

Configuration Manual

Chirag Sharma Student ID: x18151485

1 Introduction

This document provides a walkthrough of the implementation with technologies used to build our detection model in a stepwise manner. We start off by collecting the email data from spam archive and then cleaning it to fetch domain name and other feature and then querying to DNSBLs and fetching active DNS records from Avro. Since email headers can be complicated to be read or retrieved manually from email files , email parser module makes things easy to retrieve email headers in a dictionary format. For DNSBLs there are SPAMHAUS, SURBL open blacklists and 'spam-lists' library has built-in functions to lookup for spam domains. For our Neural network classifier, we first baselined with Logistic Regression and then use first the generic MLP and after that we try improve the accuracy of our result using Gradient descent algorithm, Regularization factor and hidden layers.

2 System Configuration

- OS MAC OS High Sierra
- Processor Intel Core i5 2 Cores
- 64-bit version
- Ram 8 GB
- Python version 3.7
- Pip 2.1.3
- Pycharm -2019 -3.1

3 Walkthrough

3.1 Setting up Environment

We setup a virtual environment using Virtualenv which loads all the necessary libraries and freezes the environment for particular usage. We install pip which is a package manager for python. Also setting up Pycharm with the virtualenv interpreter.

Jinja2	2.10.3	2.10.3
MarkupSafe	1.1.1	1.1.1
apilityio-lib	0.0.3	0.0.3
avro	1.9.1	1.9.1
bigjson	1.0.1	1.0.1
certifi	2019.11.28	2019.11.28
chardet	3.0.4	3.0.4
checkdmarc	4.2.4	4.2.4
cycler	0.10.0	0.10.0
decorator	4.4.1	4.4.1
dnspython	1.16.0	1.16.0
dnspython3	1.15.0	1.15.0
expiringdict	1.2.0	1.2.0
fastavro	0.22.9	0.22.9
future	0.18.2	0.18.2
idna	2.8	2.8
ijson	2.5.1	2.5.1
ipstack	0.1.4	0.1.4
joblib	0.14.1	0.14.1
kiwisolver	1.1.0	1.1.0
matplotlib	3.1.2	3.1.2
numpy	1.18.0	▲ 1.18.1
panda	0.3.1	0.3.1
pandas	0.25.3	0.25.3
panuas	0.25.5	0.20.3

Figure 1: Packages Installed

3.2 Email header extraction

For this process we require email library and csv library to read email message from text, email has a function named Header parser which converts all the parts of email into a key value pair in the form of a dictionary and that dictionary can be written into csv using Dict reader module.

pimport email	
import os	
Aimport csv	
lst_domain = []	
<pre>root_dir = '/Users/chiragsharma/Desktop/Thesis_Mac/2019'</pre>	
<pre>for subdir, dirs, files in os.walk(root_dir):</pre>	
for file in files:	
<pre>if file.endswith('.txt'):</pre>	
🖕 🛛 try:	
<pre>f = open(os.path.join(subdir, file))</pre>	
<pre># print(os.path.join(subdir, file))</pre>	
<pre>msg = email.message_from_file(f)</pre>	
f.close()	
<pre>parser = email.parser.HeaderParser()</pre>	
<pre>headers = parser.parsestr(msg.as_string())</pre>	
<pre>keys = ['From', 'DKIM-Signature''List-Unsubscribe']</pre>	
for key_np in keys:	
if key_np not in headers:	
headers [key_np] = 'None'	

Figure 2: Email Header Parsing

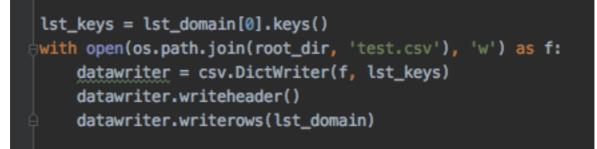


Figure 3: Convert email header dictionary to CSV

3.3 Cleaning Email headers and Query DNSBL

Using spam-lists package we query onto SPAMHAUS and DNS BL but before that we find out the regex pattern for email in 'From' column as they are fetched in format as below. john.doe@example.com" <john.doe@example.com>

Hence, we fetch the domain name and the recursively query in nested IF because to check both of the DNSBL first we query SPAMHAUS and if the result is none from SPAMHAUS [2] then we query to SURBL and even from SURBL the result is none we mark the domain as a ham domain. File name:email_clean_csv.py

Figure 4: DNSBL Query

3.4 Query Active DNS records

DNS records are in AVRO format and we use fastavro function to fetch IP addresses of 'A'. 'TXT' and TTL values of 'A' and 'TXT', 'NS', 'MX' if the domain name matches from the 'FROM' field of DNS records. File name : avro_read.py

We load avro [1] records into pandas data frame and since one single DNS records consisted of 114 key value pairs and most of them were null. We used Pandas melt and pivot function

to convert rows into columns and to remove null and redundant key value pairs and dumping the records on to csv file.

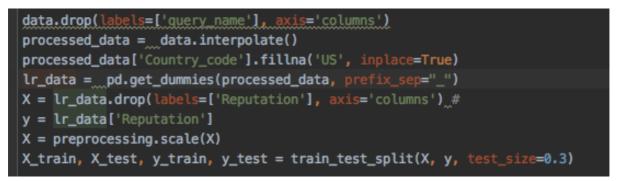


Figure 5: Fetch DNS records from Avro file

3.5 Data Exploration

Firstly, we drop the field 'query_name' as it consists of domain name and it is a unique identifier. After that we interpolate the data for missing values. And fill country code which had missing values with value US because most of the country codes were from US. Next in order to convert categorical data into hot codes, we use get_dummies function of panda's library.

Then we build the training set imto 60:30 split and map the data with training X and Y coordinates.

Figure 6: Data Exploration

Now we check the correlation of all the features using corr() function of pandas library and then plot a matrix using Seaborn heatmap function.

3.6 Feature importance calculation


Used the random forest classifier for calculation of feature importance and plot a bar chart using Matlibplot library. We fetch the features from dataframe store them in a dict and mapped using importances() function within random forest classifier gainst the importance scores.

3.7 Logistic Regression classifier

```
reg = LogisticRegression(solver='lbfgs')
model = reg.fit(X_train, y_train)
predictions = model.predict(X_test)
scores = calculateScores(y_test, predictions)
print(scores)
```

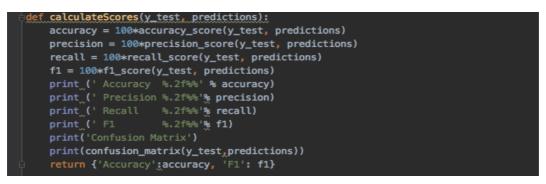

Figure 7: Logistic Regression Classifier

Figure 8: LR Classifier Results

3.8 MLP Classifier

First the generic classifier without solvers . First performing the model fitting and then predict results through calculate score function which calculates Accuracy, Precision, recall and fl score.

Figure 9: Calculate scores function

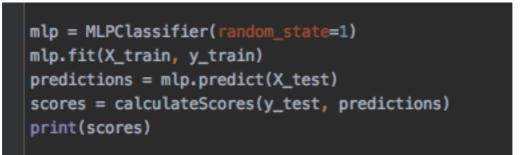


Figure 10: Generic MLP

	/Users/chiragsharma/Desktop/Thesis_Mac/2019/venv/bin/python /Users/chiragsharma/Desktop/Thesis_Mac/2019/venv/ML.py
	Accuracy 74.90%
	Precision 78.20%
	Recall 76.47%
	F1 77.32%
	Confusion Matrix
8	[[78 29]
	[32 104]]
	{'Accuracy': 74.8971193415638, 'F1': 77.32342007434944}
	hidden_layer_sizes Accuracy F1 recall precision
	44 (4, 3) 93.82716 94.773519 100.0 90.066225
	hidden_layer_sizes Accuracy F1 recall precision
	44 (4, 3) 93.82716 94.773519 100.0 90.066225
	Process finished with exit code 0

Figure 11: Generic MLP results

3.9 Feed Forward classifier with logistic activation, regularization coefficient and hidden layers

```
layers = []
alpha = 0.015625
for i in range(1,15):
    for j in range(1,15):
        layers_t= [(i,j)]
layers_df = try_different_values(layers, 'hidden_layer_sizes', X_train, y_train, solver='lbfgs', activation='logistic', alpha=alpha)
layers_df.set_index('hidden_layer_sizes', inplace=True)
layers_df = layers_df.reset_index()
print(layers_df.iloc[[layers_df['Accuracy'].idxmax()]])
print(layers_df.iloc[[layers_df['F1'].idxmax()]])
```

Figure 12: Feed Forward MLP classifier

The above code represents feed forward classifier which takes the value of alpha and along with doubly nested loop of range 1,15 which indicates number hidden layer size combinations to try and give out the best result by passing arguments to a function name try_different values which ultimately calls Calculate scores function() to calculate the final scores.

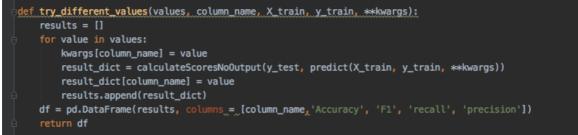


Figure 13: Try different values function

4. References

[1] Fastavro, "fastavro/fastavro," GitHub, 20-Dec-2019. [Online]. Available: https://github.com/fastavro/fastavro. [Accessed: 08-Jan-2020].
[2]DBL - The Spamhaus Project. [Online]. Available: https://www.spamhaus.org/dbl/. [Accessed: 08-Jan-2020].