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Improving processing of real-time Big Data in Smart
Grids using Apache Flink and Kafka

Supritha Shetty
x18163009

Abstract
As we inject more and more “smartness” into energy networks, it unfolds fine-

grained data. Around 80 percent of electric meters determined to be replaced
by smart meters by end of 2020 in European Union, evidently putting forward
plethora of data. Processing and analyzing this Big Data would be complex, time
consuming and would have more latency with lesser throughput. Data received by
smart meters are at unprecedented speed at real-time, having said that a constant
store of data received via smart meters also needs to be addressed, this paper aims
to process the data at real-time as well as data received in batches or at store,
with higher throughput and lower latency and much faster a execution time.There
are different types of existing frameworks and techniques to process Smart grid
Big Data being touched upon,this research focuses on using the two most relevant
techniques. Apache Kafka being the best combination with Apache Flink using
the in-built connector which helps to receive streaming data also being scalabe
and fault-tolerant, With that making use of Apache Flink’s own features in an
optimized manner such as Windowing, its GlobalJobParameters as well as using
Flink’s Event time and Processing time with Java Programming language. The
architecture is used to process Big Data from smart meters to achieve the end result
help increasing the overall performance in real-time using cloud based services by
deploying the JAR. A significant encouraging results of execution time being lesser
when compared to existing approaches can be observed in the results.

1 Introduction

With cloud computing and energy networks tending towards digital technologies more and
more data are induced through devices such as smart meters, thermostats, smart plugs,
sensors(sensing the purity of air) and also data from two way communication initiated
by the smart devices. All these systems are known as smart grids which depicts the
consumption of energy at real-time and is controllable and adjustable. A precise reading
on energy consumption can be achieved through smart meters unlike the traditional
system mostly based on monthly visits and assumed on previous monthly bills. Smart
Grid ongoing improvements and being adjustable with accurate results its a turning point
for Big Data being generated, evidently needing to be processed at real-time.

1.1 Background

According to Horban (2018) the problems of capturing, analysing, managing the data
and visualising is all resolved with help of big data. Big Data is allude to 5v’s Li (2014),
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Acharjya and P (2014), Krüger1 and Teuteberg2 (2015), with respect to smart grid, the
data has enclosed enclosed in Volume, Variety, Veracity, Velocity, Value. As claimed
by Kamstrup (2019) the more data you have the value you create. When it comes to
real-time data processing the instant need to process Big Data to get beneficial outcomes
processing framework such as Apache Hadoop was put forth as with MapReduce as its
default processing engine but it certainly did not support a real-time energy data.As
shown in Figure 1 To being with lets understand why is it necessary to process data at

Figure 1: Smart Grid Data Distribution and process

real-time? Prathik et al. (2018) states that processing real time smart meter data does not
only helps user understand the daily consumption but also weekend consumption if the
user is away, helping to understand the habits and reduce consumption thereafter. The
data includes switch stations, meters, and non-electrical information such as marketing,
economic data are diverse in nature. Looking into this, Apache Spark with the fault
tolerance of MapReduce working in streams and batches having its own integrations,
libraries and tools was taken ahead Pérez-Chacón et al. (2018).

Lambda architecture which is also refereed in many papers, the original goals of this
architecture were to improve the high result latency and have speed and batch processing
performed Munshi and Mohamed (2018). However, it has a few notable limitations,
first being two semantically equivalent implementations and the logic for two separate
processing systems with different APIs are required. Second, finally the results achieved
are only approximate and not accurate. Third it is difficult to set up and also to maintain
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having different resources such as databases and frameworks.

1.2 Research Gap and Contribution

Having said that Spark dominates when it comes to real-time streaming of Big Data
however, is incapable of native iterations. To implement an iterative algorithm, a loop
has to be repeated in order to to execute the step function and in addition check manually
the termination steps, remarkably increasing overhead for large-scale iterative jobs. With
such case this paper utilizes Flink’s pipeline-based architecture with Windowing has one
of the major feature. Unlike Spark, Flink will not split the stream data in micro-batches
and with respect to iterative algorithms, the iterative step function needs to be scheduled
once and the repetition will be handled by Flink engine.

Flink has the ability to process batch and streaming data without two separate pro-
cessing systems as required by Lambda architecture, making it much easier to setup, hence
both batch and stream processing with use of the relevant API’s will be demonstrated in
this project. Flink has the socketstreaming class having to process the data at real-time
without use of external frameworks will be implemented in this paper, but for heavy data
streaming Apache Kafka has been used,has many of the paper use API’s or other 3rd
party systems such as GitLabD for real-time streaming data. Apache Flink with best
execution strategy having able to embracing Event-driven applications and Processing
time application offering several benefits has been put to use in this research proposal.
Help run consecutive operations on MAVEN without any need of manual tweaking hosted
on cloud environment.

1.3 Research Question and Objective

How to improve processing of Real-time Big Data using Apache Flink and Kafka?
The primary objective of this study is to evaluate the performance of architecture

designed with help of Apache Flink and Apache Kafka using cloud platform. The per-
formance evaluation will be conducted taking terms of throughput and latency with mak-
ing the architecture fault-tolerant. The evaluation result will be compared to common
stream processing frameworks and related existing approaches as mentioned in Section
II helping to answer the research question. Many authors despite of using the widely
known approaches have mentioned some limitations and drawbacks with regards to pro-
cessing methods, speed, efficiency, latency which are been tried to overcome using the
implementations and environment setup.

Further paper is organized in following manner, Section 2 talks depicts related work
on various Big Data processing frameworks with relation to smart grids and its processing
time and efficiency. Section 3 and 4 describes the architecture methodology and design
specification followed by section 5 containing the brief implementation. Section 6 presents
a performance evaluation under Results and Critical analysis, a testing proof of the
concept and, section 7 gives the concluding remarks.

2 Related Work

Based on research references, Big Data is significantly precise when it comes to smart
grids. Processing the data at real-time having it stored in cloud is a appropriate solu-
tion for various properties such as elasticity scalablility. Numerous articles with various
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architectures are been proposed when it comes to processing data using data analytic
technique and cloud computing.

2.1 Lambda Architecture for Big Data Energy Management

Generally a Lambda Architecture consists of three layers a batch layer which performs
the batch processing, a speed layer performing the stream processing and a serving layer
for data storage. Due to this 3 layers a batch data, and real-time data are taken care of as
when data enters the system feds the data into this two layers as per computation to be
processed.Different attempts have been made to merge the traditional batch processing
approach analytics with popular stream processingHeidrich et al. (2016). The serving
layer or also called as speed layer Heidrich et al. (2016) aggregates the outputs from
batch and speed layers, storing the data in a datastore which uses different data storage
systems. Author Kiran et al. (2015) states that this architecture is not only helpful for
processing but is cost-effective at the same time. The uses are depicted in graphs and how
kensis, aws resources cost monthly and how processing and correcting code errors having
it tested before deploying help reduce the cost is mentioned. Following the experiments
further with help of 32 core Linux machine with ram of 128GB,1594 count customers data
Author Munshi and Mohamed (2018) took less than 100 seconds to calculate the above
written function. As per authors experiment on dataset features such as robustness,
fault-tolerance can be achieved by replicating the data and storing it in many nodes,
which also helps achieve low-latency, scalablility and flexibility. However, the time taken
to setup each resources and cost is high, making it difficult to setup and manage.

2.2 Apache Hadoop Based Framework for Energy Management

Hadoop based framework is an intial framework, the analysis were carried out by many
authors referring to features using different approaches. Author Vaidya and Deshpande
(2019) states that having a major advantage of legacy power Hadoop can be easily trusted
on and is turned out to be a promising platform in the analysis performed. Author
clearly explains on SCADA systems and how those system have MapReduce capability
making 1000 terabyte of data to be easily scalable across 4000 nodes and handling failures
are easier. However in this paper author compares the structure with database and
hence stating the database takes 10-15 hours so therefore Hadoop does the better job
comparatively. Author have not taken in consideration of any other frameworks or even
Apache Spark. A similar comparsion is be stated by Shrivastava and Shrivastava (2018)
comparing with SQL.

Hadoop is the core component in the data analysis process is notified by Merla and
Liang (2018), which can support the processing of large datasets using distributed al-
gorithms. Achieving the scalability and when it comes to latency there is a bit trade-off
in accuracy. The complex process delays the functioning, impacting the output process
time and accuracy Perez et al. (2017). Other challenges focus on MapReduce’s fault
tolerance implementation, the results of the Map phase to local files before sending them
to the reducers Grolinger et al. (2014) which therefore adds high overloads to files adding
latency to the processing pipelines. Author Fan et al. (2019) states that the data man-
agement layer can be entirely handled by an Hadoop distributed system including the
storage , querying and resource management with that the use of algorithms such as
XGBoost, decision tree, BP neural network help process massive data quickly.Author has
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experiment and drawn effectiveness on about 1500 substations from Hubei powergrid, the
accuracy rate stated by author is about 93.98 percent and failure rate reduced by 75 per-
cent. However author fairly contributes on Hadoop and its features with no consideration
of any other architectures and real-time online streaming data.

2.3 Apache Spark Based Big Data Energy Management Archi-
tecture

Widely known and highly chosen framework is Apache Spark Framework having larger
community.Author R et al. (2018) briefs about the three different types of processing
batch, stream and iterative processing.Apache Spark with data received from the smart
grids, having an architecture of 16 GB RAM,2 TB hard disk, I7-4790K processor. Data
was stored in Apache Cassandra database, which is best suited for time-series data and
the streaming data was supplied to Apache Spark with help of Apache Kafka with win-
dowed streaming.Nonetheless, author has not mentioned on the time and the latency
been reduced but have concluded on the computation being fault-tolerant, peak-time
load balancing and effective with lower latency.

Apache Spark the processing was performed using 8 nodes in comparison to Spark
Streaming for 3.6 GB data. Author claims to have recorded throughput using only batch
of data as when it comes to measuring the latency every time the batch of data is increased
the latency would increase respectively Gibadullin et al. (2019), IBM (2016). The main
goal with regards to author was to achieve high throughput, having said that, author have
not considered Apache Flink and Apache storm, as incase of Apache Storm it lacked on
comparable through-puts, incase of Apache Flink was then under development and lacked
some important features.

Author Aziz et al. (2019) has performed a clear comparison of Hadoop and Spark
framework and how Hadoop is not capable of processing data in real-time. Its mentioned
whole process is performed in batches which puts in attention that despite of data being
real-time spark performs them in batches and not real-time making it not a true streaming
framework. Approach by Carvalho et al. (2017) is taken into account with having Redis as
the storage.Input is taken with Apache Kafka and sent over to Apache Spark and stored
in Redis in form of key-value in memory data store. Redis help perform simple and
fast distributed I/O. Author Curtis (2018) describes with using different experiments, for
word count the latency using SPARK YARN was observed to 5590635 millisecongds and
throughput being 1363 seconds only. However author have pointed out few limitations
of the working of comparison and the processing performed.The velocity problems of big
data, when these data comes from a stream of events are not been considered. Zhang
et al. (2018) states this can be solved with help of CEP’s sliding window approach, which
ensures only a portion of data actually passes into the main memory and old events can
be removed or archived yet be that as it may, after an extent the main concern latency for
detectingthe complex events is user or system can be observed and the communication
cost for communicating with the coordinator ?.

2.4 Big Data with Machine Learning Algorithms

For processing the big data from smart grids author Pérez-Chacón et al. (2018) depicts
a study of four Cluster Validity Indices Analysis works parallelly the DB-Dunn, DB-
Silhouette, Davies-Bouldin and WSSSE indices.With help of k-means algorithm an op-
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Figure 2: Summarized Approaches
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timal number of clusters are chosen in terms of these indices with help of voting strategy.
The above analysis creates 8 with major cluster consuming 39 percent of instances. The
execution time for the largest dataset considering big data is less than 4 h.The dataset
considered was about 11.63 GB.

Futhermore another paper illustrates the data analytic ARIMA model to process the
5-minutes smart meter data sets for 100 commercial buildings which will help exploring
time series as well as the creation of different forecast models. A combination of these
forecast models are used to compare performance, author states that ARIMA can produce
more accurate forecast than exponential smoothing. Author Xiufeng et al. (2015) puts
forth bench marking of data with regards to 5 different platforms which are System C,
Hive, Matlab and PostgreSQL. Benchmarking is done on basis of consumption of energy,
consumption by buildings, daily consumption of individual houses and private sectors.
Daily consumption’s are measured with PAR algorithm taking consideration of previous
hours and data is been estimated. The benchmarked data was further put to comparison
POSTgreSQL and MADLIB being the slowest , the data was about 10GB running on
a Intel core processor. According to author with no effort to put having a single node
cluster System C is the winner.

The Figure 2 points out the limitations and advantages of existing architecture high-
lighting the execution time taken to process the data.

3 Methodology

Big data approach on smart grids plays a significant role, various forms require an elastic
self-service approach which would not be handled by traditional MapReduce approach.
An algorithm such as random forest and LASSO needs to meet formats and just the
huge chunk of data passed through would not provide a efficient outcome. Big Data
and Cloud Computing inevitably work together, with the scalable nature of cloud and
managing spikes without hindrance, and possible disaster recovery makes it a finest for
smart meters Big Data.

3.1 Requirement Gathering

This methodology as shown in Figure 3, depicts the steps followed with equipment used
for research. The architecture will be deployed on Amazon Elastic Compute cloud(EC2)
and the processed data will be stored in Simple Storage Service. Amazon Web service
(AWS) instance is selected, as its the “dominant player” in cloud computing states Ser-
rano et al. (2018)adding on to be the very first company to have served cloud services
since 2006,considering the growth in the market it makes total sense to go with Amazon
Services.

With Smart grids having humongous amount of data, naturally requires an approach
to be rapid at real-time and with that a need of batch processing for all the data which
would not require real-time streaming therefore helping to avoid overload. Lambda ar-
chitecture as shown in Section 2 is one of these architecture which performs both but
Apache Flink performing both makes it obsolete. Since Apache Flink has a network stack
supporting, both low-latency, high-throughput streaming data can perform runtime op-
erators and even batch operations that can work for datasets that can be fetched from
the location. As shown in Figure 4 the eco-system was built in Ubuntu environment
using version 18.04.02 with 64 bit. The latest version of Apache Flink was used that
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Figure 3: Activity diagram on the flow of proposed architecture
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is 1.9.1. The RAM used was about 5GB including 2 processors in an virtual machine
that is VMware Workstation. The cloud instance will contain both Apache Kafka and
Apache Flink. When it comes to smart grid data, why does it require batch processing
and real-time processing both? Historical data could be processed in batches for various
such reasons such as forecasting which is important for decision making, wide-range plan-
ning on how customers will use energy and then plan utilities. With huge amount of data
generated every second certainly needs speedy processing to have an communication built
on real-time consumption also displaying it on smart devices. This streaming data needs
to be consumed by Apache Flink, having its in-built connector offering Apache Kafka
makes it a suitable choice. Kafka is capable of handling high-velocity and high-volume
data providing high-throughput, handles messages in millseconds providing lower latency.
Making it efficiently fit into the architecture.

Figure 4: Requirement Gathered with versions

3.2 Data gathering and Cleaning

Activity diagram on Figure 3 shows the approach with flow of architecture,having to pro-
cess the data in batches and in order to achieve precision is always better pre-processed
Daki et al. (2017). The dataset utilized for the approach is a CSV file ”Electric Consump-
tion and Cost” having data lodged from 2010 to March 2019 about electricity consumption
through smart meters from New York City. This data consists of 316579 rows and about
27 rows and provides a brief about the account name, location, Area and Building num-
bers, the automatic meter reading, funding source and current charges.In case of smart
meter failures whether the bill is estimated or no is also mentioned in this dataset. Talk-
ing about failures, a disorder of data is a common sight for many such reasons. Hence,
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de-duping and cleaning is performed to remove the data errors and duplication. Cleaning
and de-duping looks out for empty or null data rows and organizes it. The erroneous
data will be sent back to be pre-processing again and later discarded by the system in
case as no way out. Considering an example of Smart meter data having meter numbers
which is unique has data being disorganized, in such cases a random or average value
cannot be inserted, the row entirely needs to be discarded. As shown in Figure 6, Figure 6
Python code in Juypter Notebook is been used to perform the same, Sample code below
helps drop the column where meter number unique number is not present. Also certain
missing values of column Meter AMR are replaced with AMR by taking out the mean of
the column, hence replacing with maximum occurred.

data . dropna ( subset =[ ’ MeterNumber ’ ] , i n p l a c e= True )
data [ ’MeterAMR ’ ] . f i l l n a ( ’AMR’ , i n p l a c e=True )

Figure 5: Raw data upload for transformation

Figure 6: Data Cleaning code performed
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3.3 Model Analysis

Having cleaned and pre-processed the data, its further used in the materials gathered.
Apache Flink is been installed with help of Ubuntu terminal using Virtual machine VMare
Workstation with Ubuntu installed version 18.04. Apache Flink cluster is started written
in a shell file inside the bin folder with help of below line of code the cluster can be
started.

bin / s ta r t−c l u s t e r . sh

Since Flink supports JAVA the most recent version and Scala, a Maven project is cre-
ated to run under Flink Cluster having the transformation logic as mentioned earlier.
Apache Flink needs to support the maven version and its necessary to have it setup with
dependencies. Several dependencies from core to compile having streaming, plugins are
provided by apache.org that is added into the file called pom.xml. Below is the example
of one such dependency which helps it understand the streaming environment

<dependency>
<groupId>org . apache . f l i n k </groupId>
<a r t i f a c t I d >f l i n k −streaming−j ava 2 .11</ a r t i f a c t I d >
<vers ion >1.9.0</ vers ion>
<scope>provided</scope>

</dependency>

To connect Apache Kafka, its installed downloading from the Apache official site and
Zookeeper is executed. For Apache Kafka to run its must to execute Zookeeper with help
of its properties file present in config folder. Apache Flink and Kafka requires connectors
Hesse and Lorenz (2016), hence having version Kafka 2.11 fink-kafka connector is used
and added into pom.xml file which is been setup in MAVEN. The KafkaFlinkConsumer
help the flow to be started before its necessary to run Apache Kafka with its server
properties and be passed with topics to be received from the Flink. Its important to
specify the bootstrap server properties in the code, which helps understand Flink on
which port is kafka running. In code port ”127.0.0.1:9092” is added to pointing to Kafka
port at localhost:9092.

bin / kafka−s e rve r−s t a r t . sh c o n f i g / s e r v e r . p r o p e r t i e s

Having this JAR file can also be executed in Apache Flink,with help of browser entered
with url localhost:8081, the entire running if the file with failures and standard output
can be observed. To make the process run much better scalable use of Cloud service is
done and EC2 instance is setup using the AWS console. For the storage into cloud API
is used to have the processed data to be stored in S3. The bucket name is mentioned in
the S3 path of the API and is called through the JAVA code.

4 Design Specification

The architecture as shown in Figure 7 underlie the design and the associated requirements
for efficient ways to analyse the Big Data from smart grid at real-time in an improved and
efficient manner. The aim of these architecture is to capture the latency and throughput
of the Smart Meter data and compare to the frameworks outlined in Section 2, which will
answer the research question which forms the centre of this study. To being with batch
processing, it will contain data which does not require to be processed at real-time such
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as data logs, non-electrical marketing data or electrical data sent over in csv format to be
billed accordingly, backup data and others. This data can be de-duped or cleaned with

Figure 7: Smart Grid Data Distribution and process

help of machine-learning techniques, a similar developer friendly to do this without having
to complicate it is by using Python programming language and performing the same on
the environment.Another benefit of batch processing DataSet API is, it retries failed
executions it can be configured numerous times, before retiring it as a failed job. The
JAR containing the processing code will help look for the file as per the file maintained
without having to store it in specific location. Its one of the reasons why Flink has benefits
of processing Jar faster, which will be deployed in Amazon EC2, range using 2 virtual
CPUs and 500MB ram with t2.medium instance. Once being SSH into the instance ,the
jar file can run and help perform using the Apache Flink pre-installed in Amazon EC2
instance. Data once processed will be sent to Amazon S3 for storage creating private
bucket, since this data needs to be highly available, and with Amazon S3 having four key
factors retrieve data at any time, reliable, cheap and scalable it best to take advantage
of the same. The code can be run into the MAVEN JAR file and the data will be sent
over to S3 buckets. This JAR file will have special classes Dataset, a class from Apache
Flink present to process the data as required.

With real-time streaming, Apache Flink being the true real-time streamer, provides
data distribution, communication and fault tolerance for distributed computations over
data streams. For this Apache Flink uses DataStream class present in Flink’s struc-
ture. But first to achieve the real time streaming data Flink uses Apache Kafka. Class
KafkaFlinkConsumer records from a topic and periodically checkpoint all its Kafka off-
sets. This class is attained with help of Flink Kafka connector dependency added. Once
the connection is established the data streaming begins and is received by Apache Flink.
Flink uses Master-Slave architecture, Job Manager acts as Master,responsible for schedul-
ing multiple Task Managers which are slaves as well as monitoring and deploying them.
Once processed returns via sink, the processed data is sent to Amazon S3 similar as
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performed in batch processing.

5 Implementation

5.1 Supporting Lanaguage and Dependencies

Having MAVEN JAR file created in the local environment which consists Java program-
ming language JDK(1.8), the JAR is later deployed to Amazon EC2 instance cloud
environment for better processing than local environment. To elaborate more, Apache
Flink only supports JAVA(1.8) the most recent versions of JAVA, therefore, dependency
related to JAVA needs to be used. With help of this dependency classes and objects such
as Dataset, StreamingEnvrionemnt can be created and batch processing can be used.
Core dependencies are in the flink-dist jar which are part of Flink’s library folder and
container images,which contains the classes like String and List.. With help Flink-Kafka-
Connector dependency been added to the pom file, FlinkKafkaConsumer can be used,
this consumer helps consuming the data. The FlinkKafkaConsumer version changes ac-
cording to the Kafka version installed, in case of version 11, the number 011 will be
appended to the same.The below code shows the kafka dependency added in pom.xml
file

<dependency>
<groupId>org . apache . f l i n k </groupId>
<a r t i f a c t I d >f l i n k −connector−kafka 2 .11</ a r t i f a c t I d >
<vers ion >1.9.1</ vers ion>

</dependency>

Other streaming dependencies related to streaming environment are been used , with
Maven plugins and assembly plugins with flink-client dependencies. With data common
loggins dependencies used to log during runtime.

5.2 Development

5.2.1 Understand Classes and Parameters

The transformed dataset having null values and duplication’s are been put in the folder
to be accessed by Apache Flink code with path mentioned in the jar file. This unques-
tionably saves time, than having it accessed by other framework or databases. The lines
of code from CSV flink or text file one line at a time can be read by readTextFile or
readCsvFile. With help of ExecutionEnvironment Class, it helps Flink to know where
the program needs to be executed. When real-time streams of data coming in Class
StreamExecutionEnvironment needs to be used. With help of these both classes, if a
program is running on a IDE its executed in local environment, if its running on a cluster
its executed on remote environment. The passing of arguments and configurations file
will be read with help of ParameterTool. Another important parameter is GlobalJob-
Parameter, every node in a cluster is known about the execution been running globally,
as in case of failure the node helps resuming from where its stopped. Writing the output
out to a file can be done with help of writeAsText.
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5.2.2 To achieve latency and throughput

Besides Apache Kafka, Flink has its own in-built way to accept the data with help socket
stream, the data can be sent via the port with writing the query on it. The class is
SocketTextStream which helps read data from the socket and elements in the data can
be separated using the delimiter.

DataStream<Str ing> data = env . socketTextStream (” l o c a l h o s t ” , 9090 ) ;

For this the system socket must be open using the terminal, or even using the java
code.This helps have better throughput and lesser latency which can be evaluated using
the dataset. There are different types of windowing such as Tumbling Windows, Sliding
Windows, Session Windows and Global Windows Flink (2015-2019). Windows starts and
ends when the condition referred is met. The Tumbling and Sliding windows are time
based windows. To evaluate on basis on time in this implementation will be using Sliding
Window. With sliding Window, the next window overlaps the first window with the time
mentioned in the code whereas tumbling windows only starts once the 1st window is
finished. Taking advantage of this and having the best to utilize the time, Figure 8 shows

Figure 8: Sliding Window Code

the code written for sliding window,with help of sliding window the time mentioned as
seconds to slide helps collect the data at that time and process it. The on way of having
the latency at minimal is by utilizing the Tuples, Windowing, Apache Kafka and localhost
stream connectors with utilizing Event and Time processing.

5.2.3 To acheive fault-tolerance

To achieve an improved processing architecture, this project also focuses on checkpointing.
Checkpointing as stated earlier, helps save the snapshot to recover in time of failure. Its
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not default enabled and hence will be enabled with code, the time of 100seconds is passed
for checkpointing, which will help save the state of the project at 100th second and can be
observed in the local cluster using the browser. One way of achieving the checkpointing is
through states, which helps to manage historic data allows efficient access to past events.
With all this one of the major key factor of state is to convert stateless transformation to
stateful transformation.The evaluation is performed with help of FlatMAp operations for
the same to understand how a state can perform statless operations. Every state can be
saved by passing the time in milliseconds and a checkpointing timeout can be added to
limit to a certain time. Here in code, the timeout time is taken to be 10000 milliseconds.
At cases where the data is huge, concurrent checkpointing can be set multiple numbers,
where the number mentioned will help running the checkpointing at the same time.
Certain snapshots can also be retained, with Flink having the functionality to delete
the snapshot once the job is cancelled. Any snapshot to be retained on cancel can be
persisted with help of ExternalizedCheckpointCleanup.

This approach also shows the restart strategy which will allow a job execution for a
certain time and number of times, a fixedDelayStartegy is used in this approach which
will help to take delay time that will be mentioned as the arguments. once the job
exceeds that time with help restart strategy checkpointing it can be restarted and the
attempts can be mentioned for how many times will the job be executed. Due to this
case , efficiency can be obtained having to perform a certain job only for specific amount
of time and incase of failures will be re-attempted.

5.3 Flink Interface and Analysis

The architecture consumes data on Kafka topics from the JAR file, app runs the data
through several operations. The execute() call is when Flink starts processing, with help
of run command from the terminal. The local cluster can be visible with help of browser at
localhost:8081, shows everything up and running and failures logged. It helps understand
the running jobs and time take to execute the job. Every case study experimented to
understand the execution time and throughput will be helpful with the local cluster. With
windowing performed the data is transformed and reduced having grouped into pairs, the
1st window has processed about 5 data counts in 0 to 5 seconds, the next window having
the same processing speed processes about 7 data counts, with extra being the 2 seconds
of sliding window time. Figure 9 shows the overview of test batch processing performed

Figure 9: Overview of batch processing
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at intial stage to understand the working of web browser client request via localhost.It
explains the stream received via socket and HashMap is performed on the data, forming
keyed data finally to sink the output to standard output file. The overall study shows
the 2 CPU cores been utilized, the physical memory of 5.55GB was present, JVM Heap
Size 992MB and Flink Managed Memory about 642MB. The

6 Results and Critical Analysis

To evaluate the performance of the architecture the following case studies are taken up
which will be briefly discussed. The experiments are performed using the dataset which
is transformed, as mentioned is the above section 3.2

6.1 Case Study 1 : Filter Operator

Check the total number of Borough named QUEENS overall.
To achieve the above from the dataset, the Filter operator is applied to look out for
QUEENS in the borough list. The output of this code provides the count of 36987
total Queens present in the dataset selected. Filter operator takes an interface called
filterFuntion as argument and the parameters of datatype being string in this case will be
added.The execution time to evaluate the same is an average of 2180ms7 after being run
the jar for total 4-5 times and take average of all the 5 readings. The time taken at intial
execution was more, but the time for execution was not taken up by flink to process,
processing was in less than 1 second, the time to read the data from the system took
about 2 seconds in all. The moment Flink recognizes the system files, the next execution
was carried out in much lesser time. Figure 10 shows the execution time taken by the

Figure 10: Execution time of Filter operator for Batch Processing

JAR file. As shown in Figure 12 the very first row stating word count depicts latency and
throughput for both Apache Spark from existing approaches and Apache Flink carried
out now.

6.2 Case Study 2 : Aggregate Function using Streaming Envir-
onment

Check Maximum and Minimum consumption done by which Smart Meter and is from
which Borough. The dataset contains 4 tuples required and the path of the file is placed
as an argument into the jar file. The aggregate function is applied on the batch file data
which acts as streaming data when received and works under the streaming execution
environment. The execution time taken to process this code is around 18306ms and
having sent about 53MB data the throughput was observed to be 17586.77 which is quite
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higher to that of Spark showing a positive outcome. Below chart Figure 11 shows the
execution of Apache Flink code when ran under Flink Cluster.

Figure 11: Overview of aggregate function under streaming environment

Figure 12: The Summary of the observed latencies and throughput

6.3 Case Study 3 : Sliding Window using SocketStream

As explained earlier,the sliding windows utilizes the time mentioned in the SlidingPro-
cessingTimeWindows as time of two seconds to slide to even process the data. The reduce
function takes in the tuples of data as per the dataset provided. the output of the data
shows the groped up cities and counts having the consumption from the dataset. Here ,
the major factor is socketstream , where the streams of data are sent via the port opened
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in the system. In this case port 9090 is opened and the JAVA code is written to send
the file data into the socket, which will act as the streaming data once received by the
Apache Flink. The reduce function is later mapped using the map function and the out-
put is written in the text file using writeToText command. The output clearly present,
every window having processed data count is increased on going further below. And the
execution time taken to process is 1 minute and 13 seconds and the throughput observed
was 17586.77 events per second. Here the throughput is calculate as the data record sent
per second.As Figure 13 depicts the records sent were about 1159 and the time taken
was 1min 2sec , the job was still running and every record increased within the window
the latency increased. The final time for whole execution was 2mins 13 seconds. With

Figure 13: Sliding window code status

that referring to Figure 12 its observed that the throughput with regards to windowing
in Apache Spark is higher than that of Apache Flink, and its vice versa for latency being
higher for Apache Spark.

6.4 Case Study 4 : Apache Kafka real-time streaming

Apache Kafka is added to the JAR file using addsource method present in Apache Flink
and with help of Flink-Kafka-connectors dependency.This helps Apache Flink to use using
the producer and consumer, where the consumer helps to consume data from KafKa by
Flink. the Before running the JAR file under Flink in Ubuntu terminal, its necessary
to run the zookeeper for Apache Kafka. After which Kafka is executed using the server
properties file present in config folder. The bootstrap server property present specifies on
which port is kafka running. Once both of them are set up, the jar can be be executed
which requires execute command in the code to be present. Time taken for execution is
around 1 min 23 seconds and throughputs observed as per records processed per second.
About 8876.8777 events/second can be observed with Spark being lower to 7824.90883
events/sec and latency 195.306ms.

6.5 Case Study 5: Maintain state and FaultTolerance

With help of Apache Flink code, a stateless transformations can be converted to stateful
transformation due to which a previous value can be maintained even being the statless
operator, wherein only present operations are performed. Here , the state of FlatMap-
Function being statesless operator will be maintained. For this class has to be extended
to richFlatMapFunction class helps accessing 4 methods getRuntimecontext , open ,close
and setRuntimeContext. Being the value state, valueStateDescriptor is setup, which will
be provided with name of the state, datatype maintaining the state and default initialized
value. Every time a program is run a logic is presented which will always have the current
number firstly intialized as 0, a randomly generated number comes in it checks for the
existing number state and adds to it the new generated number, thereby maintaining the
current value each time a new number is coming in and adding to it.

18



Below Figure 14 shows the number of checkpoints trigerred and its state of success
or failure. The whole Checkpointing logic as mentioned in 5.2.3 to achieve the fault-
tolerance is enabled in the code, which will create a snapshot every 100 milliseconds, any
checkpoint failure will be only running until 10000 milliseconds. Its made sure that only
one Checkpointing runs at a time and will be retained on cancellation. Also a checkpoint
on failure can be restarted for 3 attempts and can have a delayed restart of 10 milli-
seconds.

Figure 14: Total Checkpoints triggered and failed

A comparison of test was performed between the architecture proposed in this paper
using Flink and approaches mentioned in section 2. Apache Hadoop and Lambda Archi-
tecture becomes obsolete when it comes to Apache Flink features of executing real-time
big data. The platform which dominates and as a cut throat competetion with Apache
Flink is Apache Spark. Considering the mean latency values for each case study executed
4-5 times and have taken up the average value mentioned in the table Figure 12. With
these case study is performed to understand the variance. The study shows Flink out-
performs Spark in terms of having higher throughput , lower execution time and also
being fault-tolerant at the same. The real-time streaming data from sockets or Apache
Kafka is better working in Flink as compared to Spark However the comparison had to be
done with Flink limited resources such as without using YARN cluster, had Flink worked
the same way being on YARN cluster as SPARK could have been a possibility. How-
ever its quite clear that Flink running on the local environment and cloud environment
performs significantly better than Spark and the execution time showing the difference
certainly cannot be ignored. A stateless transformations can be maintained and incase
of failure having Checkpointing features in Flink, with that every snapshot is maintained
as per time mentioned and incase of failure it can be restarted making the architecture
fault-tolerant.

6.6 Discussion

The above experiments help understand the three various designs Apache Flink have
in store and there execution time in an efficient manner. It has its own modelling and
transformation of data which proved to be an important factor. The first experiment
is based on simple batch processing , later Windowing with help of local stream input
which is compared with micro-batching of Apache Spark and finally taking in real-time
data with Apache Kafka. The study clearly shows the execution time being alot lesser
than when compared to existing approaches and Apache Spark.

However there are few limitations with this study such as running the experiment on
many clusters with huge, Terabytes of data was not performed. In many frameworks as
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observed the efficiency varies with increasing clusters and size of the data, the throughput
decreases, this could not be recorded in this approach.A couple of features with respect
to Kafka and Flink packages like metrics and machine learning libraries for data pre-
processing and unsupervised learning have also been tried but were unfortunately not
applicable on these data due to its limitations and incompatibility with the execution
environment. Amazon cloud provides EMR(Elastic MapReduce) as a service, with which
the need to install the Flink on an EC2 instance is eradicated and provides a clear
environment, inducing a large amount of data for both Apache Spark and Apache Flink,
having access to Amazon EMR would be also one of the ways to compare the framework’s
with there efficiency in cloud using the following code but was beyond the scope of this
work.Finally, two of the framework configuration study were not tested using Flink YARN
cluster as with the results acquired from Spark were on a YARN cluster. Having Flink
on YARN would have increased the latency, however Apache Flink shows a significant
difference when its run on a local and cloud environment, having outperformed Spark
in latency and throughput at majority and also being largely fault-tolerant at the same
time.

7 Conclusion and Future Work

The proposed architecture is based on the analysis of Smart Grid Big Data with Apache
Flink and also an comparison with massively known frameworks Apache Spark and Ha-
doop in order to achieve better and improved processing efficiency. The first section
points out how Big Data relates to smart grids and further showing the existing ap-
proaches having there execution time there limitations and advantages. Although, these
are promising solutions a noticeably delay can be seen with outputs processed and data
loss can be observed. This paper tries to evaluate how Apache Flink can be used for both
batch and real-time processing using Aggregator functions, Apache Kafka and Window-
ing using the socket streaming. A better execution out of that is noted and compared to
existing frameworks. Having achieved the execution time for batch processing is equal
to 1432 milliseconds. For socket streaming it was observed to be less than 40 seconds.
An optimized way using the reduce function, event and time processing and also Check-
pointing is carried under this project making sure there is no data loss and failure can be
recovered with time mentioned in the code. Furthermore the processed data is collected
and stored in cloud scalable services Amazon S3 using S3 application programming inter-
face. The eco-system presented was setup on Cloud Computing platform that is Elastic
cloud Compute. Further making the test validation for the solution, which observes a rise
in processing efficiency, with lesser execution time and being fault-tolerant with minimum
resources and no such lags in processing the data.

Therefore future work can focus more on using other features of Apache Flink such
Watermarks and Lateness helping data to be more precise and efficient also having to
work with larger data streams through smart meters which can be a use to business and
government dealing with smart grids and meter data wanting results at real-time. With
that the architecture have used combination of data analytic tools to perform the desired
pre-processing, de-duping, visualization. A single developed JAR file which can perform
all of these operations as a whole in addition to using Apache Flink and Apache Kafka
its own connectors and in-built functions will be also looked into as future work. Big
Data and Smart Grid are one reasons for evolution, certainly going hand-to-hand being
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a powerful combination and its is necessary to have developer friendly, better processing
efficiency, low latency software for real-time streaming data from smart meters.
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Riquelme, J. C. (2018). Big data analytics for discovering electricity consumption pat-
terns in smart cities, Concurrency and Computation: Practice and Experience 2(1): 19.

R, S., Ganesh, B., Kumar, S., Poornachandran, P. and K.P., S. (2018). Apache spark a
big data analytics platform for smart grid, Procedia Technology, 21 (2015) 6(13): 8.

Serrano, N., Gallardo, G. and Hernantes, J. (2018). Infrastructure as a service and cloud
technologies, IEEE Software;2018;32 1(1): 7.

Shrivastava, G. and Shrivastava, S. (2018). Analysis of customer behavior in online retail
marketplace using hadoop, International Journal of Innovative Research 2017 6(21): 9.

Vaidya, M. and Deshpande, S. (2019). Distributed data management in en-
ergy sector using hadoop, 2015 IEEE Bombay Section Symposium (IBSS);2015; ;
;10.1109/IBSS.2015.7456653 1(17): 6.

Xiufeng, L., Lukasz, G., Wojciech, G. and F., I. I. (2015). Benchmarking smart meter
data analytics, Open Proceedings) 3: 19.

Zhang, Y., Huang, T. and Bompard, E. F. (2018). Big data analytics in smart grids: a
review, Energy Inform 46(5): 23–24.

22



Configuration Manual

MSc Research Project

Cloud Computing

Supritha Shetty
Student ID: X18163009

School of Computing

National College of Ireland

Supervisor: Manuel Tova-Izquierdo

www.ncirl.ie



National College of Ireland
Project Submission Sheet

School of Computing

Student Name: Supritha Shetty

Student ID: X18163009

Programme: Cloud Computing

Year: 2019

Module: MSc Research Project

Supervisor: Manuel Tova-Izquierdo

Submission Due Date: 12/12/2019

Project Title: Configuration Manual

Word Count: 858

Page Count: 4

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

I agree to an electronic copy of my thesis being made publicly available on TRAP the
National College of Ireland’s Institutional Repository for consultation.

Signature:

Date: 12th December 2019

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). �
Attach a Moodle submission receipt of the online project submission, to
each project (including multiple copies).

�

You must ensure that you retain a HARD COPY of the project, both for
your own reference and in case a project is lost or mislaid. It is not sufficient to keep
a copy on computer.

�

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):



Configuration Manual

Supritha Shetty
X18163009

1 Introduction

The configuration manual refers to the process of understanding a architecture in a sys-
tematic manner and helps maintain integrity over time. Manual helps understand the the
flow, the working and steps followed. Provides detailed descriptions about the delivered
features including use cases, implementation, and configuration specifics. (Hlova; 2017)
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1 Introduction 1
1.1 Purpose of this manual . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
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2 Environment Setup 2
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5 Getting Started 3

1.1 Purpose of this manual

Purpose of this manual is to understand the configurations and setups required with
respect to research Project. The structure followed and the environments used. Provides
an overview of all the framework used and its installation process. Further running the
program to achieve the objective.

1.2 Evaluation Performed

This research project is majorly focused on improving the efficiency of streaming data
received from Smart grids at real-time. The paper touches both real-time processing
and batch processing, and with that provides an architecture with minimum resources
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being tolerant and performs processing at minimal execution time. To understand the
efficiency and to compare with existing approaches certain experiments are performed as
stated below

• Filter Operator

• Aggregate Function using Streaming Environment

• Sliding Window using SocketStream

• Apache Kafka real-time streaming

To perform the experiments requires to follow installation as shown in Section 3.

2 Environment Setup

2.1 Local Environment

To follow the installation of Apache Flink and Apache Kafka in a local environment
requires a VMware Workstation installed with 64bit Ubuntu 18.04

VMware Workstation Setup

Memory 5.8 GB

Processor 2 CPUs

HardDisk 30 GB

JDK 1.8

Once the setup is done, Eclipse IDE is installed from the official site supporting Ubuntu
64bit to perform the coding.

2.2 Cloud Environment

Create an EC2 instance using AWS console. Launch your instance using the ”Launch”
button. Create key-value pair, provides you a pem file which will help to access into cloud
environment using SSH Amazon (2017a). Once the instance is launched the jar file can
be sent over using the Ubuntu terminal via SSH providing the pem file as the key and
the password set. Similar steps and configurations have been followed in EC2 instance
as that of local environment.

For storage , Amazon service S3 is used. Create a bucket, provide the name and the
region required which will be later used to setup API and the object will be sent via the
code Amazon (2017b)

3 Installing required Frameworks

3.1 Apache Flink

For Apache Flink to be installed, a tar file needs to be downloaded of most recent version
1.9.1, using the url below
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https : // f l i n k . apache . org /downloads . html#apache−f l i n k −191=−

Once the tar file is downloaded , it needs to be unzipped using the following command

tar −xvzf f l i n k −1.9.1−bin−s c a l a 2 . 1 1 . tgz

Go inside flink-1.9.1 folder after its unzipped and start the cluster using below command
before executing the code. Once the code is executed you can run the stop command.
Also to run the a jar file command run needs to be used as shown below.

bin / s ta r t−c l u s t e r . sh

bin / stop−c l u s t e r . sh

. / bin / f l i n k run /∗path o f the j a r ∗/

3.2 Apache Kafka and Zookeeper

For Apache Kafka to be installed, a tar file needs to be downloaded of version 2.0.0 having
scala version 2.11, using the url below and unzip the file. The 2.0.0 is a stable version
with Apache Zookeeper supported Apache (2017).

https : // kafka . apache . org /downloads
ta r −xvzf ka fka 2 .11 −2.2 .0

After being unzipped start the zookeeper inside the kafka folder using below command
and run the Kafka server. The topic needs to be sent via terminal using the topic name
listed in the code only when there is consumer sending the file data after running the jar.

cd ka fka 2 .11 −2.0 .0/
bin / zookeeper−s e rve r−s t a r t . sh c o n f i g / zookeeper . p r o p e r t i e s
bin / kafka−s e rve r−s t a r t . sh c o n f i g / s e r v e r . p r o p e r t i e s

4 Dataset and Code Repository

Dataset used belong to smart meters and from the main csv file is divided into txt files for
each of the evaluation performed.Both dataset and Code Repository used to evaluate the
performance of the architecture is attached in the zip file submitted to the ICT solution
link in moodle.

5 Getting Started

The JAR files inside the folder submitted has the code present for each type of testing.
It can be ran one by one to under Flink server using the run command. To run the batch
processing JAR requires input file and output file, below is the command for the same.
Also before running the jar file, the path mentioned in the code will need to be changed.

. bin / f i n k run /∗path o f the j a r ∗/ batchproce s s ing . j a r −input f i l e :///∗ path
to f i l e ∗/ boroughpresent . txt −output f i l e :///∗ path to output ∗/

Rest of two jar can be ran using the below run command.
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. bin / f i n k run /∗path o f the j a r ∗/

For Apache Kafka jar to run, once the flink, zookeeper and kafka server are started, it
must send the broker list using topic name below is the command to hit in the terminal.

bin / kafka−conso le−producer . sh −−broker− l i s t l o c a l h o s t :9092 −−t op i c t e s t

Opening localhost:8081 in browser will help understand the Apache Flink running
progress of each jar file which is been run under the server. Giving out exact accuracy of
execution time for each function performed with heap Size, Flink memory size consumed
and other such information about completed and running jobs.
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