
An improved task Scheduling Algorithm for
Segregating User Requests to different

Virtual Machines

MSc Research Project

Cloud Computing

Sreenivasa Prasad Kakumani
Student ID: x18146686

School of Computing

National College of Ireland

Supervisor: Horacio González-Vélez

www.ncirl.ie

National College of Ireland
Project Submission Sheet

School of Computing

Student Name: Sreenivasa Prasad Kakumani

Student ID: x18146686

Programme: M.Sc in Cloud Computing

Year: 2019

Module: MSc Research Project

Supervisor: Horacio González-Vélez

Submission Due Date: 12/12/2019

Project Title: An Improved task Scheduling Algorithm

Word Count: 7639

Page Count: 29

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

I agree to an electronic copy of my thesis being made publicly available on TRAP the
National College of Ireland’s Institutional Repository for consultation.

Signature: Sreenivasa Prasad Kakumani

Date: 3rd February 2020

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). �
Attach a Moodle submission receipt of the online project submission, to
each project (including multiple copies).

�

You must ensure that you retain a HARD COPY of the project, both for
your own reference and in case a project is lost or mislaid. It is not sufficient to keep
a copy on computer.

�

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

An improved task Scheduling Algorithm for
Segregating User Requests to different Virtual

Machines

Sreenivasa Prasad Kakumani
x18146686

MSc Research Project in Cloud Computing

3rd February 2020

Abstract

Resource Management is key for maintaining trust, improving the user experi-
ence by meeting the user requirements and demands within the SLA as agreed by
cloud providers. An efficient task scheduling algorithm has to be implemented to
overcome problems such as the non-uniform load distribution and the optimal use
of resources. An improved task scheduling algorithm based on traditional Longest
Job First (LJF) and Shortest Job First (SJF) is developed in this paper in order
to allocate the long-running jobs to a pool of Virtual Machines (VMs) and short-
running jobs to another pool of VMs parallelly. Three different VM configurations
are considered with a pre-defined total VM count and the simulations are executed
for every combination of VMs based on total VM count. The evaluated results are
then compared to LJF and SJF and observed that the total execution cost, wait-
ing time, completion time are best for the proposed model. The proposed model is
successful in finding the best possible combination of VMs to be selected depending
on the workload.

Contents

1 Introduction 4
1.1 Resource Provisioning . 4
1.2 Resource Scheduling . 5
1.3 Resource Monitoring . 5
1.4 Need for Research . 5
1.5 Research Question . 6

2 Related Work 6
2.1 Heuristic Scheduling Algorithms . 7
2.2 Meta-Heuristic Scheduling Algorithms 9
2.3 Hybrid Scheduling Algorithms . 10
2.4 Proposed Approach . 11

1

3 Methodology 12
3.1 CloudSim . 12

3.1.1 CloudSim Architecture & Design 13
3.2 Complexity of Proposed Algorithm . 13

3.2.1 Time Complexity . 14
3.2.2 Space Complexity . 14

3.3 Proposed Algorithm . 14

4 Design Specification 16
4.1 Proposed Architecture . 16
4.2 Instance Configurations . 17

5 Implementation 18
5.1 Dataset Description . 18

6 Evaluation 19

7 Conclusion and Future Work 22

APPENDICES 26

A List of Acronyms 26

B Configuration Manual 27
B.1 Introduction . 27
B.2 Implementation Steps . 27

B.2.1 Cloudsim Installation . 27
B.2.2 Downloading Dataset . 28

B.3 Virtual Machine Configurations . 28
B.4 Code Development . 29
B.5 Test Results . 29

List of Figures

1 Resource Management Process classification based on [1] 4
2 Scheduling Scheme Classification of different Algorithms based on [2] . . 7
3 Cloudsim call hierarchy of different classes 13
4 Proposed Architecture for allocating user tasks to different VMs 16
5 Average Waiting Time of SJF, LJF & Proposed Algorithm 21
6 Total cost of execution of SJF, LJF & Proposed Algorithm 21
7 Completion Time of jobs for each combination of VMs using SJF, LJF &

Proposed Algorithm . 22
8 GoCJ Dataset . 28
9 VM Configurations . 28
10 Test Results from console . 29

List of Tables

1 Summary of reviewed heuristic, meta-heuristic and hybrid Algorithms . . 11
2 Virtual Machines Configurations used for Analysis 18
3 Test results from cloudsim using different algorithms for GoCJ dataset . 20
4 CloudSim Pre-Requisites . 27

List of Algorithms

1 Proposed Algorithm . 15

3

1 Introduction

Cloud Resource Management includes different steps in the sequence which includes re-
quest submission to request execution process in the cloud. As the demands from the
end-user side are increasing, Cloud resource management is gaining significantly high im-
portance and this process aims at emphasizing in meeting the user expectations through
effective distribution of cloud resources. It has become a challenge to manage these re-
sources effectively due to heterogeneity nature in physical machines, also huge fluctuations
in workload distributions due to unpredictable and uncontrollable loads which leads to
interdependent issues in the cloud environment. All these challenges and difficulties in
the resource management process can be handled by three cloud models - IaaS, PaaS and
SaaS. Moreover, efficient resource management strategies help in achieving the advantage
of reduced power consumption which is another biggest problem in cloud computing. In
a simplified manner, cloud resource management is a process of effectively and efficiently
managing cloud resources by considering user requirements, agreed to SLA and a few
other factors in order to improve Quality of Service (QoS) [1].

Figure 1: Resource Management Process classification based on [1]

We often deal with three terms during the Resource Management process and these
are sub-divided into several functions as shown in [1]

1.1 Resource Provisioning

Resource Provisioning is defined as the process of allocating services to end-users from the
cloud providers. The development of provisioning policy is one of the major issues in the
field of cloud computing as it is directly related to the enhancement of QoS parameters.
The process of provisioning involves two functions:

• Resource Discovery: It is the process of discovering the available resources.

• Resource Selection: It involves the selection of the best resource, based on dif-
ferent QoS parameters as requested by the cloud user.

4

1.2 Resource Scheduling

Scheduling is a complex task in the entire Resource Management process because of
several reasons like geographical resource distribution, uneven load, varying prices, etc.
There are various algorithms proposed in the last two decades but still there exist prob-
lems like heterogeneity, dispersion, etc. The process of Scheduling involves four functions:

• Resource Allocation: It involves the process of allocating resources among the
users economically.

• Resource Mapping: It actually manages the mapping between required resources
by users and the available resources with the provider.

• Resource Adaptation: It is defined as the system’s ability to dynamically adjust
the available resources depending on the user requirement.

• Resource Brokering: It is defined as the negotiation process in which an agent
will always ensure that the required resources are available whenever needed to
complete the objective of SLA.

1.3 Resource Monitoring

It is important to effectively monitor cloud resource utilization to optimize the perform-
ance of the data centre. Monitoring process involves three functions:

• Resource Usage: The monitoring system compiles physical resource uses by cal-
culating performance based on CPU and main memory.

• Resource Estimation: The number of resources required to run a current applic-
ation is based on estimating the resources available.

• Resource Modelling: Resource Modelling depends on the information provided
by elements in the network about the resources.

1.4 Need for Research

Resource Scheduling is a crucial step in the process of Resource Management because
two major issues are involved in it. The first one relates to uneven load distribution
and the second one being not able to utilize the resources in an effective way. The
best way to overcome this issue is to develop an efficient and capable algorithm and
these are classified into several types. Some of these include First Come First Serve
(FCFS), Shortest Job First (SJF), Longest Job First (LJF), Particle Swarm Optimization
(PSO), etc. Though there are several works done in this area still there is a lot of scope
for research because of its criticality and the above mentioned two issues. Hence, we
developed a new approach for assigning tasks to Virtual Machines (VMs) in the best
possible way and compared it with existing algorithms. A brief understanding of the
chosen research area and the relevant work done is presented in Section 2. Section 3
describes the choice of methods employed when conducting the research work. Section 4
gives an insight on the architecture and techniques involved in the proposed work. Section
5 describes the implementation of proposed algorithm, tools used and outputs produced.
Section 6 analyses the results produced and compare it with existing models with the

5

inclusion of tables and graphs and finally Section 7 provides a detailed summary of the
work done and also the scope for future research work.

1.5 Research Question

1. What is the impact/outcome of scheduling the long-running and short running user
tasks to different VMs?

The primary motivation for conducting this research work is to improve the QoS
parameters like waiting time, completion time, etc. because the execution costs depends
directly on the completion time of tasks irrespective of other parameters. Hence, a new
scheduling technique is employed to separate both long jobs and shorter tasks and getting
them executed on different VMs at a single time. This work is extended for figuring out
the best possible combination of VMs that holds good to execute the dataset i.e chosen
irrespective of scheduling algorithm.

2 Related Work

There are several studies that clearly explains the importance of task scheduling tech-
niques and key problems for each of the techniques. In this section, a brief analysis of
many such processes involved in the cloud computing paradigm is discussed. Kumar
et al. [2] and Arunarani et al. [3] performed a deep comprehensive survey on different
scheduling techniques in the field of cloud computing by explaining the importance and
current issues related to each of the techniques and each paper provides an insight for
effective resource scheduling. These surveys also extended the support for identifying the
current issues in scheduling and in turn helped to enhance the performance character-
istics of existing algorithms. In computing, Resource Allocation (RA) is defined as the
process by which available resources are provided to the requested applications. Resource
scheduling in cloud computing is often done in two ways: demand scheduling in which
cloud provider randomly allocates the resources and it leads to a problem of allocating
tasks to a single resource and the second being reserved scheduling where there exists a
problem of being idle not performing any work.

There is another study provided by Singh and Chana [4] to overcome these problems of
over provisioning and under provisioning by providing an efficient solution that can under-
stand the workload prior to the scheduling event. The key here is to provide resources to
users without violating SLA and upholding user trust. Also, there are several parameters
like cost, makespan time, completion times, etc. to be considered before scheduling the
tasks to different instances [2]. The main process of categorizing scheduling algorithms
involves two parts: dynamic and static scheduling. Dynamic task scheduling is the most
effective procedure among the two because it does not require any prior information about
the task details whereas in Static scheduling we need to have prior information about the
tasks that need to be executed. Each of these scheduling algorithms will be primarily fo-
cused on enhancing the performance of some key parameters while not considering other
parameters i.e each algorithm has its own advantages and disadvantages based on several
parameters. There are hundreds of algorithms that serve many purposes depending on
the key metrics on which they are developed. This scheduling scheme is majorly classified
as heuristic, meta-heuristic and hybrid scheduling.

6

Figure 2: Scheduling Scheme Classification of different Algorithms based on [2]

2.1 Heuristic Scheduling Algorithms

Heuristic algorithms focus on the problem and help in achieving better performance in
defined limits of time by providing the exact solution for the specific problem but it yields
low performance for other problems. A number of such heuristic algorithms are discussed
here based on different categories as shown in Figure 2. Dubey et al. [5] proposed a
modified Heterogeneous Earliest Finish Time (HEFT) algorithm in order to overcome
the limitations existing in traditional HEFT algorithm and this algorithm is successful
in distributing the load to different running VMs by minimizing the makespan time, but
it has its own limitations like not able to monitor nodes, not able to share the workload
evenly to the resources available. This algorithm is developed based on the concept of
calculating individual ranks for all tasks in directed acyclic graphs (DAG). This HEFT
algorithm basically works in two phases in which rank is calculated in the first phase
whereas assigning processor will be done in the second phase. The rank calculation is
done starting with the last node and moving upward in DAG till the root node arrives.

Li et al. [6] proposed a modified Max-Min algorithm for improving resource utilization
and decreasing the response time of tasks. The limitation of uneven load distribution in
the traditional Max-Min algorithm is the base for this work in which it actually schedules
the task with Max task amount and calculates the completion time in each node. Later
it checks for the minimum completion time and then assigns the maximum task to this
minimum node. The limitation of tasks arriving in the same batch will be executed in
traditional Max-Min is taken care of in the modified algorithm by considering consecut-
ive batches. Anousha and Ahmadi [7] developed an improved Min-Min task scheduling
algorithm by changing a few steps in the traditional Min-Min algorithm to decrease the
makespan time. In Min-Min, all tasks will be sorted i.e tasks with minimum makespan

7

will be the first in the queue and then it will be assigned to the minimum node to ex-
ecute it, but in a modified algorithm, before choosing a resource it calculates average
completion time and also the standard deviation and based on these results tasks will be
assigned to the available resources.

Li and Shi [8] discussed load balancing and proposed an algorithm based on FCFS
that every node sends a request and these will be served in the order they arrive in
the queue. The tasks have to wait in queue till the previous tasks are completed and
they will be executed only in the order they arrive in the queue but this model failed
to distribute the load across the available virtual machines. Mondal et al. [9] proposed
an efficient algorithm which is based on the criteria of executing the shortest tasks first.
This model was compared with the FCFS algorithm and Round Robin algorithms and
interestingly this is able to reduce the turnaround time and execution times but there
are limitations like the prediction of burst time before CPU actually starts the execution
which is not possible. This algorithm failed to enhance QoS parameters because of the
uneven distribution of load.

Alworafi et al. [10] introduced an improved model of SJF in which average response
times and makespan times are improved when compared to the traditional SJF model, but
all these three algorithms [8], [9], [10] failed to achieve stability in distributing the load to
virtual machines. None of the above-discussed algorithms considered the priority of tasks
and this is crucial with respect to cloud users that they need some tasks to be executed
in minimal time. Kumar and Sharma [11] developed a priority aware Longest Job First
algorithm in which priority tasks are executed first after sorting them accordingly based
on LJF logic and then ordinary tasks will be executed. The results of the proposed
algorithm resulted in minimizing execution time and there is an increase in total resource
utilization ratio.

Recently, Ponraj [12] developed an optimal VM placement solution that can able to
reduce the completion times of job execution for both static and dynamic workloads.
This algorithm considers several parameters like QoS, the status of VM, I/O data, and
the computing resources depending on the priority-based model to enhance the perform-
ance of applications. This model was compared with traditional FCFS and other priority
algorithms and interestingly this model resulted in minimizing the overall cost of pro-
cessing and completion times. The future scope of this paper is focused on enhancing the
security measures by considering the profile-based analysis and introducing the work to
both hybrid and public cloud environments whereas the present is concentrated only on
private cloud.

Panda et al. [13] proposed three algorithms named Minimum Completion Cloud
time (MCC), MEdian MAX and Cloud Min-Max normalization (CMMN). In the MCC
algorithm, tasks will be allocated to resources by considering the completion time of
every task. This algorithm considers the execution times but also considers the load
time for assigning tasks to resources available. This results in arbitrary order and every
time tasks will be allocated to the best available resource in a queue and this is a major
limitation because the best resource is being wasted for smaller tasks. Median MAX is a
two-phase scheduling algorithm in which the median will be calculated in the first phase
whereas the maximum will be calculated among the available tasks. CMMN is again
a two-way scheduling process that is developed to minimize the makespan time. The

8

results are evidence that the MCC algorithm is able to reduce the makespan time when
compared to the other two algorithms but there are certain limitations with each of the
three algorithms.

Pradhan et al. [14] modified the existing the Round Robin algorithm to overcome the
problem of time quantum. This paper gave the insight to overcome that issue by following
dynamic time quantum instead of fixing it initially but it did not provide the optimal
time quantum that needs to be maintained but when compared with the existing model
it is able to reduce the waiting time. Another impressive work by Devi et al. [15] based
on the weighted round robin concept i.e distributing the load circularly but by using
time slices. This algorithm is able to enhance the response time and resource utilization
ratio but failed to distribute the workload evenly similar to [9], [10]. It is evident from
the above literature work done that many of the heuristic scheduling algorithms failed
to enhance more than one QoS parameter at a time and to overcome this limitation, [3]
surveyed the strategies involved in task scheduling and provided an insight for modeling
multi-objective based scheduling algorithms with the combination of two or more existing
traditional algorithms.

There are a number of heuristic algorithms developed in the last decade based on sev-
eral QoS parameters and one of the key parameters includes Energy consumption. Chen
et al. [16] developed a novel architecture to overcome the dynamic scheduling issue.
Energy-Efficient reactive scheduling (ERECT) algorithm was developed for scheduling
tasks to virtual machines by reducing energy consumption, task deadline requirements
but this specific algorithm does not consider SLA during the VM migration stage in
order to reduce energy consumption. Another study on the energy consumption para-
meter was done by Chaabouni and Khemakhem [17] by employing the VM migration
technique. This algorithm is based on detecting the workload on the host depending
on the median and standard deviation which in parallel reduces the energy consumption
and overcome the SLA violation observed in [16], but it failed to look other parameters
like cost, time and deadline constraint because the migration itself is the time-consuming
process. To overcome the SLA limitation observed in [16], Zhou et al. [18] developed
two novel energy-aware algorithms based on adaptive three threshold frameworks. This
algorithm is successful in minimizing several parameters which include energy, SLA vi-
olation, and migration of VM, but failed to consider the priority of tasks similar to [17].
From these three energy-efficient heuristic algorithms [16], [17], [18] it is clear that some of
the parameters are violated and not considered while enhancing the energy consumption.

2.2 Meta-Heuristic Scheduling Algorithms

Meta-Heuristic algorithms gained popularity because of their effectiveness while solving
complex problems and these are best described as problem independent. These algorithms
are the best strategy for eliminating NP-hard optimization issues. These algorithms are
often described as the summation of the heuristic approach and the randomization. There
are a number of such algorithms developed in the last decade due to their highly reliable
nature and some of them include Particle Swarm Optimization (PSO), Ant Colony Op-
timization (ACO), Artificial Bee Colony (ABC), etc. [19], [20], [21]. All these algorithms
are mainly focused on obtaining solutions in a limited time. PSO is one such widely
used solution works on the nature of birds how they actually discover space searching for
food and shelter. Masdari et al. [19] classified the PSO algorithm into several categories.

9

This paper actually provides the best insight for researchers who are actually working on
PSO algorithms because it explains the different categories in PSO algorithms parallelly
explaining the advantages and limitations for each of the discussed algorithms.

ACO is another meta-heuristic algorithm for finding an optimal solution to NP-hard
problems. This actually works on a similar technique of how the ant finds the shortest
path to reach the colonies. Similar to PSO there are many algorithms developed based
on traditional ACO. Duan et al. [20] modified existing ACO and developed an algorithm
named Pre Ant Policy to overcome the problem of instantaneous peak loads and mapping
the tasks to the best available resources and enhancing few QoS parameters. The key
motivation for the development of the proposed algorithm is heterogeneity and abundant
usage of power and this solution resulted in achieving better makespan time and for
maintaining reliability across the system. All these variants of ACO are clearly illustrated
with advantages and limitations for solving various problems like scheduling, vehicle
routing, etc. in [2], [3].

ABC is another key meta-heuristic scheduling technique inspired by the behavior of
bee swarm and this works on the technique similar to bees fly around the space searching
for the best solution to a problem. These bees are categorized into three different types
based on the behavior they exhibit in search of a food source. Liu et al. [21] proposed a
multi-objective ABC algorithm with the help of the traditional ABC algorithm and this
model was successful in figuring out the solutions for optimization problems by converting
these problems to multi-objective optimization problems. This model was tested against
several well-known problems and achieved a positive response for enhanced performance
metrics. All the above discussed meta-heuristic algorithms [19], [20], [21] are used in
the process of scheduling the tasks to available resources depending on the nature of
optimization problems that is to be solved.

2.3 Hybrid Scheduling Algorithms

Hybrid Scheduling Algorithm is another major scheduling approach that is developed
from a combination of two or more algorithms that can be either heuristic and meta-
heuristic algorithms in order to obtain the appropriate paradigm to solve the scheduling
problem. Different combinations of algorithms are selected truly based on the parameters
that they are trying to improve. Elaziz et al. [22] developed a hybrid model named
Moth Search Algorithm and Differential Evolution (MSDE) by considering parameters
like makespan and throughput but the MSDE algorithm majorly focusses on a single
objective to reduce makespan time and none of the QoS parameters are considered.
This works on the principle of both the Moth Search Algorithm (MSA), which provides
exploration and exploitation capabilities based on phototaxis and Levy flight concept and
Differential Evolution (DE) algorithm which performs better than MSA for exploitation
purpose. Similarly, a number of such hybrid algorithms are developed to serve different
purposes but all these algorithms are focused on improving one or two parameters but the
future enhancement of these algorithms is focused on improving more QoS parameters.

Based on the reviewed literature, we developed a table as shown in Table 1 to sum-
marize the classification of heuristic, meta-heuristic and hybrid algorithms presented
according to their proposed year starting from 2009 to 2019. This table is aimed at
providing a quick recap on each algorithm reviewed in our literature along with their

10

core idea for development, advantages and limitations. In the next section, we will be
discussing selected algorithms for our proposed model, simulation methods, techniques
we are planning to achieve our goal.

Table 1: Summary of reviewed heuristic, meta-heuristic and hybrid Algorithms

Year Algorithm Core Idea Advantages Limitations Ref

2009 FCFS
Serve requests
as in the order

they come

First come first
serve

Not able to
distribute load

among VMs
[8]

2013
&

2014

Improved
min-min

&
Max-min

To distribute
longer task to
best available

resource

Enhancing
utilization rate
and minimizing
makespan time

Slower, chance
of overloading/

under utilization
[6, 7]

2013
&

2016
RR

Allocate tasks
in

circular manner

Reduced overhead,
response time

Failed to
decrease makespan,

provide efficient
distribution strategy

[14, 15]

2015 MCC
Assigning tasks

based on minimum
completion times

Accounting both
execution and
resource loads.

Best machine is
being used for
simple tasks

[14]

2015
&

2016
SJF

Decrease wait
time of

shorter jobs

Reduced response
time

Failed to meet
QoS parameters

[9, 10]

2016
Modified

LJF

Priority Based
LJF reduces the

time of VIP longer
tasks

Reduced makespan
of priority tasks

Failed to meet QoS
parameters

[11]

2017 PSO
To obtain

approximate results
in short time

Minimize cost,
processing time

considering only
one or two

QoS parameters
[19]

2017 ACO
Prediction model

that can map tasks
accordingly

Better makespan &
reliability of system

considering only
one or two

QoS parameters
[20]

2017 ABC
For balancing

workloads

Better energy, cost,
response time,
utilization rate

No clear idea on
cost and time factor

[21]

2017
&

2018

QoS
Based

Decrease energy
consumption

Reduce count of
resources, energy

consumption

considering only
one or two

QoS parameters
[16, 17, 18]

2018
Modified
HEFT

Calculate rank
for each

individual task

Makespan time
is reduced

Load distribution
is not uniformly

done
[5]

2019
Priority
Based

Prioritize based on
requirements

Reduced completion
times & processing

costs

Enhanced security
features

[12]

2019 MSDE
Single objective

Algorithm
Better makespan &

throughput

Energy consumption
and reliability are

not considered
[22]

2.4 Proposed Approach

Based on the reviewed literature, it is clear that there are a number of limitations with
all the three different types of scheduling algorithms. The proposed approach is keenly

11

focused on reducing the cost of execution and analyzing the different workloads to provide
the best feasible combination of VMs to execute those tasks. In this paper, a new schedul-
ing policy based on the core idea of traditional SJF and LJF is developed because of the
limitations like longer wait times for the shortest jobs in LJF and vice versa. To overcome
these limitations and to enhance the QoS parameters by routing both the shorter running
jobs and longer running jobs to different VMs parallelly instead of maintaining the same
queue for sending all these tasks as it works in traditional methods. Another key aspect
of this proposed model is figuring out the best possible combinations of VMs from the
available resources based on all the four key metrics discussed in this paper. The proposed
approach is aimed at not only routing the tasks to different VMs but also in finding the
best machines to execute that tasks based on the algorithmic logic. This parameter helps
to bring down the execution costs irrespective of the algorithm that is actually used in
scheduling those tasks to different resources available in the host machine.

3 Methodology

Few heuristic scheduling algorithms are identified for developing the proposed model
based on the reviewed literature. Some of them include FCFS, SJF, LJF, MCC, Mod-
ified SJF and priority based scheduling Algorithm. The proposed approach is mainly
concentrated on separating the user tasks depending on the pre-defined parameters such
as the number of resources required to execute the task. In this paper, a combination of
three different VMs configurations are considered and to test the effectiveness of the al-
gorithm proposed We have considered Google cloud dataset i.e derived from the workload
behaviour of google cluster traces and each of these files defined in this workload defines
the number of jobs in terms of Million Instructions (MI) [23]. Three different groups of
machines based on real-time scenarios of Amazon EC2 configurations are defined and the
algorithm is tested for all the three combinations of virtual machines for the pre-defined
total virtual machine count of 6 in total which are running to complete this job file con-
taining tasks. Another distinctive advantage of our proposed model will be both shorter
running jobs as well as longer running jobs will be executed in parallel without waiting
for other processes to complete with an enhanced security facility.

A general mathematical derivation for the different combinations possible out of the
pre-defined virtual machine count is derived using the below formula:

NumberofCombinationsPossible = (n + 1)(n + 2)/2 (1)

Here n = number of VMs considered;

3.1 CloudSim

Cloudsim provides the researcher various offers by cost for validating results and to test
different scenarios by bridging the gap between the real-time scenario and the research
work. This provides a large scale computing simulation environment by providing vari-
ous platforms for modeling different components of the cloud. Some of the features of
cloudSim include modeling of data centers similar to the real-time scenario in a single
computing node, the feasible process of switching between different allocation policies
like time-shared and space-shared, creation and management of virtualization engine and

12

various other features for accelerating the work done by the researchers in the field of
cloud computing.

In this paper, a total of 6 virtual machines are considered and its possible to make 28
combinations if we have three different groups of machines by using the above equation.
For all the combinations that are possible, tests are executed for proposed algorithm,
SJF and LJF. We have identified cloudsim as the potential environment to simulate our
results because it provides feasible options for creating a cloud environment [24]. Also,
there are various components of cloud computing like scheduling, service brokers, etc.
that can be generated using this tool. Various combinations are tested after developing
our proposed algorithm according to cloudsim configurations.

3.1.1 CloudSim Architecture & Design

There are different classes in the cloudsim simulation toolkit which are pre-defined to
serve different user requests. The below Figure 3 depicts an important hierarchy that
is responsible for starting the simulation in cloudsim (Version 3.0.3) 1. This hierarchy
performs a series of operations depending on the cloudlets i.e tasks submitted, entities
and the policies defined. This simulation terminates when there are no further events
in queues mentioned. Another detailed architecture mentioned below provides a clear
understanding of the different options available in the simulation toolkit. Of which,
the user code layer is useful for researchers to write their code for testing their models
creating their own customized environment. Another layer named CloudSim contains
various management interfaces like bandwidth, virtual machines, memory, etc. CloudSim
core simulation engine is the base for the start of a simulation process and it contains
different entities like queues, event processing.

Figure 3: Cloudsim call hierarchy of different classes

3.2 Complexity of Proposed Algorithm

The proposed algorithm starts with sorting the tasks either in ascending or descending
order and for this purpose linear sort technique is employed i.e all tasks that are present

1cloudsim: https://www.cloudsimtutorials.online/cloudsim-simulation-toolkit-an-introduction/

13

in the array will be sorted and then from the top of the array jobs will be sent to half
the available virtual machines and then from the bottom of the array jobs are allocated
to next half of the virtual machines. In this way, all the shorter running jobs will be sent
to one set of virtual machines whereas all longer running jobs are sent to another set
of machines available in the pool. There are various sorting techniques available which
proved to be better than Linear sorting but the proposed algorithm is compared with SJF
and LJF and both these algorithms involve the sorting procedure and the same sorting is
applied for both. Hence, there are no differences involved using this technique for sorting
but for real-time scenarios, this can be replaced with the best possible sorting technique.

3.2.1 Time Complexity

For the first line in the proposed algorithm, Consider there are n tasks in the array, so the
loop executes for (n− 1) times. The initialization takes only one primitive operation and
the loop will be executed one more time than the required number of operations because
that extra one time decides that the condition is failed. The increment will take place as
many times as loop executes i.e (n− 1) times.

for(i = 0; i < n− 1; i + +) => 1 + (n− 1 + 1) + (n− 1) = 2n
SmallJob← i => (n− 1)
for(i∗ = i + 1; i < n; j + +) => (n− 1) + (x + 1) + x = 2x + n
Here; x = 1 + 2 + 3... + n− 1 = (n− 1)(n− 1 + 1)/2
if(k(i∗) < k(smalljob)) => 3x
Smalljob = i∗ => x
temp = k(i) => 2(n− 1)
k(i) = k(smalljob) => 2(n− 1)
k(smalljob) = temp => 2(n− 1)
return => 1

T (n) = 6x + 10n− 4 (2)

After substituting x in equation(2);

T (n) = 3n2 + 7n− 4 (3)

Here T (n) referred as time complexity;

The value of n2 denotes the time with respect to n tasks. So, T (n) is O(n2).

3.2.2 Space Complexity

The value of space complexity of selection sorting technique used is O(1) because it follows
in-place comparison i.e a specific array position is replaced by the smallest element.

3.3 Proposed Algorithm

In this section, pseudo code of the proposed algorithm is explained and the execution of
algorithm actually starts with by considering the tasks presented in the dataset. These
tasks are sent to the broker and then they will be sorted using linear sort technique and
it is done in the Step 1 of the below mentioned Algorithm 1. These sorted tasks are then
sent to the VMs and before passing these tasks to the VMs, Step 2 of the Algorithm 1 will

14

be executed. And then the elements in the sorted array are assigned to the VMs in such
a way that the elements from the top of the queue will be sent to the first half of VMs
and the elements from bottom of the array are sent to next half of VMs at a single time
till the time that there are tasks left in the sorted array list. Once execution of Step 3 is
finished, parameters like waiting time, completion time, execution cost and turnaround
time are calculated using the standard formulas for each and every combination of VMs
that are possible from the defined count of machines. These results are then compared
with existing LJF and SJF algorithms for all the combinations of VMs to check the best
combination of VMs for every algorithm.

Algorithm 1 Proposed Algorithm

i = (1, 2,N) . number of tasks
j = (1, 2...M) . number of virtual machines
Step 1 : Sort the tasks i = (1, 2,N)
for i = (1, 2,N) do

Sort the tasks i = (1, 2,N)
SmallJob← i
for i∗ = (i + 1, i + 2,N) do . Updated number of tasks

if k(i∗) < k(smalljob) then
k ← tasklength
Smalljob = i∗

end if
end for
temp = k(i)
k(i) = k(smalljob)
k(smalljob) = temp

end for
Step 2 : Sort the virtual machines j = (1, 2,M)
for j = (1, 2......M) do

Sort the V irtual Machines based on MIPS
end for
Step 3 : Assign the sorted tasks i = (1, 2,N) to V irtual machines j = (1, 2....M)
if (N (mod 2) == 0 ∧M (mod 2) == 0) then

Assign N
2
tasks to M

2
machine

∧ rest N
2
tasks to remaining M

2
machine

else if (N (mod 2) == 0 ∧M (mod 2) == 1) then
Assign N

2
tasks to M−1

2
machine

∧ rest N
2
tasks to M+1

2
machine

else if (N (mod 2) == 1 ∧M (mod 2) == 0) then
Assign N−1

2
tasks to M

2
machine

∧ N+1
2

tasks to remaining M
2
machine

else if (N (mod 2) == 1 ∧M (mod 2) == 1) then
Assign N−1

2
tasks to M−1

2
machine

∧ N+1
2

tasks to M+1
2

machine
end if

15

4 Design Specification

Resource Scheduling is the process in which incoming tasks from cloud users will be
assigned to specified resources based on the agreed SLA and to gain the user trust by
minimizing the waiting time of tasks, completing the tasks with an increased rate of
utilization etc. Several Algorithms are developed depending on the key parameters that
researchers aim at primarily and it differs based on various policies and requirements. The
proposed algorithm is the enhancement of traditional SLA and LJF algorithms because
longer jobs have to wait for more time in LJF, on the other side shorter jobs have to wait
for more time in LJF. Hence, the proposed algorithm minimizes the wait times of both
the jobs by allocating them to resources parallelly. The problem of under-provisioning
and over-provisioning is also not handled well because of ample variations.

4.1 Proposed Architecture

There are several limitations in the Resource Scheduling process though several al-
gorithms are developed in the last decade. In order to reduce waiting time, turnaround
time, completion time and the execution cost a new task scheduling algorithm has been
proposed with the core idea of separating both shorter running jobs and longer running
jobs to different VMs by creating two different pools based on the resource availability
and the task nature. This actually reduces the waiting time and completion times of both
shorter and longer running jobs. A detailed explanation of the proposed architecture is
depicted in Figure 4 and the architecture is classified into three parts as explained below:

Figure 4: Proposed Architecture for allocating user tasks to different VMs

1. User side tasks - This denotes the tasks that are to be executed as requested by
the cloud user and each task will have its own specifications like length, resource
requirement, etc.

2. Cloud Broker - This is a crucial part of the scheduling process because it acts as

16

a bridge for assigning user tasks to the available resources that are managed by a
cloud provider by using the defined algorithm.

3. Cloud provider - Based on the requests from cloud users, the provider creates
the resources and each of these resources created may or may not have similar
configurations.

The basic idea behind the proposed algorithm is to reduce the cost of executing the
tasks, waiting time, completion time and turnaround time through the allocation of tasks
to the VMs based on the logic written in the proposed algorithm. The proposed algorithm
initially sorts the list of tasks and then VMs will be created to two different pools based
on the count of resources. These sorted elements from the top of the array list are then
sent to the first pool of VMs created and parallelly tasks from the bottom of the array
are sent to other pool of VMs available till there are no empty tasks left in the array.
This logic actually separates both shorter running jobs and longer running jobs from
each other and are allocated to different machines, hence reducing the wait time, the
completion time of both shorter and longer running jobs. This is an enhancement for the
two traditional heuristic algorithms SJF and LJF. This work can be extended to figure
out DDoS or DoS attacks because those are concentrated mainly on longer running jobs
and we have already separated these jobs from shorter running jobs.

The proposed model not only allocates shorter running jobs to a pool of VMs and
longer jobs to another VMs but also reduces total cost, waiting and completion times
when compared to SJF and LJF algorithms. Traditional SJF algorithm reduces the wait
time of shorter running jobs which eventually reduces the total completion time of tasks
if the dataset contains more number of shorter jobs and arrive at the end. Similarly, LJF
algorithm reduces longer running jobs waiting time and turnaround time. In addition,
none of the above discussed algorithms consider the overall cost of executing the tasks
but the proposed algorithm is focused on selecting the viable resources with a specific
combination where that particular algorithm holds good. For this specific reason, a
mathematical derivation which denotes the number of different combinations possible
for a chosen number of resources is derived and the simulation is run for all the different
combinations and calculated the cost parameter to check where the algorithm fits well and
it is also useful for allocating the resources prior based on the behaviour and specifications
of tasks.

4.2 Instance Configurations

Below are the different group of machines considered while performing the analysis 2. All
these configuration details are shown in Table 2. As per the proposed approach, jobs
will be allocated to these combination of machines based on length of the tasks i.e small
tasks will be sent to first three machines in the pool whereas the larger tasks will be sent
to rest of the three machines available because while implementing a group of six VMs
are considered. Also, cost factor is considered while analysing the output and the total
cost of executing the jobs in the dataset is calculated for three different algorithms. All
these configurations are created in cloudsim because this provides a feasible approach to
compare the results with traditional algorithms.

2Instance Pricing: https://instaguide.io/

17

Table 2: Virtual Machines Configurations used for Analysis

Instance
Type

MIPS CPU
RAM
(GiB)

Cost Per Sec
($)

c5.large 6000 2 4 0.0016
c5.xlarge 6000 4 8 0.0032
c5.2xlarge 6000 8 16 0.0064

5 Implementation

There are various versions of cloudsim that are made available through GitHub and there
are few basic pre-requisites required to make it available on a local desktop. Initially,
the required version of the .zip format has to be downloaded 3. Also, there should be a
java JDK downloaded to the machine where we need it to run because the entire code
of CloudSim is written in Java. For better convenience, it is good to have Java IDE
installed and this can be downloaded through Eclipse foundation. Most importantly,
cloudsim provide support for calculations and to efficiently run this we need to have a
math library function that can be downloaded through Apache’s website.

For evaluating, we have considered six virtual machines of three different sizes with all
possible combinations and the output results are compared with traditional SJF and LJF
algorithms. A total of 28 different combinations are tested for each of the three algorithms
which include the proposed algorithm. According to the proposed algorithm, all the tasks
are executed in such a way that tasks requiring less time for execution are being served
by one pool of virtual machines and the tasks that require more time to complete will
execute on other pool of machines available i.e in a sorted list of array, tasks from top
of the queue will be assigned to virtual machines array list starting from the smallest
machine in pool and then tasks from bottom of the queue will be executed starting from
largest machine available in queue parallelly till there are no virtual machines available
in queue.

5.1 Dataset Description

Google Cloud Jobs Dataset (GoCJ) contains data about size of jobs in terms of Millions
of Instructions (MI). The chosen GoCJ dataset is comprised of 21 different text files and
is named after “GoCJ Dataset XX.txt”, where XX denotes the number of jobs present
in each file 4. Each file contains different set of rows equivalent to the number of jobs
denoting size of each job in MI and these values ranges between 15K MI to 900K MI.
These values are analyzed based on Google Cluster traces over a period of 29 days. The
GoCJ dataset is generated using Monte Carlo (MC) simulation method and by using this
simulation method we can create any number of jobs. The actual time to complete a job
depends on the machine MIPS.

ETCSec = JobMI/MachineMIPS (4)

Here ETC = Time to complete a job in Seconds;

3GitHub: https://github.com/Cloudslab/cloudsim/releases/
4GoCJ Dataset: https://data.mendeley.com/datasets/b7bp6xhrcd/1

18

A text file based on GoCJ dataset containing 1000 tasks is used to test this scenario.
This dataset contains the MI value which denotes task length and these tasks are sent
to different virtual machines available in data centre based on proposed logic. Here, to
make it more realistic we considered that all these tasks did not arrive at the same time
instead we assumed that there occurs some delay in the arrival of those tasks and this is
sufficed using some random function starting with delay value of 10 Seconds for the first
task because minimum time to complete shortest individual task takes 2.5 Seconds and
the longest job takes 2.5 Minutes and the average time to complete each task working
on a single core takes nearly 76.25 Seconds. Also the dataset contains 60%-70% longer
running jobs, hence a delay of 10% based on average completion time of individual task is
considered and then a random function is used for rest of the tasks. For each individual
task completion time, waiting time, turn around time and the total cost is calculated for
the proposed algorithm and for each possible combinations of those six virtual machines
of three different combinations. Finally, the total cost for executing all the tasks in the
dataset for each combination is calculated and compared with SJF and LJF algorithms for
similar combinations. A detailed analysis of test results is evaluated in the next section
by depicting graphs for average waiting time, total completion time and total cost after
running all tasks for the three algorithms.

6 Evaluation

To verify the effectiveness of the proposed algorithm a series of tests are conducted
using the Cloudsim simulation toolkit. A total of 28 different combinations of VMs are
selected from a selected count of six VMs and several parameters like average waiting time,
completion time, turn around time and total cost of execution are calculated individually
for each combination by allocating tasks to VMs based on the proposed model. We have
used GoCJ dataset containing 1000 tasks to test the algorithm. These results are then
quantitatively compared against similar combinations of VMs by using traditional SJF
and LJF algorithms. A brief explanation of the parameters evaluated in this paper are
discussed below:

• Arrival Time (AT): It is defined as the time at which the entire process is in
ready state.

• Burst Time (BT): It is the total time required for a job to execute.

• Completion Time (CT): It is defined as the actual time that a job is completed.

• Turnaround Time (TAT): It is the actual time that a specific job spent on the
system.

TAT = CT − AT (5)

• Waiting Time (WT): It is the total time that a task is in queue waiting for
resources.

WT = TAT −BT (6)

For calculating the total cost of execution, the completion time of tasks for each
combination and for every algorithm, we assumed all the six virtual machines are run-
ning till the execution is completed. For example, if we run a test with six c5.large

19

instances alone, then the total cost of execution will be the result of completionT ime∗6∗
InstanceCost/sec. It is also observed that all the shorter jobs are sent to the first three
VMs and the longer jobs are sent to the last three VMs, which is the core idea of this
research work. As we considered a random function for delaying the tasks to arrive, the
simulation results vary a bit when running multiple times. Hence, for maintaining sta-
bility across the output test i.e for each combination of VMs under different algorithms,
a simulation was carried out six times and the average of the outputs are recorded and
tabulated as shown in Table 3.

Table 3: Test results from cloudsim using different algorithms for GoCJ dataset

Instances Proposed Model SJF LJF
c5.

large
c5.

xlarge
c5.

2xlarge
WT CT TAT COST WT CT TAT COST WT CT TAT COST

6 0 0 874.496 2722.31 21.613 26.134 840.095 1881.04 21.611 18.058 914.18 1831.01 21.6135 17.577
5 1 0 775.959 2721.763 21.613 30.483 793.266 1859.65 21.611 20.828 852.033 1834.593 21.6126 20.54
5 0 1 730.104 2714.956 21.612 39.146 758.439 1859.09 21.612 26.7709 787.492 1829.509 21.6129 26.344
4 2 0 687.805 2675.539 21.613 34.246 709.15 1883.73 21.612 24.11 749.444 1829.37 21.611 23.4159
4 1 1 618.9376 2678.76 21.613 42.86 653.175 1885.31 21.612 30.165 712.2308 1829.593 21.6135 29.2734
4 0 2 538.395 2679.76 21.613 51.4513 633.649 1894.016 21.611 36.3651 675.716 1829.793 21.6134 35.132
3 3 0 549.196 1370.513 21.614 19.735 607.193 1864.543 21.612 26.849 696.85 1831.483 21.6133 26.3733
3 2 1 500.894 1365.04 21.613 24.024 581.791 1833.04 21.6124 32.2615 640.091 1829.81 21.6136 32.204
3 1 2 424.879 1350.7 21.614 28.094 536.176 1891.26 21.611 39.338 598.015 1832.479 21.6145 38.1155
3 0 3 374.322 924.093 21.615 22.178 519.41 1882.62 21.614 45.182 551.701 1832.79 21.614 43.9869
2 4 0 510.867 1370.2 21.614 21.923 566.86 1861.07 21.612 29.777 582.49 1830.84 21.6143 29.2935
2 3 1 458.3 1373.93 21.6142 26.37952 522.85 1877.849 21.612 36.0547 577.138 1831.426 21.613 35.1633
2 2 2 398.4252 1349.753 21.615 30.2344 486.383 1847.79 21.613 41.39 491.31 1830.233 21.614 40.997
2 1 3 338.674 926.566 21.616 23.72 445.494 1875.763 21.613 48.0195 498.129 1832.43 21.6149 46.91
2 0 4 319.865 924.403 21.615 26.622 410.095 1880.646 21.6136 54.162 455.361 1832.459 21.6141 52.774
1 5 0 481.077 1398.81 21.614 24.619 487.382 1876.37 21.613 33.024 532.284 1832.67 21.615 32.255
1 4 1 424.264 1366.229 21.615 28.4175 442.562 1811.846 21.614 37.6864 500.38 1830.67 21.6156 38.0779
1 3 2 365.16 1379.709 21.616 33.113 410.728 1810.59 21.613 43.454 444.66 1832.82 21.614 43.987
1 2 3 297.073 924.29 21.617 25.1406 386.059 1814.21 21.612 49.3465 420.1 1832.426 21.615 49.842
1 1 4 281.033 925.28 21.616 28.128 346.08 1813.736 21.614 55.1375 373.629 1832.15 21.616 55.6973
1 0 5 265.192 924.846 21.615 31.074 292.424 1858.79 21.615 62.455 316.915 1831.45 21.616 61.536
0 6 0 432.301 1369.78 21.614 26.299 419.457 998.456 21.613 19.17 449.83 977.37 21.616 18.765
0 5 1 380.635 1368.873 21.615 30.662 368.988 998.789 21.612 22.372 410.406 942.76 21.615 21.117
0 4 2 326.478 1351.73 21.615 34.604 325.723 959.51 21.613 24.5635 366.783 966.453 21.616 24.741
0 3 3 265.001 758.07 21.617 21.832 289.043 1004.82 21.615 28.938 323.27 996.93 21.616 28.711
0 2 4 242.035 726.016 21.616 23.2325 243.121 1003.98 21.616 32.127 294.601 924.37 21.618 29.579
0 1 5 223.675 738.76 21.6173 26.0045 230.918 1011.23 21.615 35.595 242.337 988.26 21.619 34.7867
0 0 6 212.14 732.456 21.6173 28.1263 189.17 574.733 21.617 22.0697 200.162 545.116 21.62 20.932

From the test results Table 3 it is evident that the proposed algorithm is performing
well for the GoCJ dataset for a combination of 0*c5.large, 3*c5.xlarge and 3* c5.2xlarge
instances. For this combination of VMs total cost of execution, waiting time, completion
time and the turnaround time is exceptionally good compared to other combinations.
The traditional SJF and LJF algorithms a combination of 6*c5.2xlarge instances is the
ideal choice to execute the GoCJ dataset because all the four metrics presented in the
above table are performing better than the rest of the combinations.

From the below Figure 5, a quantitative evaluation of the average waiting time of
tasks for three algorithms and for each combination of VMs are plotted. It is easy to
predict from the plot that for any combination (all 28 combinations) of VMs the proposed
algorithm is performing better than the SJF and LJF algorithms. Amongst the rest
two algorithms, SJF has reduced waiting times compared to the LJF algorithm. So, to
conclude the combination with the lowest average waiting time will be the best choice
while considering any algorithm and in this case, the proposed algorithm is performing
better than the rest two traditional heuristic algorithms. For any combination, nearly
10-20% of the average waiting time is reduced by our proposed algorithm.

20

Figure 5: Average Waiting Time of SJF, LJF & Proposed Algorithm

The total cost of execution is the key metric that both the cloud provider and the
cloud user look for while executing tasks on the resources. Hence, a plot between the
proposed algorithm, SJF and LJF is drawn for all 28 combinations that are possible from
the six VMs selected. It is evident from Figure 6 that the total cost of execution is better
for the proposed algorithm in most of the combinations when compared to SJF and LJF
but if the c5.large instances are considered more than c5.xlarge and c5.2xlarge, then the
total cost for executing the tasks will be less in SJF and LJF algorithms. It is because
of the presence of more number of longer tasks present in the dataset. To conclude from
Figure 6, the proposed algorithm is reducing nearly 30-40% of the costs for nearly 19
combinations and another interesting fact from the plot is it is better to execute the
GoCJ dataset with c5.large instances and proposed algorithm with c5.xlarge instances
for huge cost savings.

Figure 6: Total cost of execution of SJF, LJF & Proposed Algorithm

21

In the below Figure 7, the completion time of tasks when executing under three
different algorithms and the different combination of VMs is plotted. The completion
time of tasks is directly proportional to the execution cost because completion time is
the parameter that decides the overall cost of the service. Similar to execution costs,
for the majority of combinations the proposed algorithm is performing nearly 40-50%
better than the traditional SJF and LJF algorithms. As discussed above, instances with
more c5.large combinations are better for the chosen dataset in terms of both cost and
execution time and for the rest 19 combinations, our proposed algorithm is performing
better than the traditional algorithms. But, waiting time will be more though the cost
and completion time is less for a few combinations in the series for both SJF and LJF
algorithms compared to the proposed algorithm.

Figure 7: Completion Time of jobs for each combination of VMs using SJF, LJF &
Proposed Algorithm

Another key metric from the simulation is the turnaround time but interestingly
it is observed that there is no difference in the average turnaround times for all the
three algorithms. It is also observed that there exists difference in turnaround times for
individual tasks but when it is calculated for an average of 1000 tasks it remains the same
and if we run the experiment with 100 tasks there is some slight difference in turnaround
times. To conclude, average turnaround time depends on the kind of workload used, VMs
configurations and number of tasks present in dataset.

7 Conclusion and Future Work

In this paper, a detailed review of different scheduling algorithms along with their advant-
ages and limitations are discussed. Based on the literature reviewed, we have identified
SJF and LJF algorithms for the enhancement of the proposed algorithm. Because of the
uneven load distributions, not utilizing the resources efficiently there are several problems
like an increase in the execution cost, taking more than the expected time to finish the

22

jobs, etc. To overcome these issues, the proposed model eliminates the issues in tradi-
tional SJF and LJF algorithms by routing the tasks to two different pools of machines
based on the length of the tasks i.e shortest jobs are sent to one pool and longest jobs
are sent to another pool for execution. This actually reduces the wait time of both the
shortest tasks and the longest tasks thus decreasing the overall wait time when compared
to SJF and LJF algorithms. Another distinctive advantage of the proposed model is the
minimization of execution cost and completion time of the tasks.

The simulation is conducted for different combinations of VMs i.e for the total count of
6 VMs with three different configurations there occur 28 combinations and this is helpful
for identifying the best suitable combination of VMs for executing the considered GoCJ
dataset. Individually for each algorithm, the best combination of VMs to be considered
are identified based on the key metrics evaluated. The results obtained shows that the
proposed algorithm is performing better than SJF and LJF algorithms regarding waiting
time and also the execution cost and completion times for 70% of the combinations are
performing better in the proposed algorithm and saves nearly 20-30% of average cost
and time when compared to SJF and LJF and another interestingly study on turnaround
time shows it is same for all the three different algorithms. In the future, the proposed
work is extended for dynamically checking the best combination of VMs that are to be
scheduled for any algorithm depending on the workload.

References

[1] B. Belén, F. Sonja, J. Carlos, G. Beatriz, and G. Carlos, “Improving the energy
efciency in cloud computing data centres through resource allocation techniques,”
in Research advances in cloud computing (S. Chaudhary, G. Somani, and R. Buyya,
eds.), pp. 211–235, Singapore: Springer, 2017. ISBN 978-981-10-5026-8.

[2] M. Kumar, S. Sharma, A. Goel, and S. Singh, “A comprehensive survey for schedul-
ing techniques in cloud computing,” Journal of Network and Computer Applications,
vol. 143, pp. 1 – 33, 2019. Impact-Factor=3.991.

[3] A. Arunarani, D. Manjula, and V. Sugumaran, “Task scheduling techniques in cloud
computing: A literature survey,” Future Generation Computer Systems, vol. 91,
pp. 407–415, 2019. Impact-Factor=4.639.

[4] S. Singh and I. Chana, “Resource provisioning and scheduling in clouds: Qos per-
spective,” The Journal of Supercomputing, vol. 72, no. 3, pp. 926–960, 2016. Impact-
Factor=1.532.

[5] K. Dubey, M. Kumar, and S. Sharma, “Modified heft algorithm for task scheduling
in cloud environment,” Procedia Computer Science, vol. 125, pp. 725–732, 2018.
Impact-Factor=0.79.

[6] X. Li, Y. Mao, X. Xiao, and Y. Zhuang, “An improved max-min task-scheduling
algorithm for elastic cloud,” in 2014 International Symposium on Computer, Con-
sumer and Control, pp. 340–343, IEEE, 2014. No. of citations: 32 as on 23/11/2019.

23

[7] S. Anousha and M. Ahmadi, “An improved min-min task scheduling algorithm in
grid computing,” in International Conference on Grid and Pervasive Computing,
pp. 103–113, Springer, 2013. Core Rank = C.

[8] W. Li and H. Shi, “Dynamic load balancing algorithm based on fcfs,” in 2009
Fourth International Conference on Innovative Computing, Information and Control
(ICICIC), pp. 1528–1531, IEEE, 2009. No. of citations: 27 as on 23/11/2019.

[9] R. K. Mondal, E. Nandi, and D. Sarddar, “Load balancing scheduling with shortest
load first,” International Journal of Grid and Distributed Computing, vol. 8, no. 4,
pp. 171–178, 2015. No. of citations: 18 as on 23/11/2019.

[10] M. A. Alworafi, A. Dhari, A. A. Al-Hashmi, A. B. Darem, et al., “An improved
sjf scheduling algorithm in cloud computing environment,” in 2016 International
Conference on Electrical, Electronics, Communication, Computer and Optimization
Techniques (ICEECCOT), pp. 208–212, IEEE, 2016. No. of citations: 10 as on
23/11/2019.

[11] M. Kumar and S. C. Sharma, “Priority aware longest job first (pa-ljf) algorithm for
utilization of the resource in cloud environment,” in 2016 3rd International Confer-
ence on Computing for Sustainable Global Development (INDIACom), pp. 415–420,
March 2016.

[12] A. Ponraj, “Optimistic virtual machine placement in cloud data centers using
queuing approach,” Future Generation Computer Systems, vol. 93, pp. 338–344,
2019. Impact-Factor=4.639.

[13] S. K. Panda and P. K. Jana, “Efficient task scheduling algorithms for heterogeneous
multi-cloud environment,” The Journal of Supercomputing, vol. 71, no. 4, pp. 1505–
1533, 2015. Impact-Factor=1.532.

[14] P. Pradhan, P. K. Behera, and B. Ray, “Modified round robin algorithm for resource
allocation in cloud computing,” Procedia Computer Science, vol. 85, pp. 878–890,
2016. Impact-Factor=0.79.

[15] D. C. Devi and V. R. Uthariaraj, “Load balancing in cloud computing environment
using improved weighted round robin algorithm for nonpreemptive dependent tasks,”
The scientific world journal, vol. 2016, 2016.

[16] H. Chen, G. Liu, S. Yin, X. Liu, and D. Qiu, “Erect: energy-efficient reactive schedul-
ing for real-time tasks in heterogeneous virtualized clouds,” Journal of computational
science, vol. 28, pp. 416–425, 2018. Impact-Factor=1.925.

[17] T. Chaabouni and M. Khemakhem, “Energy management strategy in cloud comput-
ing: a perspective study,” The Journal of Supercomputing, vol. 74, no. 12, pp. 6569–
6597, 2018. Impact-Factor=1.532.

[18] Z. Zhou, J. Abawajy, M. Chowdhury, Z. Hu, K. Li, H. Cheng, A. A. Alelaiwi, and
F. Li, “Minimizing sla violation and power consumption in cloud data centers using
adaptive energy-aware algorithms,” Future Generation Computer Systems, vol. 86,
pp. 836–850, 2018. Impact-Factor=4.639.

24

[19] M. Masdari, F. Salehi, M. Jalali, and M. Bidaki, “A survey of pso-based schedul-
ing algorithms in cloud computing,” Journal of Network and Systems Management,
vol. 25, no. 1, pp. 122–158, 2017. Impact-Factor=1.750.

[20] H. Duan, C. Chen, G. Min, and Y. Wu, “Energy-aware scheduling of virtual machines
in heterogeneous cloud computing systems,” Future Generation Computer Systems,
vol. 74, pp. 142–150, 2017. Impact-Factor=4.639.

[21] L. Foxiang, S. Yuehong, L. Yanhui, and W. Tingting, “An artificial bee colony al-
gorithm based on multiobjective and nondominated solution replacement mechanism
for constrained optimization problems.,” Numerical Mathematics: Theory, Methods
& Applications, vol. 12, no. 3, pp. 797 – 823, 2019. Impact-Factor=0.695.

[22] M. A. Elaziz, S. Xiong, K. Jayasena, and L. Li, “Task scheduling in cloud computing
based on hybrid moth search algorithm and differential evolution,” Knowledge-Based
Systems, vol. 169, pp. 39–52, 2019. Impact-Factor=4.396.

[23] A. Hussain and M. Aleem, “Gocj: Google cloud jobs dataset for distributed and
cloud computing infrastructures,” Data, vol. 3, no. 4, p. 38, 2018. No. of citations:
3 as on 03/12/2019.

[24] R. Buyya, R. Ranjan, and R. N. Calheiros, “Modeling and simulation of scalable
cloud computing environments and the cloudsim toolkit: Challenges and opportun-
ities,” in 2009 international conference on high performance computing & simulation,
pp. 1–11, IEEE, 2009. Core Rank = B.

25

A List of Acronyms

Glossary

GoCJ Google Cloud Jobs Dataset.

CMMN MEdian MAX and Cloud Min-Max normalization.

MSA Moth Search Algorithm.

SVM support vector machine.

CD compact disk.

SLA Service Level Agreement.

QoS Quality of Service.

FCFS First Come First Served.

SJF Shortest Job First.

LJF Longest Job First.

DoS Denial of Service.

MCC Minimum Cloud Completion Time.

RA Resource Allocation.

CPOP Critical Path on Processor.

VMs Virtual Machines.

VM Virtual Machine.

RPS Resource Provisioning with Scheduling.

PSO Particle Swarm Optimization.

HEFT Heterogeneous Earliest Finish Time.

DAG Directed Acyclic Graphs.

CLS Cloud list Scheduling.

CMMS Cloud MinMin Scheduling.

ACO Ant Colony Optimization.

26

ABC Artificial Bee Colony.

MSDE moth search and differential evolution.

GA Genetic Algorithm.

PSSF previous-selected-server-first-policy.

DDoS Distributed Denial of Services.

AT Arrival time.

BT Burst time.

CT Completion time.

WT Waiting time.

TAT Turnaround time.

IaaS Infrastructure as a Service.

PaaS Platform as a Service.

SaaS Software as a Service.

B Configuration Manual

B.1 Introduction

A detailed step-by-step procedure for implementing the proposed algorithm is clearly
explained along with the configurations that are used while conducting the experiment.
In the following sections, set of cloudsim environment and the dependencies involved for
executing the project.

B.2 Implementation Steps

B.2.1 Cloudsim Installation

This is the first step of the implementation process. It requires few mandatory files to be
downloaded along with the .zip file.

Table 4: CloudSim Pre-Requisites

CloudSim
Pre-Requisites

Version

cloudsim-3.0.3.zip 3.0.3
Java JDK 13.0.1
Java IDE 2019-09

commons-math3-3.6.1-bin.zip 3.6.1

27

B.2.2 Downloading Dataset

For conducting the experiment, we used GoCJ dataset and this can be downloaded from
the Mendeley data repository 5 and the dataset looks the way as shown in below Figure 8.

Figure 8: GoCJ Dataset

B.3 Virtual Machine Configurations

Below are the virtual machine configurations created in a Constants.java file as shown in
Figure 9.

Figure 9: VM Configurations

5GoCJ: https://data.mendeley.com/datasets/b7bp6xhrcd/1

28

B.4 Code Development

Entire cloudsim code is written in java, so based on the above configurations we need to
develop a data centre environment in cloudsim and identify the necessary classes where
we need to change the methods. Below are the two classes where code is changed in the
existing cloudsim toolkit.

• DatacenterBroker.java

• cloudlet.java

B.5 Test Results

After running the .java file, below is the output that will be generated in console as shown
in

Figure 10: Test Results from console

29

	Introduction
	Resource Provisioning
	Resource Scheduling
	Resource Monitoring
	Need for Research
	Research Question

	Related Work
	Heuristic Scheduling Algorithms
	Meta-Heuristic Scheduling Algorithms
	Hybrid Scheduling Algorithms
	Proposed Approach

	Methodology
	CloudSim
	CloudSim Architecture & Design

	Complexity of Proposed Algorithm
	Time Complexity
	Space Complexity

	Proposed Algorithm

	Design Specification
	Proposed Architecture
	Instance Configurations

	Implementation
	Dataset Description

	Evaluation
	Conclusion and Future Work
	APPENDICES
	List of Acronyms
	Configuration Manual
	Introduction
	Implementation Steps
	Cloudsim Installation
	Downloading Dataset

	Virtual Machine Configurations
	Code Development
	Test Results

