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Abstract

Resource scheduling in cloud has always been a critical research issue for any
cloud designer. In order to successfully run a cloud deployment, the designers need
to first analyze the load requirement on the cloud, followed by the kind of infrastruc-
ture available, and other specifications. Based on these specifications the resource
scheduling algorithm is designed. In this work, we have taken into consideration the
task length, the number of sub-tasks for a given task, the processing capabilities of
available virtual machines, and developed a modified version of the existing cost-
effective resource scheduling (CERS) algorithm. This modified CERS algorithm is
based on minimization of response time. In order to achieve this task, we have
proposed a simplistic task sorting mechanism which works along with CERS. Due
to the task sorting mechanism, there is a reduction in the system’s response time,
as shorter tasks are executed faster as compared to longer tasks. This helps in
improving the overall throughput of CERS. In this study, we describe the various
steps and protocols which were followed in order to develop, test and optimize the
performance of the CERS algorithm in terms of response time minimization and in-
crease in the overall throughput. The results are compared with greedy algorithm,
and insertion sort mechanism which shows that performance of the CERS with
quick sorting is gradually better.
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1 Introduction

Scheduling of resources in the cloud leads to a better performing cloud deployment.
These resources can be in the form of physical machines, virtual machines, platforms
or the entire infrastructure. Generally, virtual machines are the most used resource in
a cloud computing scenario, therefore proper scheduling of the virtual machines is of
utmost importance. Having an optimized resource scheduling algorithm benefits the
cloud deployment in the following ways,

e Optimization in cost of task execution, due to proper scheduling the tasks are
effectively assigned to the most favourable virtual machines, and therefore the cost
of task execution is optimized.

e Reduction in running costs, because if the tasks are executed faster, then the over-
all computation units will get free faster. Thereby provisioning more tasks to be
executed, which will reduce the running costs.

e Ability to add more security features, as the tasks are being executed with minimum
delay, there is a possibility to add more security to the cloud architecture without
compromising much on the delay of the system.

Input set of Process the task set, extract
tasks and the task features. Also extract
configuration of required VM features
resources \
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-
Process task features and
VM features using
mathematical formulation
Land evalute mappings

Map resources to tasks, execute tasks on VMs, and re-
iterate the formulation (if needed) for an optimum system

Figure 1: General resource scheduling procedure

From the figure 1, it is clear that the main block in task scheduling is where processing
of task features and mathematical formulation is performed. In this report, we are fo-
cussing on mathematically implementing the cost-effective resource scheduling (CERS)
algorithm, and analyzing its performance under a series of test case scenarios. We also
plan to improve the performance of the CERS algorithm by adding the concept of re-
sponse time minimization into it. The CERS algorithm works using the principle of
reducing the cost per service rate, and can be summarized using the following steps,

e Input the task time and the utilization of the VM, and evaluate the value of cost
per service rate (q).



e Using this value of q for each task to VM mapping, the array Q is formed, which
contains all the ‘q’ values.

e Sort the array () in ascending order.

e Schedule the VMs based on the ordering of Q, as lower (3 means that the VM should
be given higher priority in terms of scheduling.

e Evaluate the number of requests left, and schedule them according to the given
time slot.

e Find the number of clock cycles needed for all the tasks to be executed.

e Perform VM scheduling based on the minimum number of clock cycles needed.

These basic steps are explained in more details in the following sections. The next
section deals with different algorithms that are available for resource scheduling in cloud,
most of which optimize the cost of scheduling. It is followed by our approach, and its
implementation details. Finally, we conclude this report with an in-depth analysis of the
algorithm, and observations via some test-case scenarios. This report also concludes with
some future work that can be performed in order to further improve the quality of this
research.

1.1 Research Question

How a modified Cost Effective Resource Scheduling(CERS) algorithm will help in op-
timizing the response time while scheduling the resources and to what extent could the
response time be minimized?

2 Related Work

2.1 State-of-the-art techniques

In this section different algorithms for resource scheduling are studied, and the selection
process of our base algorithm is explained. Resource scheduling requires careful planning
from the cloud provider side and from the cloud infrastructure side as well. This planning
is accomplished with the help of different task-type-aware algorithms, that take into
consideration various task parameters in order to execute the tasks on the resources (or
virtual machines). The algorithm defined by Xing Jia Wei, Wang Bei and Li Jun in |Wei
et al. (2017)) uses a modified version of genetic algorithm to schedule resources. They
have used simulated annealing with a multi-population genetic algorithm in order to
improve task scheduling efficiency. Due to simulated annealing the algorithm focusses on
finding global optimum rather than local optimum. Therefore, the overall response time
reduces, the completion cost reduces, the convergence speed improves and the degree
of load balancing reduces. As per their observations, the completion time reduces by
40 percent, the load imbalance reduces by 20 percent, the completion cost reduces by
40 percent and the load imbalance reduces by 20 percent when compared with simple
genetic algorithm. Due to these advantages, the simulated annealing algorithm can be
used for real-time cloud deployments.



A different approach towards resource scheduling is proposed in [Tian et al. (2011)),
wherein the CPU, memory and bandwidth are used together for all the virtual and
physical machines in order to allocate the tasks to the machines. A migration policy is
used in order to migrate the tasks which do not satisfy a given allocation constraint, like
maximum execution delay, minimum run-time, etc. The proposed algorithm is compared
with ZHZJ, ZHCJ and random allocation. The comparison results indicate that the
algorithm in (Tian et al| (2011)) reduces the imbalance level of the tasks, and also has a
lower running time when compared with ZHZJ and ZHCJ algorithms. Random algorithm
does not perform any complex mathematical operations while mapping, thus it is bound
to require less delay. In our recommendation, we would suggest that the algorithm in
Tian et al. (2011) must be compared with more algorithms and larger datasets in order
to evaluate its real-time performance.

Another bio-inspired algorithm like Wei et al| (2017) is mentioned in Zhang et al.
(2018)), which uses improved differential evolution algorithm for resource scheduling. The
algorithm in this paper proposes the scheduling in a multi-user and multi-provider en-
vironment (MUMP). This MUMP environment makes sure that the allocation is done
in real-time, because for any use case scenario there are always multiple providers and
multiple users of the cloud deployment. The algorithm is compared with round robin,
min-min and differential evolution techniques. The comparisons indicate that the pro-
posed MUMP based algorithm reduces the completion time by 30 percent and improves
the user-to-provider satisfaction ratio by 20 percent. All this is done while keeping the
load ratio of the virtual machines almost constant. For any practical use case, this al-
gorithm can be applied without any modification.

Bio-inspired algorithms can be applied together in order to optimize one-particular
area of task scheduling. In the work proposed in|Guddeti et al.| (2017)), a hybrid algorithm
which combines cat swarm optimization for load balancing and particle swarm optim-
ization for virtual machine configuration management is defined. Via their algorithm
individual optimizations are combined to form a bigger system-level optimization. Their
results when compared with simple PSO, round robin, simple cat swarm optimization,
ant-colony optimization and exact optimization showcase a 10 percent reduction in pro-
cessing delay, 20 percent improvement in resource utilization and 10 percent reduction
in algorithm complexity. This work is a perfect example of layered-based modular pro-
cessing, which tends to improve the overall efficiency of resource allocation.

PSO is a very widely accepted optimization algorithm which has been in use for quite
a long time. PSO allows for multiple level modifications, right from its fitness function,
to its velocity equations. One such modification is done in |Ashwin et al.| (2014), where
the fitness and velocity update equations are optimized in order to minimize the response
time of the algorithm. The modified PSO reduces the response time of the algorithm by
more than 10 percent, and can be used for fast-scheduling of resources in the cloud. Heur-
istics based scheduling is proposed using the max-min algorithm in|Devipriya and Ramesh
(2013), wherein researchers have applied maximum sized tasks to minimum capacity vir-
tual machines. By doing this, the minimum sized tasks execute on higher capacity virtual
machines, thereby the processing speed of the system improves drastically. The proposed
max-min algorithm changes the concept a bit further, by executing average-sized tasks
on slower virtual machines, which further reduces the response time by 10 percent when
compared to the original max-min algorithm. A hybrid approach which combines max-
min and min-max algorithms is defined in Mittal and Katal (2016]), wherein the elapsed
time for both max-min and min-max is evaluated, and then based on the comparison a



particular algorithm is selected for scheduling. The results indicate that the proposed
combinatorial approach reduces the make-span or response time by 10 percent, when
compared with max-min, min-max, RASA, improved-max-min and enhanced version of
max-min. These results showcase the superiority of using a pre-calculated metric, rather
than fixating on a given policy.

Value of service (VoS) is a novel metric defined in Tunc et al.| (2016]), wherein the value
of the services given by a cloud provider are decided by the virtual machine’s previous
ability to complete a task within a given deadline and the energy needed by the VM
to execute the given task. Using these parameters, a VoS based scheduling algorithm
is defined, which uses soft and hard thresholds for scheduling tasks. The VoS based
algorithm is compared with a non-VoS based system, and it is observed that the VoS based
system is 50 percent more responsive, and 40 percent more energy efficient. Generally,
the VoS system is deployed on each of the load-execution units, which increases the
overheads. In order to reduce these overheads, a central load balancer is defined in Soni
and Kalral (2014)). This balancer uses the concept of data-aggregation in order to execute
tasks on virtual machines. The information from all the computing nodes is aggregated
on a single node, and calculations are done based on these readings. These calculations
provide a fair idea about the current load scenarios of the system, and thereby allows for
proper resource allocation. The central load balancer reduces the response time by more
than 60 percent when compared with round robin, active response time and throttled
response time-based balancers.

Clustering is a way to group similar kind data together in order to perform a similar
set of operation on it. A clustering-based approach, which uses task grouping based on
the cloud’s capability to execute a given set of tasks on a given set of machines is proposed
in [Selvarani and Sadhasivam| (2010). Based on this clustering, the algorithm is able to
reduce the processing delay by 15 percent, and the processing cost by 70 percent when
compared with a non-clustering approach of resource scheduling. Clustering approach is
again used to balance network traffic in |Das et al.| (2003), wherein the algorithm is not
a cloud-based algorithm, but can be linearly used for cloud-based systems. Using the
proposed algorithm, the mapping between tasks and execution units can be performed in
the same manner as the mapping between nodes and base-stations is done. The results
indicate that the proposed algorithm reduces delay by 10 percent when compared to first-
come-first-serve (FCFS) based scheduling systems. The evaluation of this algorithm must
be done on cloud networks to evaluate its real-time performance before actual usage. Like
FCFS; round robin and least connection methods are also equally good when it comes
to task scheduling. The work in [Swarnakar et al.| (2018) combines weighted round robin
with weighted least connection algorithms in order to improve the performance of each
of the individual algorithms. The proposed algorithm reduces the average waiting time
by 20 percent, and increases the average resource utilization by almost 15 percent when
compared with the individual algorithms. This study can further be extended for more
algorithms in order to evaluate its actual performance.

2.2 Cost-aware techniques for scheduling

Including cost awareness to a scheduling system is of primary importance due to 2 major
reasons, which are,

e A cost aware scheduling system will never overload the virtual machines.



e The system will always take into consideration Quality of Service while scheduling
tasks.

Due to these inherent advantages, the algorithm in Kapur| (2015) was studied and selected
as our baseline algorithm for this research. Using this study, researchers have claimed that
cost effective resource scheduling algorithm takes into consideration the task cost, and
allocates the best capacity VMs to the tasks which require higher processing capabilities
along with reduced response time. Due to these advantages the resource cost of this
CERS algorithm is lower than the existing methods, while the throughput is very high.
An in-depth analysis of the CERS system is done in the later sections of this text. In order
to evaluate CERS with other algorithms, we have selected the research done in Keivani
et al.| (2018). This research clearly indicates that simulated annealing and bio-inspired
algorithms are the best-in-class, and must be used for any level of resource scheduling.

A bandwidth aware scheduling algorithm is presented in Razaque et al. (2016, wherein
researchers have selected the bandwidth of virtual machine in order to allocate tasks.
Higher bandwidth machines are assigned with larger tasks, and lower bandwidth ma-
chines are assigned with smaller tasks. Due to this bandwidth-based allocation the delay
in execution of tasks is reduced by more than 40 percent. While these results look too-
good-to-be-true, we too recommend in-depth analysis of such algorithms before actual
implementation on cloud deployments. Another soft-computing algorithm that modifies
PSO and adds cuckoo search into it is presented in Naresh et al| (n.d.). Using the cuckoo-
based PSO, the cost of task execution reduces by 10 percent, while the energy efficiency
improves by 15 percent, when compared with simple PSO and improved PSO algorithms.
But this algorithm is generally suited for smaller sized tasks, because the complexity of
evaluation increases as the task size increases.

A Median Deviation based Task Scheduling (MDTS), which uses Median Absolute
Deviation (MAD) of the Expected Time to Compute (ETC) is proposed in |Akbar et al.
(2016). In this approach the average of the computation time is evaluated, and then
minimized by using task time variation optimization. Due to this approach, the over-
all response time of the algorithm is reduced by almost 25 percent when compared to
CPOP, HEFT and MDTS algorithms as mentioned in the same paper. Clustering based
methods are supposed to reduce the overall response time of any scheduling system.
This has been proved by the work in |Al-Rahayfeh et al.| (2019)), where task size and vir-
tual machine capacity-based clustering is performed in order to map the most matching
clusters. Clusters with minimum task time are mapped with VM clusters of minimum
capacity in order to improve the overall quality of scheduling. This results in a reduction
of makespan by 10 percent, an increase in resource utilization by more than 30 percent
and an improvement in trust-level by around 10 percent when compared with the TTSA
algorithm.

As seen previously, the bio-inspired algorithms outperform any other statistical ap-
proaches. But in contrast the hybrid heuristics method proposed in \Wang and Li| (2019)
beats the PSO, ACO and round robin-based approaches in terms of average delay of ex-
ecution, energy consumption and reliability. Due to the heuristic-based approach, there
is no-uncertainty of the obtained solution, thereby there is an obvious improvement in
algorithm reliability as compared to other stochastic algorithms, which do not guarantee
optimization. Another CERS based algorithm is presented in Nasr et al.| (2019), wherein
chemical reaction optimization and ant colony optimization (CRO and ACO) are used
in tandem to improve the effectiveness of task scheduling. Using these two methods,
and then adding a resource aware deadline constraint to it, guarantees a reduction in



response time, and an improvement in the overall resource utilization by the system.
The proposed system is more than 15 percent effective than non-resource aware coun-
terparts. Thus, resource aware algorithms like CERS must be explored in depth for a
better resource allocation algorithm development. Similar cost-effective approaches are
mentioned in Wang et al.| (2017),Arabnejad and Bubendorfer| (2015, [Sahni and Vidyarthi
(2015)) wherein the cost of the task is mapped effectively with the capacity of the virtual
machine for task execution.The results from these researches have further strengthened
our conviction towards selection of CERS as a base-line algorithm for our research.

3 Methodology

In order to design and evaluate the response time minimization CERS algorithm, we
followed the given steps,

Selection of simulation platform — Cloudsim

After reviewing various cloud simulation platforms like cloudsim, greencloud, iCan-
Cloud, cloud analyst and open nebula, we observed that the cloudsim provides the ability
to add customized algorithms for cloud memory storage, cloud broker selection, virtual
machine configurations and task scheduling. Also, cloudsim is being used for most of the
research projects currently under study.

Selection of programming language — Java

Cloudsim supports Java, and thus it is our default programming language for devel-
oping the algorithms.

Selection of dataset - NASA Ames iPSC/860 log The NASA Ames iPSC/860

log consists of around 7 task sets, and each task set has more than 50k tasks. Each set
has tasks which contain the following information,

e Number of tasks in a given set.
e Fxecution time of each task in the set.

For our research, we need exactly these parameters in order to evaluate the system,
and thus, this set was selected for the purpose of evaluation.

Selection of evaluation parameters

System evaluation has to be done in such a way that the precise performance of the
algorithms can be evaluated. For this research, we selected the following parameters to
evaluate all the 3 systems,

e Number of execution cycles (NEC), this is the number of times all or some of the
virtual machines of the cloud are executed to run all the given tasks. This parameter
defines the future remaining capacity of the cloud deployment once all the tasks
have completed execution.

e Time needed for execution (Te), is the total time needed by our algorithm to allocate
resources and execute tasks. This delay should be minimum, so that the overall
system response time is good.

e Task mean waiting time (Tmwt), is the average of the waiting time for all the tasks.
A low value of Tmwt indicates that the tasks are being executed with best possible
effort from the cloud system.



e We have formulated a new parameter named inverse Quality of service(iQoS), which
is a combination of 3 minimization parameters which are already defined in our
work. These parameters when combined will provide a fused minimization para-
meter, that decides the overall QoS of the system. Generally QoS needs to be
maximized, but this parameter is a combination of 3 parameters which need min-
imization, thus in order to get a good QoS, this parameter needs to be minimized,
thus we have named this parameter as iQQoS.

Development of the algorithms FEclipse IDE was used in order to develop these
algorithms. For the purpose of evaluation, we manually changed the number of virtual
machines in the simulation. For varying the number of tasks, each dataset was read
and sets of 1000, 2000, 5k,10k, 20k, 50k and 100k were made in order to evaluate the
performance. These tasks were given to the system for evaluation.

The in-depth analysis and algorithm development steps are described in the specific-
ations and implementation sections.

4 Design Specification

The main issue in resource scheduling is the ability of the algorithm to effectively allocate
resources to tasks, in such a way that the overall system should have a high QoS. QoS
may include the total cloud execution cycles, the algorithmic delay, the complexity of
the algorithm, etc. In order to model an effective QoS based task scheduler, we first
implemented the CERS algorithm. The flow diagram of the existing CERS algorithm is
shown in figure 2. As per the flow diagram the working of the system can be elaborated
using the following,

e The input task set is given to the task scheduling system, and the VM parameters
are setup. The task parameters include task length, number of tasks, bandwidth
needed by the task and RAM needed by the task. While the VM parameters include
Mips, RAM, Bandwidth, etc. More details about this are mentioned in the next
section.

e Based on the VM and task parameters, the value of ‘q’, which is the cost per service
rate is evaluated.

e The cost per service rate is a ratio of the task cost to the execution rate of the
virtual machine. We need a lower value of the ‘q’ factor, because we need to assign
tasks to machines that have faster execution rate.

qg= (T % Ny)/(VMygps * VMgram) (1)

where,
T is the length of the task
N; is the number of sub-tasks in that particular task
VMyps is the MIPS rating of the VM
VMgawmis the RAM memory of the VM

e Based on these ‘q’ values, a ‘QQ" array is created. The ‘Q’ array is created on a per
VM per task basis, and must be sorted in ascending order to get the best values of
task to VM mapping.



Q) = sorted(q ) (2)

where,
qij is the q value for the task when executed on VM

e Once this mapping is done, and new tasks are incoming, then update the ‘Q’ vector
and re-sort the array.

e If there are no more tasks, then stop the scheduler process and go-to first step, else
check if the updated ‘Q’ is empty.

o [f the updated ‘Q’ is empty, then schedule the VMs as per the previously sorted
‘Q7 values.

e If the updated ‘Q’ is not empty, then mark the arrival rates of the tasks, and
schedule faster arriving tasks to faster. operating VMs, and slower arriving tasks
to slower operating VMs.

e Evaluate the inverse cost ratio of the VMs for the remaining tasks, and schedule
them to the VMs on-demand, as per their ‘q’ values.

]cr = (3)

where,
I.; is the inverse cost ratio of the VM to the task
Cym is the capacity of the VM
T, is the task length, or the task cost

Input the task .
set, and VM Sort thg Q values in

ascending order
parameters

o

N
Evaluate cost per Update the queue
service rate 'q', and status and evaluate the
create an array 'Q' value of 'Q'

N

Schedule the VMs Stop the
as per Q Values processing

and execute the and execute
tasks tasks

Mark the arrival rate Find the inverse
of the tasks and cost ratios of the
schedule the VMs VM and schedule

accordingly them on-demand

J

Figure 2: The flow diagram of the CERS algorithm



Based on these steps shown in Fig 3, the tasks are executed on the VMs. But the given
algorithm doesn’t take into consideration the response time of the tasks. The response
time is basically the difference between the incoming time and the outgoing time for the
task. The response time should be as minimum as possible, which showcases that the
scheduling system is efficient enough to execute tasks which are time-bound. Therefore,
we introduced a simple sorting step, which is added just before the task execution begins.
This sorting step will sort all the tasks w.r.t. their task length and execution delays.
Due to the sorting process, the tasks with minimum delay will be executed first, thereby
virtual machines having higher capacity will be able to execute these tasks quickly. This
process will reduce the mean task waiting time, thereby improving the overall response
time of the system. The flow diagram for the modified system can be seen in figure 3.

Input the task
set, and VM
parameters

Sort the Q values in
ascending order

O O

status and evaluate the
value of 'Q'

service rate 'q', and
create an array 'Q'

Evaluate cost per [Update the queue

4]

TS = Task Sorter

Schedule the VMs Stop the
as per Q Values processing

and execute the and execute
tasks TS tasks TS

Mark the arrival rate Find the inverse
of the tasks and cost ratios of the
schedule the VMs VMs and schedule

accordingly g them on-demand

J

Figure 3: Flow diagram of the modified system

In the figure 3, the TS block is responsible for sorting the tasks in ascending order of
execution delay. We have used quick sort and insertion sort methods in order to evaluate
the execution delay of the algorithm, details about these evaluations can be found in
the evaluation section of this report. The algorithmic implementation of the system is
done using Eclipse IDE and cloudsim framework. The details of this implementation are
mentioned in the next section.

5 Implementation

In order to implement the original and proposed CERS algorithm the following tools were
used,

1. Eclipse IDE, used for Java based codebase development.
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2.

Cloudsim, used for simulation of cloud-like environment on local machine.

Eclipse is used for general purpose Java development. Our Eclipse project is named
as ‘CERS’ and consists of the following classes,

e Task class, which has the following members,

1.

taskld — It is the ID of the task as read from the dataset.

. numTasks — Represents the number of sub-tasks present in this task.
. taskLength — It is the length of each sub-task.
. taskBW — Gives the bandwidth needed to execute the task on a VM.

. taskRAM — Represents the RAM memory needed to execute the task.

compareTo() method — This method is used to sort the tasks using quick sort
technique.

MyTaskList class, which contains the list of tasks for insertion sorting. It has the
following members,

. insertionSort() method — Used to perform insertion sort on the list of tasks passed

through the class.

CERS?2 class, this class has the main routines of the project for the existing CERS
system. These main routines include,

. Reading the tasks from the dataset, and putting them into lists.

. Initializing the Virtual machines with the following parameters,

- MIPS rating, is the capacity of the machine in terms of millions of
instructions executed per second.

- CPUs, indicates the number of processing units the VM possesses.

- RAM, amount of memory available with the Virtual Machine.

- BW, amount of bandwidth present with the Virtual Machine.

- Size, represents hard disk size of the Virtual Machine.
Executing the CERS algorithm as per the flow diagram given in figure 2.

Evaluation of results, and putting them into an output file for future checking.

CERS _ResponseTimeMinimization class, implements the CERS algorithm with
task sorting. It implements the CERS algorithm as given in the figure 3 of this text.
It consists of the following elements,

. Initializes the tasks and assigns them into lists.

11



4.
D.

. Initializing the Virtual machines with the following parameters,

- MIPS rating,is the capacity of the machine in terms of millions of instructions
executed per second.

- CPUs, indicates the number of processing units the VM possesses.
- RAM, amount of memory available in the Virtual Machine.

- BW, amount of bandwidth present in the Virtual Machine.

- Size, represents the hard disk size of the Virtual Machine.

Sorts the tasks using quick sort (internal Java method) before execution.
Executes the tasks using the CERS algorithm as mentioned in figure 3.

Evaluation of results, and putting them into an output file for future checking.

CERS _ResponseTimeMinimizationInsert class, implements the CERS algorithm
with insertion sorting based task sorting. It implements the CERS algorithm as
given in the figure 3 of this report. It consists of the following elements,

. Initializes the tasks and assigns them into lists.

Initializing the Virtual machines with the following parameters,

- MIPS rating, which is the capacity of the machine in terms of millions of instruc-
tions executed per second.

- CPUs,indicates the number of processing units the VM possesses.
- RAM, amount of memory available in the Virtual Machine.

- BW, amount of bandwidth present in the Virtual Machine.

- Size, represents the hard disk size of the Virtual Machine.

Sorts the tasks using the MyTaskList class, before execution.
Executes the tasks using the CERS algorithm as mentioned in figure 3.

Evaluation of results, and putting them into an output file for future checking.

Cloudsim is a general-purpose cloud simulator which is compatible with Java. Being
open source, it gives researchers the ability to extend and modify its capabilities as per
requirement (Calheiros et al. (2011)). In our work, we have used the following classes from
the cloudsim framework,

Cloudlet, this class initializes a cloudlet in the cloudsim framework.

CloudletSchedulerTimeShared, scheduling of the cloudlets is done with the
help of this class so that they can work in tandem to execute tasks.

Datacenter, is used to create and manage cloud Data Centres.
DatacenterBroker, is used to broker between the cloudlets and the data centre.

DatacenterCharacteristics, it defines the properties and rules for the data centre.

12



6

Host, this class defines a Host machine.
Log, used to perform logging of events in the simulator.
Pe, is the basic processing element class in cloudsim.

Storage, this class provides different kind of storage configurations for the virtual
machine which we are using.

UtilizationModel, defines a sample cloud utilization model for the simulated cloud
environment.

UtilizationModelFull, this is an extension to the UtilizationModel class and helps
in defining rules for the utilization model for the cloud.

Vm, the basic class for defining and using Virtual machines.
VmAllocationPolicySimple, used to allocate VMs to the cloudlets.

VmSchedulerTimeShared, used to time schedule the VMs as per the defined
scheduling policy.

CloudSim, basic cloudsim initialization class.

BwProvisionerSimple, used to provision the bandwidth between the virtual ma-
chines.

PeProvisionerSimple, used to provision the processing elements between the vir-
tual machines.

RamProvisionerSimple, this class helps to provision the RAM memory between
the VMs.

Evaluation

All these classes are required for initialization and working of the cloudsim environment
with our proposed model. Once these classes are defined, and the algorithm is performing
task allocations properly, then the following metrics are used in order to evaluate the
algorithm’s efficiency,

Number of execution cycles (NEC), this is the number of times all or some of the
virtual machines of the cloud are executed to run all the given tasks.

Time needed for execution (Te), is the total time needed by our algorithm to allocate
resources and execute tasks.

Task mean waiting time (Tmwt), is the average of the waiting time for all the tasks.

Inverse Quality of Service (1QoS), combination of 3 minimization parameters which
helps in deciding the overall Qos of the system.

Based on these metrics, we varied the number of virtual machines, the number of
tasks and the configuration of the virtual machines in order to evaluate the performance
of greedy algorithm, CERS algorithm and CERS algorithm with sorting. The following
use business case scenarios were considered while evaluation.
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6.1 Case Study 1 : Optimum cloud running cycles for a given
virtual machine and task set

In this scenario we are observing the effect of varying the number of VMs and the number
of tasks on the cloud running cycles. This will help businesses to evaluate the best
configuration of VMs for a given task set.

The results table(Table 1) for this evaluation is shown in the appendix. And from
those results we can observe that the overall execution cycles for CERS are reduced by
more than half as compared to the greedy algorithm due to the cost effectiveness of the
system. These values can be visualized using the following graph(Fig 4) for 10 VMs.

NEC for 10 VMs
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Figure 4: NEC for 10 VMs

Similar observations are done as VMs are increased. The CEC cycles follow a default
linear trend as the number of VMs are increased. The trend of these values can be
observed from the mean bar chart(Fig 5), using the following illustration,

Mean Number of Execution Cycles

NEC (CERS with sorting) _

NEC (CERS)

Algorithms compared

0 50 100 150 200 250 300 350 400
Execution cycles

Figure 5: Mean execution cycles

As we can observe from Fig 5, the mean execution cycles are reduced by more than
50 percent when compared to the greedy algorithm.
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6.2 Case Study 2 : Effect of task execution delay by changing
virtual machines and task set

In this scenario we are observing the effect of varying the number of VMs and the number
of tasks on the total execution delay. This will help businesses to evaluate the fastest
configuration of VMs for a given task set. But instead of the Greedy algorithm, we
have chose to compare CERS with quick sort and insertion sort to check which sorting
technique is more efficient in this study.

The results table(Table 2)for this experiment is shown in the appendix. The results
calculated in milliseconds(ms) show that the overall execution delay is reduced with the
CERS algorithm, but due to insertion sorting the overall delay increases by more than
90 percent, and thus quick sorting is preferred than insertion sorting. The same results
can be observed using the following graph(Fig 6),
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Figure 6: Comparison of delay values

Similar trend is followed as the number of VMs are increased, therefore we plotted a
bar chart as shown in Fig 7 for the mean Te value across all VMs, thereby showcasing that
the performance of CERS with quick sort is the most optimum out of all the developed
algorithms.
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Figure 7: Comparison of average Te values
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6.3 Case Study 3: : Effect of task mean waiting delay by chan-
ging virtual machines and task set

In this case study, we are observing the effect of varying the number of VMs and the
number of tasks on the mean waiting delay of tasks. This will help businesses to evaluate
the most responsive configuration of VMs for a given task set.

The results table (Table 3) is attached in the Appendix. From that table, we can
observe that the Tmwt values are highly optimized for the case of CERS with sorting
because the tasks with shorter duration are executed faster, thereby improving the overall
response time of the algorithm. The following graph (Fig 8), can be used to indicate the
results,

Tmwt for 10 VMs
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Figure 8: Comparison of Tmwt values

Similar comparison is made for the average Tmwt values, and the following results
were evaluated,

Average Tmwt values
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Figure 9: Comparison of average Tmwt values

From the graph as shown in Fig 9, we can observe that the Tmwt values have been
improved by more than 30 percent when compared with CERS and Greedy algorithm.
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6.4 Case Study 4 : Effect of changing virtual machines and task
set on overall user side inverse QoS

We evaluated an inverse QoS parameter, by combining the values of NEC, Te and Tmwt.
The formula for this inverse QoS is defined as under,

B NEC L Te . Tmuwt
~ Max(NEC) = Max(Te)  Maz(Tmwt)

The inverse QoS should be as minimum as possible, which will make sure that the given
algorithm is evaluated for best NEC, best Te and best Tmwt values. For obtaining QoS
value we can take the inverse of the inverse QoS. That value will need to be maximized.
For the sake of simplicity, we are taking inverse QoS as the parameter for evaluation of
this work. Using the given formula, we obtained the relevant values for the inverse-QoS,
whose table (Table 4) is shown in the Appendix.

We visualized these values for 10 VMs, and observed that the system followed the
same trend as the number of VMs are increased. A graph is plotted to visualise the
same.
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Figure 10: iQoS comparison (lower the better)

Fig 10 shows the graph where we can observe that the iQoS for CERS with sorting is
around 10 percent better than the one without sorting. These results help us in identifying
that the CERS algorithm can provide good overall QoS with task sorting. The QoS
difference increases as the number of tasks are increased, thereby concluding that as the
number of tasks increase, the performance of the proposed CERS algorithm with quick
sort increases linearly w.r.t. the QoS performance of the CERS without sorting.

6.5 Discussion
The reason for selecting the given parameters for evaluation is cited as follows,

e Number of execution cycles decides the cost required by the virtual machine config-
uration to execute the given set of tasks on it. This value requires a minimization
optimization, and thus should be as low as possible. From our observations, the
number of execution cycles are reduced in CERS when compared with greedy al-
gorithm. Moreover, response time aware CERS further reduces these cycles by
executing smaller tasks faster.
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e Time needed for execution is basically the delay needed for running the algorithm,
and for task mapping. This time must be as low as possible. CERS and response
time aware CERS have similar delays, while greedy algorithm is quicker than the
two. This metric can define the performance of the algorithm when it is clubbed
with some other parameter. Because, it is ok to compromise a little on the delay,
but the overall system performance must be improved at the same time.

e Task mean waiting time is a user-experience parameter. We have tried to minimize
this value via task size sorting, and observed that the mean waiting time reduces
drastically. This waiting time decides the speed of the cloud deployment, and
thereby the user retention capability of the cloud.

e As described iQoS in the methodology, we have defined a new parameter named
iQoS. This parameter must be minimized in order to get better quality of scheduling.
For the purpose of evaluation, we have first evaluated the maximum values of all the
3 components in iQoS, and then used the instantaneous values of these components
individually to obtain the iQoS value. Our proposed CERS with quick sort is able
to achieve around 20 percent improvement in terms of iQoS, which indicates a 20
percent improvement in the overall scheduling quality.

7 Conclusion and Future Work

Our research was mainly based on checking the performance of resource scheduling via
modifications in the existing CERS algorithm. In order to perform that task, we had
integrated CERS with a response time minimization technique. Using the proposed
technique of quick sort on the tasks, the response time of the system reduces, thereby
improving the overall responsiveness of the algorithm. Based on the results, we can
observe that the traditional CERS algorithm has longer waiting delays as compared to
the sorting based CERS, the delay is reduced by 10 percent. The Te of the insertion sort
is improved by 20 percent when compared to quick sorting technique. Also, the Te values
are found to be lower for CERS than for the greedy algorithm. Moreover, the mean
task waiting time is also reduced by 15 percent when compared to the original CERS
algorithm without sorting.

As a future work, we can incorporate machine learning and artificial intelligence into
the resource allocation process. These algorithms are self-learning and are able to improve
the QoS of any system under test. Researchers can explore the complexity of these
algorithms before implementing them for the resource schedulers.
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A Appendix

No of VMs | No of Tasks | NEC (Greedy) | NEC (CERS) | NEC (CERS with sorting)
10 1000 16 8 8
10 2000 34 16 15
10 5000 107 47 45
10 10000 234 111 103
10 20000 478 226 210
10 50000 1196 524 489
10 100000 2400 1044 974
20 1000 8 4 4
20 2000 17 8 8
20 5000 52 23 23
20 10000 117 B} 54
20 20000 239 113 111
20 50000 598 262 258
20 100000 1200 022 014
50 1000 3 1 1
50 2000 6 3 3
50 5000 21 9 9
50 10000 46 22 22
50 20000 95 45 45
50 50000 239 104 106
50 100000 480 208 212

Table 1: Comparison of NEC values
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No of VMs | No of Tasks | Te(CERS) ms | Te(CERS with g.sort)ms | Te(CERS with i.sort)ms
10 1000 96 110 94
10 2000 109 98 109
10 5000 150 173 188
10 10000 204 310 501
10 20000 498 515 1156
10 50000 1034 1230 2674
10 100000 2186 2250 23056
20 1000 121 84 83
20 2000 95 99 113
20 5000 134 165 208
20 10000 200 266 376
20 20000 449 510 1219
20 50000 1176 1206 0645
20 100000 2142 2134 20827
50 1000 98 90 78
50 2000 97 104 125
50 5000 138 148 218
50 10000 322 260 495
50 20000 445 492 1246
50 50000 1090 1037 9695
50 100000 1961 2175 21108

Table 2: Comparison of Te values in ms ( Sorting Algorithms are compared)
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No of VMs | No of Tasks | Tmwt(Greedy)ms | Tmwt(CERS)ms | Tmwt(CERS with sorting)ms
10 1000 336 336 44
10 2000 585 585 91
10 5000 2014 2014 225
10 10000 4250 4250 454
10 20000 8505 8505 915
10 50000 18422 18422 2309
10 100000 36570 36570 4651
20 1000 168 168 22
20 2000 292 292 45
20 5000 1007 1007 112
20 10000 2125 2125 227
20 20000 4252 4252 457
20 50000 9211 9211 1154
20 100000 18285 18285 2325
50 1000 67 67 8
50 2000 117 117 128
50 5000 402 402 45
50 10000 850 850 90
50 20000 1701 1701 183
50 50000 3684 3684 461
50 100000 7314 7314 930

Table 3: Comparison of Tmwt values in ms
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Number of VMs

Number of Tasks

iQoS (CERS)

iQoS(CERS with task sorting)

10 1000 0.06 0.06
10 2000 0.08 0.06
10 5000 0.17 0.13
10 10000 0.31 0.25
10 20000 0.67 0.46
10 20000 1.47 1.08
10 100000 297 2.06
20 1000 0.06 0.04
20 2000 0.06 0.05
20 5000 0.11 0.10
20 10000 0.20 0.18
10 20000 0.42 0.35
20 50000 1.03 0.81
20 100000 1.95 1.50
20 1000 0.05 0.04
20 2000 0.05 0.05
20 5000 0.08 0.08
20 10000 0.19 0.14
20 20000 0.29 0.27
50 50000 0.68 0.58
20 100000 1.27 1.20

Table 4: iQoS comparison for CERS with and without task-sorting
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Configuration Manual

Adarsh Puttaswamy Gowda
x18146236

1 Introduction

This configuration manual consists of the process of running the CERS code, and the
general setup required in order to install the necessary tools needed for the project. The
structure of the manual is as follows,

Section Number | Section Name Purpose

2 System The basic information about software and hardware
configuration needed for the CERS project

3 Project The procedure of data-reading, data-preprocessing and
Development execution of the algorithm on the dataset

4 Description of There are 4 main classes in our project, we describe each
the codes of them in this section

2 System Configuration

2.1 Hardware

Processor: Any CPU from Intel(R) Core(TM) i3 to Core i9 is ok.

GPU: Any (not required for this work).

RAM: More than 4 GB (higher for larger datasets).

Storage: More than 100 GB (including Windows/Linux).

Operating system: Windows / Linux / Mac (Our development is in Java, thus
any OS is fine).

2.2 Software

Eclipse: Used to code the implementation in Java.

JDK 1.7: Java Development Kit for compiling and running the codes.
Cloudsim: It is a JAR file, which consists of the cloudsim framework.
Excel: To visualize and analyze the results.

3 Project Development

Our project development is done using the following steps,



Step Title Description
Number
1 Data The dataset is collected from
collection the Huji parallel workloads
website. It 13 available in raw
format, which is then pre-
processed
2 Data The raw format data is
collection converted into CSV format by
and  pre- manually opening the file,
processing removing headers, and adding
commas between each of the
values
For thizs purpose, a simple
Notepad or Wordpad with fast
replace functionality is needed,
because the number of tasks
are more than 100k We used
Programmers Notepad due to
its fast processing capabilities
3 Task Tasks are read using a custom-
reading made Task reader code, which
iz described in  the later
sections
4 Application Separate codez for Greedy
of Algorithm, CERS algorithm,
Algorithms and CERS algorithm with
different sorting mechanizms
are developed
3 Result Code snippets are added for
evaluation evaluation of all the 3 primary
parameters for the system
6 Result Excel tool with formula builder
analysis was used in order to perform
result analysis and graphing
7 Calculation Excel workbooks were
of 1Qo5 integrated in order to calculate
1005 for the system

Figure 1: Steps for Project Development




3.1 Data collection and Pre-processing

Data is collected from the following Huji Parallel workloads website,
http://www.cs.huji.ac.il/labs/parallel /workload /1 nasa_ipsc/index.html
The dataset consists of NASAs tasks loads for the Numerical Aerodynamic Simulation
(NAS) Systems Division. It has a SWF format, which looks as follows,

NASA-iPSC-1993-3.swf

; version: 2.2
Computer: Intel iPSC/86@
Installation: NASA Ames Research Center

Acknowledge: Bill Nitzberg
Information: http://www.nas.nasa.gov/
http://www.cs.huji.ac.il/labs/parallel/workload/

Conversion: Dror Feitelson (feit@cs.huji.ac.il) 29 Nov 2811

MaxJobs: 42264

MaxRecords: 42264

Preemption: No

UnixStartTime: 749458883

TimeZone: -2880@

TimeZoneString: US/Pacific

StartTime: Fri Oct @1 ©0:00:03 PDT 1993

EndTime: Fri Dec 31 23:03:45 PST 1993

MaxNodes: 128

MaxProcs: 128

Note: There is no information on wait times - the given submit
times are actually start times

Note: group 1 is normal users
group 2 is system personnel

Note: there is no data about batch queues

MaxQueues: 2

Queue: @ interactive

Queue: 1 batch

e s s s s e s s s s s s s s s s e s s Mr s s s s e e

1 e -1 1451 128 -1 -1 -1 -1 -1
2 1468 -1 3726 128 -1 -1 -1 -1 -1
3 5198 -1 1867 128 -1 -1 -1 -1 -1
4 6269 -1 18927 128 -1 -1 -1 -1 -1
5 17201 -1 2927 128 -1 -1 -1 -1 -1
6 20205 -1 3 1 -1 -1 -1 -1 -1

Figure 2: Dataset

" Information about the
" dataset, which 1s not useful
' from a code point of view

Actual
dataset 1n
-1 1 1 -1 1-1-1-1 non-CSV
-1 1 1 -1 1-1-1-1 f
1 1 1 -1 1-1-1-1 ormat
102 1 -1 1-1-1-1
-1 1 1 -1 1-1-1-1
-1 3 2 1 8 -1-1-1

raw format

We removed the dataset information, and replaced the spaces in the actual data with
commas. Once this is done, then we stored the dataset in nasa_set.csv file inside our
Eclipse project. The final dataset looks as follows,



nasa_set.csv

h,e,-1,1451,128,-1,-1,-1,-1,-1,-1,1,1,-1,1,-1,-1,-1
2,1460,-1,3726,128,-1,-1,-1,-1,-1,-1,1,1,-1,1,-1,-1,-1
3,5198,-1,1067,128,-1,-1,-1,-1,-1,-1,1,1,-1,1,-1,-1,-1
4,6269,-1,10927,128,-1,-1,-1,-1,-1,-1,2,1,-1,1,-1,-1,-1
s,17201,-1,2927,128,-1,-1,-1,-1,-1,-1,1,1,-1,1,-1,-1,-1
6,20205,-1,3,1,-1,-1,-1,-1,-1,-1,3,2,1,0,-1,-1,-1
7,20582,-1,3,1,-1,-1,-1,-1,-1,-1,3,2,1,0,-1,-1,-1
8,20654,-1,8,1,-1,-1,-1,-1,-1,-1,3,2,1,8,-1,-1,-1

s
s

»-1,-1,-1,
9,20996,-1,17,1,-1,-1,-1,-1,-1,-1
1e,21014,-1,2,1,-1,-1,-1,-1,-1,-1,3,2,1,0,-1,-1,
11,21043,-1,19,1,-1,-1,-1,-1,-1,-1,3,2,1,8,-1,-1,-1
12,21097,-1,20,1,-1,-1,-1,-1,-1,-1,3,2,1,8,-1,-1,-1
13,21142,-1,14,1,-1,-1,-1,-1,-1,-1,3,2,1,0,-1,-1,-1
14,21206,-1,2,1,-1,-1,-1,-1

-

»-1,-1,3,2,1,0,-1,-1,
15,21360,-1,14,1,-1,-1,-1,-1,-1,-1,3,2,1,8,-1,-1,-1
16,21405,-1,15,1,-1,-1,-1,-1,-1,-1,3,2,1,8,-1,-1,-1
17,21449,-1,16,1,-1,-1,-1,-1,-1,-1,3,2,1,8,-1,-1,-1
18,21496,-1,15,1,-1,-1,-1,-1,-1,-1,3,2,1,8,-1,-1,-1
19,21568,-1,2,1,-1,-1,-1,-1,-1,-1,3,2,1,0,-1,-1,-1
2e,21655,-1,5,1,-1,-1,-1,-1,-1,-1,3,2,1,0,-1,-1,-1
21,22008,-1,3,1,-1,-1,-1,-1,-1,-1,3,2,1,0,-1,-1,-1
22,22083,-1,2,1,-1,-1,-1,-1,-1,-1,3,2,1,0,-1,-1,-1
23,22418,-1,16,1,-1,-1,-1,-1,-1,-1,3,2,1,08,-1,-1,-1

P e B ]
24,22463,-1,3,1,-1,-1,-1,-1,-1,-1,3,2,1,0,-1,-1,-1
25,22468,-1,14,1,-1,-1,-1,-1,-1,-1,3,2,1,0,-1,-1,-1
26,22519,-1,14,1,-1,-1,-1,-1,-1,-1,3,2,1,9,-1,-1,-1

-1,-1,3,2,1,0,

»
29 22392, 1 13 1, 1,-1,-1,-1, 1, 1 3,
30,22846,-1,17,1,-1,-1,-1,-1,-1,-1, 3,

Figure 3: Final dataset for processing

This dataset as shown in Fig 3, is then used by our codes for reading and processing
the tasks.

3.2 Task Reading

We have developed a custom task reader code to read the task length and task times.
These values are stored inside an array which consists of customized Task objects. The
code for the task reader is given as follows,



J) CERS R TimeMinimizationjava &
try {
Arraylist<Task> arrTasks = new ArrayList<Task>();
BufferedReader br = new BufferedReader (new FileReader (DATASET FILE NAME));
String data;

int id = 0;

long totalTaskSize = 0;

//Read each line

while ((data = br.readLine()) != null) {

//Get the task details
string[] data_vals = data.split(",");

//Get the ta
//system.out
try {
int numTasks = Integer.parseInt(data_vals[2]);
int taskLength = Integer.parselnt(data_vals[3]);

//Bdd the task to the list

Task t = new Task();

t.taskId = id;

t.taskLength = taskLength;

t.numTasks = numTasks;

//Get the total task size

totalTaskSize = totalTaskSize + (taskLength * numTasks):

arrTasks.add(t);
id#+;
} cateh (Exception ex) {
}
}
System.out.println(id + " tasks fetched, total task size:" + totalTaskSize);

Figure 4: Task reading code

From the code shown in Fig 4, we can observe that the 2nd and 3rd indices are used
for reading the tasks, and these values are stored inside the arrTasks array.
The Task class can be seen from the following figure,

public class Task implements Comparable<Task>
{

int taskId:

int numTasks;

int taskLength;

int taskBW;

int taskRAM;

public int totalTaskSize() {
return numTasks * taskLength;

f

@override

public int compareTo (Task t) {

// Sort by lowest task size to highes
return (this.numTasks > t.numTasks ? -1 :
(this.numTasks == t.numTasks ? 0 : 1)):

Figure 5: The Task class

From the class(Fig 5) we can observe that the Task class can store various task
parameters as needed by our algorithm. Moreover, the compareTo() function performs
all the work of sorting the tasks.



4 Description of Codes
There are 5 classes required to run the codes, they are,

e Task — Already defined in section 3, it contains the information about tasks.

e GreedyAlgorithm, CERS2, CERS_ResponseTimeMinimization,
CERS _ResponseTimeMinimization — Classes that define each of the algorithms.

The Greedy algorithm is defined in the GreedyAlgorithm.java file, it has the following
code(Fig 6),

Vm[] availableCloudVMs = new Vm[NUMBER_OF VMs];
boolean[] processed = new boolean[NUMBER OF VMs];
for (int count=0;count<NUMBER OF VMs;count++) {

int mips = 250;

int cpus = 2;

int RAM = 512;

int bw = 1000;

int size = 1000;

Vm vm = new Vm(count, count, mips, cpus, RAM, bw, size, "VM:" + count, new CloudletSchedulerTimeShared()),
availableCloudVMs [count] = wvm;
processed[count] = false;

}

double currentMax = 0;

int currentMaxIndex = 0;
vmList = new ArrayList<Vm>();
Date dl = new Date();

for (int countl=0;countl<availableCloudVMs.length;countl++) {
for (int count2=0;count2<availableCloudVMs.length;count2++) {
if (processed[count2] == true)
continue;
double usageFactor = availableCloudVMs[count2].getMips() * availableCloudVMs[count2].getPesNumber();
if (usageFactor >= currentMax) {

currentMax = usageFactor;
currentMaxIndex = count2;

}

vmList.add (availableCloudVMs [currentMaxIndex]) ;
System.out.println("VM " + currentMaxIndex + " added");
currentMax = 0;

processed[currentMaxIndex] = true;

Figure 6: Code for the Greedy Algorithm

Similarly, the original CERS code is implemented in the CERS2.java file, which has
the following code syntax(Fig 7),



//Rpply the CERS a
double currentMax
int currentMaxIndex
vmList = new ArrayList<Vm>():
Date dl = new Date():

for (int countl=0;countl<availableCloudvMs.length;countl++) {
for (int count2=0;count2<availableCloudvMs. length; count2++) {
if (processed[count2] == true)
continue;

double gFactor = availableCloudVMs[count2].getMips() / LAMBDA;

if (gFactor >= currentMax) {
currentMax = gFactor;
currentMaxIndex = count2;

}

vmList.add (availableCloudvis [

Index]);

//Bdd VMs in Descending Q order, and later ma

ke it ascending by allocating VMs from the last VM to the first VM
System.out.printIn("VM " + currentMaxIndex + * added");

currentMax = 0;

processed[currentMaxIndex] = true:

/JWe neea TO Process in ASCENAlng Oraer, SO We U Y vaiue rirst
int vm_number = vmList.size()-1;

float vm_capacity_left = (float) (vmbist.get (vm_number).getMips() * vmlList.get(vm_number) .getPesNumber());

ount<arrTasks.size () ;jcount#+) {
Task t = arrTasks.get(count);
long tot_task = t.mumTasks * t.tasklength:
float task_length left = 0;
if (tot_task <= vm capacity_left) {
system.out.println("Task " + t.taskid + ", executing on Vm:" + vm_number);
vm_capacity left = vm_capacity left — tot_task:
} else {
task_length_left = tot_task - vm_capacity left;
if (vm_capacity_left > 0) {
System.out.println("Task " + t.taskId + ", executing on Vm:" + vm_number + " for " + wm_capacity_left + " cycles");
¥

vm_capacity_left =

if (count > (arrTasks.size()/2))
tmwt = tmwt + t.numTasks;

if (vm_capacity left
/ e vm

0 {

-1)

/1 he number of tasks which are res
int best_vm = 0;

, and try to allocate

m based on their resource cost
float best_vm_cost_ratio = (float) (valist.get(best_vm).getMips() * vmlist.get(best_vm).getPesNumber()) / task_length left;
for (int count2=0; count2<vmlist.size()scount2++) {
float curr_vm_cost_ratio = (float) (vmList.get(count?).getMips() * vmList.get(count2).getPesNumber()) / task_length_left;
if (curr_vm_cost_ratio > best_vm_cost_ratio) {
best_vm_cost_ratio = curf_vm cost_ratio;
best_vm = count2;

1
}
System.out.println("Executing remaining task on VM:" + best_vm);
| number = vmList.size()-1;

¥

team_effort++;

vm_capacity_left = (long) (vmList.get(vm_number).getMips() * vmlist.get (vm_number) .getPesNumber ());

Figure 7: Code for the CERS Algorithm



As we can observe the code works in 2 parts, it first evaluates the ‘q’ factor and then
using VM cost ratio to allocate the tasks. The code for VM initialization can be seen
from the following snippet (Fig 8),

Vn[] availableCloudvMs = new Vm[NUMBER_OF VMs]:
boolean[] processed = new boolean[NUMBER_OF _VMs];
for (int count=0;count<NUMBER_OF_VMs;count++) (

int mips = 250;

int cpus = 2;

int RAM = 512;

int bw = 1000;

int size = 1000;

Vm vm = new Vm(count, count, mips, cpus, RAM, bw, size, "VM:" + count, new CloudletSchedulerTimeShared());
availableCloudvMs [count] = wvm;
processed(count] = false;

Figure 8: Code for VM initialization

Once the algorithm is executed, then we use cloudsim to execute these tasks, the code
for cloudsim initialization and task execution can be described as follows(Fig 9),

int num_user = 1; // of ¢
Calendar calendar = Calendar.ge
boolean trace_flag = false; // n
int team_effort = 0;

ize t

CloudSim 1
it (num_user

Datacenter datacenter0 createDatacenter("Datacenter 0");
f/ Third step: Create Broker

DatacenterBroker broker = createBroker():

int brokerId = broker.getId():

broker.submitVmList (vmList)

// Fifth step: Create one Cloudlet
cloudletList new ArrayList<Cloudlet>();
// Cloudlet perties

int idl = 0;
long length = 10000007
long fileSize = 300;
long outputSize = 3007
UtilizationModel utilizationModel = new UtilizationModelFull():
try {
Cloudlet cloudlet = new Cloudlet(idl, length, 1, fileSize, outputSize, utilizationModel, utilizationModel, utilizationModel):
cloudlet.setUserld (brokerId) ;
cloudlet.setVmId(0):
cloudletList.add(cloudlet);
broker.submitCloudletList (cloudletlist);
Cloudsim. startSimulation();
System. in.read();
} eatch(Exception ex) {

b

Figure 9: The cloudsim execution codes



For CERS with task sorting, we need a sorter class that can sort the tasks in a
particular order.

The following snippets show the codes for the sorter classes.
Fig 10 depicts the code for the insertion sort technique.

public class MyTaskList extends ArrayList<Task> {
private static final long serialVersionUID = 1L;

public void insertionSort()
{
int i;
int pos;
Task keyelement;
for (i = 1; i< size();i++)
{
keyelement = get(i):
pos = i; //position of the k

while (pos > 0 && ((Comparable<Task>)get(pos-1)).compareTo ((Task)keyelement) >0)
{

Task elemPosMinusOne = get(pos-1);

set (pos, elemPosMinusCne);

pos = pos -1;
} //end v

set (pos, keyelement); //ir

Figure 10: Code for Insertion sort

Java has a collection classes which give in-built sorting methods and we have selected
the quick sort method. T following code (Fig 11) is used for quick sort,

public class MyTaskList extends ArrayList<Task> {
private static final long serialVersionUID = 1L;

public void insertionSort()
{
int i;
int pos;
Task keyelement;
for (i = 1; i< size():i++)
{
keyelement = get(i);
pos = i; //position of the key element
while (pos > 0 && ((Comparable<Task>)get(pos-1)).compareTo((Task)keyelement) >0)
{
Task elemPosMinusOne = get(pos-1);
set (pos, elemPosMinusOne);
pos = pos -1;
} //end while loop

set (pos, keyelement); //inser

Figure 11: Code for task sorting using quick sort

In the given code, the arrTasks array is defined inside the CERS code, while the
compareTo() function is defined inside the task class. Collections.sort will be sorting the
tasks based on the compareTo() function of the code.
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