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Malicious URL(s) classification

Rohan Dsouza
x18139540

Abstract

Malicious URLs are a serious threat to the realm of online security and are
one of the most fundamental ways to attack any online user. URL(s) can work as
a primary source for distribution of malware/viruses over the internet which has
led to an increasing urge for classification of URLs. To prevent users from being
attacked, various anti-virus companies use black listing methods and block such
URLs at a client end. However, there are millions of malicious URLs that are
generated everyday and adding all these URLs in a blacklisting database becomes
a monotonous method. Furthermore, it tends to lack newly generated URLs. To
solve such problems, machine learning has grabbed attention in recent years to find
out the hidden patterns from a dataset of URLs. Although it shows promise, it
seems to be inefficient when the size of data is extremely large. This leads to the
introduction of big data technologies where we apply machine learning algorithms
in a distributed environment. In this research, we have critically compared the
performance of traditional machine learning technologies with distributed modern
machine learning technologies using Spark MLlib. We have used Logistic regression
and Support Vector Machine algorithms in our model to determine the credibility
of a URL. Our results conclude that each technique’s performance is relative to the
size of the data it is working on.

1 Introduction

In the realm of advanced telecommunication technology, the internet has affected every
aspect of human lives which range from banking, communication, social media and much
more. This has lead to the increase in usage of the World Wide Web, which has come
with a downside of some malevolent aspects like fraudulent activities performed by online
scamsters. For a novice user, internet is a collection of websites that users open via a
Uniform Resource Locator (URL) using a client software viz. Browsers. Each website
has some human understandable domain name, which when clicked is translated into
a machine-readable IP address He et al. (2010). The two main parts of the URL are:
protocol identifier (identifies which protocol it is using) and resource name (it is the IP
address, indicating the location of the resource. Both identifiers and resource names are
separated by colon and two forward slashes.

The internet is loaded with malice activities which include creating websites that are
aiding criminal activities such as financial frauds, spam-advertisements to sell products,
malware etc. It is estimated that about one-third of the URLs present till date are in
one or other way malicious or compromised Sahoo et al. (2017). These activities can
be of a wider range where sometimes the hacker tricks the users into revealing their
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personal information, stealing valuable data of the individuals and companies, hacking
credit cards, denial of services attacks etc. There is a constant need to curb such activities
and propose new techniques that can handle such cybersecurity thefts. The inception of
all the above mentioned attacks are creation and spreading of malicious URLs over the
internet across novice internet users.

The proposed model can be applied at multiple levels where Machine learning can
be used on huge amount of data available. An ideal level of this application is aimed at
the Domain Registrar level or the Web hosting provider level. Any domain name that
has been purchased can be checked against our model in real time for analysis of the
Registrant’s purpose of registration of the domain name. Also, web hosting providers
can analyze logs for traffic coming in for Virtual hosts and map it with our model.
Furthermore, a Real-time Blackhole List (RBL) blacklist can be created wherein a thick
client like a browser when connected to a website, can detect the legitimacy of that
webpage.

The aim of creating these websites with URLs is to attract traffic and bring visitors
to visit their websites Ma et al. (2009a). These URLs which act as a doorway to provide
unauthorized access to the confidential data of the individuals and companies are termed
as malicious URLs Naveen et al. (2019). On the other hand, those websites which are not
harmful for the users are termed as benign. In order to prevent users from visiting these
malicious websites, the “Blacklisting service” approach was developed which informed
the users beforehand about the danger. A variety of techniques have been used for
blacklisting including heuristics, web crawlers and manually reporting, but the problem
is that it cannot cater to the much larger number of malicious websites. The reason
being, there are new websites every day which are never or properly evaluated for its
maliciousness. There is a constant need to address the issue of detecting and deleting
such malicious websites so that the safety of data can be ensured. In order to cater to
this problem, researchers have made use of machine learning techniques, because there
are billions of websites and extracting relevant URLs from such a large dataset is not an
easy task.

Machine learning is a technique that takes a large sum of data and transforms it into
something meaningful Kraska et al. (2013). It is a field of computational science which
helps in making reasoning and decision-making process based on provided patterns and
structures of data which is presented to it. It has the ability to handle data and provide the
desired results which are otherwise impossible to find with normal human comprehension.
It solves these problems by learning from its experience and identifies the hidden patterns
and underlying structures of the data thus making predictions. Machine learning works
in the following manner: It takes the number of URLs as an input of training set, and
performs computations based on statistical properties. The machine-learning algorithm
then runs on with its predictive function and classifies the URLs as either malicious or
benign. The only set of URLs is not sufficient to be represented to the machine learning
algorithms, some features need to be extracted as well. These features are sometimes
lexical features (consisting of text and words) and sometimes host-based (consisting of
some geographical location of the host). These features are then presented to the machine
learning algorithm so that it can train its model. Post feature extraction, there are some
classification algorithms (which in our case of research are logistic regression and support
vector machine) that are applied to the model to get our results.

According to Sahoo et al. (2017), real-world URL data is a form of big data. Due
to limited availability of the resource, traditional Machine Learning fails to handle large
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dataset. It is almost impossible to train a malicious URL detection model on all the
available URL data. No one till date has considered this to be a big data problem.
Evaluation time for traditional models may be too high to be practical due to size of
URL data. Traditional ML techniques means running ML on a single system with limited
memory and compute capacity . Hence, researchers used smaller data sets and/or not
the complete dataset. Sahoo et al. (2017) stated that design principles required for real-
world malicious URL classification models primarily are : Accuracy, Speed of Detection,
Scalability (by using Spark or Hadoop). Distributed machine learning techniques were
introduced because local work stations and desktops don’t have enough memory and
powerful hardware which can accommodate big data in itself. The solution for this
problem was proposed by making use of distributed machine learning where each node
(i.e. workstation) can perform functions on any subset of the data present on a distributed
set of machines Provost and Hennessy (1996). This research is aimed to work on big data
specifically in the context of big data of website URLs. A large data set consisting of
URLs will be exposed to the system (which is distributed among a number of systems)
and results will be recorded. In our research, we are using Apache Spark which is an
open-source distributed data processing engine specifically designed to handle large data
sets and machine learning tasks Spark 101: What Is It, What It Does, and Why It
Matters (2018). As the dataset grows in size, it provides more accurate results which are
more feasible as well. In order to train data for machine learning algorithm, spark has
proven itself as a best choice, because of its ability to store data in memory and iterative
learning, thus providing the best possible solution in minimum amount of time which
makes it most suitable for machine learning for larger datasets Zaharia et al. (2010).
Spark works with different libraries, one of which includes MLlib, a prominent library
which is specifically designed for distributed machine learning algorithms. MLlib provides
standard support for solving classical machine learning problems including regression,
classification, filtering, and clustering because of its iterative nature Meng et al. (2016).
MLlib is a scalable open-source library and it works with APIs like java and python.
Other APIs like MLI which is a component of MLBase are also present which works on
spark and it provides great support for distributed machine learning algorithms including
logistic regression and support vector machine.

This research will make use of the MLlib library in order to handle the issue of the
identification of malicious and benign URLs. Spark is well known for using a Resilient
Distributed Dataset (RDD) by representing a read-only pool of objects which are distrib-
uted across a number of machines. This RDD can be cached in memories of machines
that are distributed on different locations and can be reused and rebuilt for the purpose of
parallel operations and data loss respectively Zaharia et al. (2010). Another open-source
software that is used in this research is Hadoop, which will cater to the needs of using
distributed machine learning algorithms Patel et al. (2012).

This research is aimed at applying distributed machine learning techniques using
Spark Mllib which can exactly classify the URL of the websites as malicious or benign.
As the size of the dataset containing information about malicious and non-malicious URLs
is large, big data tools and frameworks will be used so that processing of data can be
done in an effective manner. We have used two algorithms of distributed machine learning
which include Support vector machine (SVM) and Logistic Regression(LR) to determine
the accuracy and execution time. The LR algorithm is used when the problem domain is
a discrete set of data and when there is a need to address classification problem consisting
of Binary sets. It is important to note that accuracy and execution time are the most
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important factors which need to be calculated for these two algorithms. In this case, the
binary set of data is used to detect whether the specified URL is malicious or benign. Our
results concluded that Spark Mllib performed well and will continue to perform better
than traditional ML techniques when the size of the data is huge. However, when the
size of the data was not as big, traditional ML techniques performed better.

2 Related Work

As discussed in section 1, this research is aimed to apply distributed machine learning
techniques on large datasets. The large dataset which will be ingested to the machine
learning algorithms in this study will be URLs that are classified as malicious and be-
nign. Researchers have applied different machine learning techniques over the past and
contributed to making the identification of malicious and benign URLs easier of research
purpose. These techniques include both traditional as well as online machine learning
techniques. In this section, a thorough review of those studies will be conducted which
have implemented machine learning algorithms in order to identify malicious and benign
URLs.

Recent research has been done by Naveen et al. (2019) in which they have successfully
implemented the machine learning techniques which provide the ability to judge mali-
cious URLs based on the provided feature set after making use of classification methods.
According to them, traditional methods of identifying malicious URLs are not evolving
with the introduction of new URLs especially with the existence of the dark web. Their
approach took into account the syntactical nature of URL as well as semantic and lexical
interpretation of the nature of URLs which are changing dynamically. This classification
method has outperformed the already existing techniques for detecting malicious website
URLs. However, the dataset they were using had only 18 features which is not as much.

Ma et al. (2009a) has a lot of contribution in the field of detecting malicious and benign
URLs using machine learning techniques (i.e. both traditional and distributed). One of
the prominent works done by them used various classification models including support
vector machine, logistic regression and naive bayes. The lexical features of the URL
which were used include IP address properties, WHOIS properties, DNS and geographic
properties). For binary classification support vector machine was used and DNS labeling,
the logistic regression was used. The classifier which has been obtained as a result shows
an accuracy of 95–99%, by detecting a large number of malicious websites. Authors
have concluded that the result of this research shows that applying machine learning
techniques outperforms the traditional methods of identification of malicious URLs such
as blacklists and heuristics.

Ma et al. (2009b) explored online approaches for detecting malicious websites based
on lexical and host-based features. To classify the malicious websites, the URL reputa-
tion dataset has been used. They have claimed that online algorithms can be accurate as
batch processing techniques. They achieved the highest accuracy using the Confidence-
Weighted (CW) algorithm against the Support vector machine using different set config-
urations.

Ma et al. (2011) has shown extensive work done to solve the problem of the identi-
fication of malicious URLs. The approach is based on programmed classification of URL
by making use of statistical methods. This method has discovered the significant lexical
and host-based properties of URLs with malicious websites. The results were obtained
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by applying the online learning algorithms and it shows that online learning algorithms
learn more efficiently than the dataset using batch algorithms. They have developed a
machine-learning algorithm by taking data from real-time systems with labeled URLs.
The result of the algorithm has shown the accuracy of 99% as compared to traditional
techniques. Previously in another research done by Ma et al. (2009b) has studied the abil-
ity of online learning algorithms based on predictive models that have extracted hundreds
of features of suspicious URLs and then also analyze them.

While using online learning, another research is done by Blum et al. (2010). A real-
time URL extraction has been used in order to detect a phishing URL. Features have
been derived automatically from the URLs. A confidence weighted algorithm has been
used which is a linear classification method and results were recorded. The model has
accurately predicted the phishing URLs as weights were adjusted in the algorithm making
it different from other research. The model used by Blum et al. (2010) is based on the
prediction model used by Ma et al. (2011).

Vanhoenshoven et al. (2016) considered the detection of malicious URL as the binary
classification problem. Various well-known classifiers were studied in order to achiever
better prediction rates. Without using the advance feature selection technique they have
achieved higher accuracy using random forest followed algorithm by Multi layer per-
ceptron methods. In the result they also specified that classification algorithms achieves
higher accuracy when numerical features are used for training.

Kulkarni (2019) used the classification algorithms to classify the URLs as legitimate
site, suspicious site or phishing site. They performed this experiment with 1,353 real
world URLs. Over 90 of the fake websites were distinguishable from real ones by using
their classifiers. MATLAB scripts was written to implement the four classifiers which are
Naive Bayes, Support Vector Machine (SVM), decision tree and Neural Networks. The
lowest accuracy was achieved using neural network classifier.

A survey has been conducted by Sahoo et al. (2017) in which authors have extensively
investigated the whole process of malicious URL detection. This study provides the
principles on which the detection of malicious URL works. There are two techniques which
include heuristic approach of extraction and another one is applying machine learning
algorithms. A prediction model is built which consists of training data having URLs
which are malicious and benign. Two types of features are extracted including static
and dynamic. In static approach the information of web page was extracted without
executing the URL, so this was proved to be an effective approach.

Le et al. (2018) proposed an end to end deep learning framework using URLNet. To
learn the URL string, they applied convolution neural networks for both character and
words of the URL and jointly optimized the network.

A CatchPhish approach has been proposed by Rao et al. (2019) according to which
they have proposed a light weight approach to detect the phishing sites. The novelty of
this approach is that it checks the legitimacy of the URL even when the website has not
yet visited. It makes use of following dimensions including: complete URL of the website,
hostnames, those words which are phish-hunted, and Term Frequency-Inverse Document
Frequency (TF-IDF). Results show that by only making use of Term Frequency-Inverse
Document Frequency (TF-IDF), the accuracy of 93.25% has been achieved.

He et al. (2010) has used the following models in his research including logistic re-
gression, random forest, decision tree, and Markov models. Two types of features have
been extracted including textual and zone. The challenge reported by He et al. (2010) in
the classification of malicious and benign URL is twofold: the malicious URL should be
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identified without wasting resources and classification should be done before providing
the web page content knowledge. The classifier developed by them has shown better
results while capturing malicious URLs with a low false-positive rate. The accuracy was
not given much importance in this work as it was not their target.

A series of experiments have been done by Dong et al. (2017) by putting the URL
under the microscope. They have extracted the features of URL including host domain
name, user agent, URL path and URL parameters. Hashing and sorting methods are used
and URLs are classified into malware and clean traffic. Both supervised and unsupervised
machine learning methods have been applied. While applying supervised learning the new
data and labels were introduced and system relearned. In unsupervised learning, only
clustering was used. The authors have taken the approach of a semi-supervised clustering
approach with pruning. Results show that over the dataset of 950,000 URLs the detection
rate of malicious with benign was 84%.

Another contribution is made by Feroz and Mengel (2015) that has implemented a
hybrid approach that combines the machine learning approach of both classification and
clustering. First clustering is performed cluster IDs are collected. These IDs are used to
obtain high classifier efficiency for the purpose of generalizing. This paper has also made
use of Microsoft Reputation Services (MRS) for the purpose of categorizing URLs that
are malicious. The URLs have been ranked in this approach and results show that the
accuracy of 93-98% has been achieved after implementing the clustering and classification
techniques.

A new approach of machine learning has been used for detecting malicious URLs is by
Choi et al. (2011). The malicious URLs have been identified by their attack types and the
nature of the attack with which they attempt to launch. The data was collected from a
real-time website consisting of 42000 and 32000 benign and malicious URLs respectively.
The learning algorithms used by Choi et al. (2011) is a binary classification method and
the other one is a support vector machine algorithm. Both network and DNS features
were extracted. Support vector machine-assisted in the identification of malicious URLs
whereas other algorithms were used for attack type identification.

There is a number of ways in which malicious URLs are propagated across the systems
so that users can click on them. One way of propagating malicious URLs is via email. The
legitimate content is presented to the users with malicious URLs sometimes. The target of
sending such URLs via email is to steal the data of the users including names, passwords,
and details about financial records such as credit card numbers. Ranganayakulu and
Chellappan (2013) proposed a URL analyzer method that extracts the lexical as well as
host-based features from the emails. Almost 92% accuracy was achieved after applying
this method.

In order to cater to the needs of this research, which is handling big data, different
approaches have been discussed. As the volume of enterprises is growing at an exponential
rate, so is the need to store, process and analyzing this data is increasing for a number
of reasons. To process big data, parallel processing is required, along with distributed
storage of data as well Patel et al. (2012). A number of tools and techniques have been
introduced by the researchers which fulfill the need to process big data on distributed
systems. As our research uses Spark, another tool or framework that is required for
distributed processing of data is Hadoop. Hadoop has the ability to work on thousands
of computers working independently for the purpose of computation and data which
is available in petabytes. The filing system which will be used by this research is the
Hadoop Distributed File System (HDFS). Data on the HDFS is saved across hundreds
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and thousands of servers, which also provide a mean of working. The master and slave
architecture is supported by the Hadoop Distributed File System which makes it more
suitable for the distributed storage of data.

The problem of dealing with big data is that it is messy and very much diverse. In
order to run large scale SQL queries, distributed processing of data and most importantly
learning part of running the machine learning algorithm in needed and a special engine is
required to serve the purpose. This special engine used by this research is Spark. Spark
has the same working principle of other engines like MapReduce Zaharia et al. (2010),
but Spark runs with the libraries making it more efficient and easier. Assefi et al. (2017)
compared performance of Apache Spark MLlib and Weka distributed ML with multiple
Supervised and Unsupervised ML algorithms on multiple big-data datasets. However,
he did not compare the performance of Spark MLlib with any traditional ML technique.
Spark has gained popularity in the last decade because of a number of reasons including
the ability to use unified APIs, it efficiently syndicates the scalable processing units,
and most important streaming machine learning Zaharia et al. (2010). Because of the
high quality of features of Spark like it is fault-tolerant, supports high-level libraries, and
supports the number of applications, we decided to make use of it.
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3 Methodology

To gain further insights into the methodology of our thesis, we have broken it down
into various subsections. The primary goal of our research is to evaluate the performance
between our ML model which is in a distributed environment and the traditional machine
learning technologies. We shall do so by using several metrics mentioned below in order
to comprehend our results on different sizes of data. Figure 1 gives a holistic view of our
approach.

Figure 1: Methodology

3.1 Data Ingestion in HDFS

To primarily enable distributed machine learning, data should be placed across multiple
servers. To achieve that we are using Hadoop Distributed File System (HDFS) which is
an important component of the Hadoop ecosystem. HDFS is a file system where immense
amount of data can be stored with high availability. HDFS automatically distributes the
data across multiple servers in the form of blocks where the number of block depends
on the block size. One more reason to use the HDFS is its scalability and fault tolerant
mechanisms. The data from local system to HDFS can be ingested either with the help
of sqoop or the hadoop binary.

3.2 Spark MLlib

In order to process this humongous amount of data available in HDFS, spark engine
has been used. Spark performs in-memory computation for execution of queries. Fur-
thermore, spark is well known for its resilient distributed dataset (RDD). Transformation
and actions are the important steps in spark to work on RDD. Integration of various
libraries with spark, enables it to perform multiple operations on datasets in an effective
manner. Spark MLlib library enables us to apply the machine learning algorithms in a
distributed environment. MLlib contains high-quality algorithms that leverage iteration
and produce better results.

3.3 Model Training

Detecting malicious URL is a binary classification problem. Various supervised machine
learning algorithms can be applied in order to predict the results. We are using logistic
regression and support vector machine to classify the URL. All these algorithms will be
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used to train the model on dataset for both traditional as well as distributed machine
learning methods. In order to predict the results on unseen data, the test dataset will
be used which is important to evaluate the model performance. The dataset is randomly
split into training (60%) and test (40%) data each time we run our code. Our model
first trains on the training data with the features and its corresponding labels and then
predicts the label for the test data.

3.4 Model Evaluation

Various metrics can be used in order to evaluate the performance of our model based
on the labels it predicted. We will use the confusion matrix which involves True Posit-
ives (TP), True Negatives (TN), False Positives (FP) and False Negatives (FN) for our
evaluation. Some of the metrics which will be used for our evaluation are as follows:

3.4.1 Precision

Precision is the fraction of the urls that were predicted to be malicious that are actually
malicious. Precision can be thought of as a measure of a classifiers exactness. A low
precision can also indicate a large number of False Positives. Formula for precision is:

Precision = TP/(TP + FP )

3.4.2 Recall

Recall can be thought of as a measure of a classifiers completeness. A low recall indicates
many False Negatives. Formula for recall is:

Recall = TP/(TP + FN)

3.4.3 F1-score

F1 score conveys the balance between the precision and the recall. The formula for
calculating f1-score is:

F1score = 2 ∗ ((precision ∗ recall)/(precision + recall))

3.4.4 Accuracy

It is the number of correct predictions made divided by the total number of predictions
made, multiplied by 100 to get a percentage. The formula for calculating the accuracy
is:

Accuracy = (TP + TN)/(TP + FP + FN + TN)

3.5 Dataset Description

The publicly available URL dataset can be found at: http://archive.ics.uci.edu/
ml/datasets/URL+Reputation to decide whether the URL is malicious or benign. Sev-
eral features can be extracted from the dataset. In our dataset there are two kind of
features viz. Lexical Features and Host Based Features which are described in Figure 2.
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The dataset consist of about 2.4 million URLs (examples) and 3.2 million features. The
lexical features describes the lexical properties of URL such as the length of the URL,
number of dots. It also contains the bag of words features where the features will be
hostname, primary domain name, path token and so on. The Host based features con-
sist of the features as WHOIS information, IP prefix, connection speed and so on. The
Figure 2 show the description of each feature in detail.

Figure 2: Feature description of the Dataset. Source: Ma et al. (2009b)

4 Implementation

For our Thesis implementation, I am using our college’s in-house Private cloud setup
based on an opensource cloud platform named Openstack. We shall be using the Nova
service of the Openstack Cloud Platform along with the Cinder service for persistent
storage allotted to our Virtual Machine (VM). Our instance would be of the following
specifications:

• Instance Name: x18139540-Thesis

• Operating System: Ubuntu 18.04 LTS Bionic Beaver 64 bit

• Instance Flavour: m1.xlarge

• CPU: 8 VCPU’s

• RAM: 16 GiB

• Storage: 160 GiB

• Network: MSCCLOUD-net1

To get access to the VM, a Public Floating IP address from the public1 subnet has been
attached to the IP. Since the dataset is huge as mentioned above, it shall be ingested in
an opensource distributed file system named Hadoop Distributed File System by Apache
Hadoop. We shall be using a stable build of Apache Hadoop 2.9.2 for this implementation.
Post ingesting the huge dataset in HDFS, we are using Apache Spark 2.4.4 to apply
Machine Learning algorithms on it. We are using Jupyter notebooks as an IDE for
writing the code in Python 2. Since Jupyter notebooks run on port 8888 which is blocked
at the enterprise firewall, we have changed it to run on port 80.
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5 Results and Evaluation

In order to predict the URL as malicious or benign, we have implemented Logistic re-
gression and SVM using spark as well traditional machine learning methods. To evaluate
the performance of our model, various metrics have been used such as time, precision,
recall, f1-score and accuracy. Several experiments has been performed ranging from small
to large number of records to find as to when and where do traditional and our spark
model perform well. For a comparative analysis, our primary focus would be on time and
accuracy.

5.1 Experiment 1 / Results of Logistic Regression Using Tra-
ditional ML

In our first experiment we used traditional machine learning methods wherein we apply
logistic regression on a dataset ranging from small to large number of records. The result
with different number of records using various metrics have been shown in Table 1

Table 1: Results of Logistic Regression Using Traditional ML

Traditional ML (Logistic Regression)
No of Records Precision Recall F1-Score Accuracy Time(in

sec)
1000 96.45% 96.75% 96.27% 96.75% 0.103
10000 96.68% 96.65% 96.65% 96.65% 0.85
100000 95.86% 95.86% 95.86% 95.86% 2.81
1000000 96.21% 96.21% 96.21% 96.21% 87
1500000 95.97% 95.86% 95.87% 95.87% 134.5
2000000 95.96% 95.97% 95.96% 95.97% 212.77

The precision, recall, F1-score and accuracy in logistic regression using traditional
Machine learning approach lies between 95-96%. For small data size, logistic regression
with traditional machine learning approach calculates the results in milliseconds. In case
of large dataset (for 2 million number of records) the highest time taken by algorithm is
212.77 seconds with the accuracy of 95.96%.

5.2 Experiment 2 / Results of Logistic Regression Using Spark
MLlib

In this experiment, Logistic regression with Spark MLlib has been used. The time
taken to train the model is 11.04 seconds for 1000 number of records with the accuracy of
95.17%. The highest time consumed to train the model is 173.67 sec for 2 million number
of records.
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Table 2: Results of Logistic Regression Using Spark MLlib

Spark MLlib (Logistic Regression)
No of Records Precision Recall F1-Score Accuracy Time(in

sec)
1000 95.17% 93.87% 94.52% 96.15% 11.04
10000 94.91% 95.86% 95.38% 96.25% 15.64
100000 93.64% 94.16% 93.90% 95.70% 38.98
1000000 94.53% 94.40% 94.46% 96.10% 101
1500000 95.79% 94.07% 93.48% 93.77% 135.38
2000000 94.25% 93.40% 93.82% 95.93% 173.67

It has been observed that traditional machine learning works best, when the size of
data is small. The case where the dataset size increases upto 2million, it takes high
time to train and test the model when compared to spark. Traditional machine learning
required 212.77 sec to train and test the LR model whereas, Spark required only 173.67
sec. This time difference between these methods shows that traditional machine learning
fails when the size of the data is extremely large and spark outperformed in our case but
by a low margin.

5.3 Experiment 3 / Results of SVM Using Traditional ML

In this experiment Support Vector Machine algorithm is implemented using traditional
machine learning method for finding results, which are shown in Table 3

Table 3: Results of SVM Using Traditional ML

Traditional ML (SVM)
No of Records Precision Recall F1-Score Accuracy Time(in

sec)
1000 95.75% 96.22% 95.75% 95.80% 0.059
10000 95.45% 95.67% 95.45% 95.46% 1.67
100000 96.40% 96.41% 96.40% 96.40% 159.1
1000000 97.23% 97.23% 97.23% 97.23% 14453.29
1500000 97.26% 97.26% 97.26% 97.26% 33322.88
2000000 97.30% 97.30% 97.30% 97.30% 54941.55

The precision, recall, f1-score and accuracy are almost same for different number of
records. It has been observed that SVM takes least time when the size of data is small.
As the data size grows, the time taken increases exponentially. Table 3 indicates that,
SVM with traditional ML techniques achieves higher accuracy and predicts the output
in milliseconds for small number of records. For larger number of records, SVM takes a
significant amount of time.

5.4 Experiment 4 / Results of SVM Using Spark MLlib

Support Vector Machine (SVM) has been applied with the Spark MLlib. In case of
Spark, SVM performs the job in minimum time. However, in our experiments, SVM
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with spark MLlib showed less accuracy, precision, recall and f1-score when compared to
traditional approaches when we gradually increased the size of our dataset.

Table 4: Results of SVM Using Spark MLlib

Spark MLlib (SVM)
No of Records Precision Recall F1-Score Accuracy Time(in

sec)
1000 96.56% 91.19% 95.18% 95.39% 9.16
10000 95.46% 91.36% 98.64% 94.86% 11.9
100000 91.97% 82.72% 97.55% 89.53% 33.07
1000000 92.55% 84.16% 97.26% 90.24% 105.11
1500000 92.12% 82.82% 96.92% 89.32% 115.2
2000000 92.2% 82.57% 96.95% 89.19% 152.04

After analysing all the results it has been observed that, traditional machine learning
performs well when only a small amount of data is to be worked on. It fails when a large
amount of data is taken into consideration. In case of Spark MLlib, it takes more time
when trained for small amount of data. However, in today’s day and age when data is
generated from multiple sources and is huge, applying Machine learning using distributed
techniques with Spark would be a good idea as it would reduce training and testing time
significantly without hampering the accuracy of the model.

(a) Accuracy comparison for Logistic Regres-
sion

(b) Accuracy comparison for SVM

Figure 3: Graphical comparison of Accuracy v/s Number of rows for Spark MLlib and
Traditional ML techniques
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(a) Execution time comparison for Logistic Re-
gression

(b) Execution time comparison for SVM

Figure 4: Graphical comparison of Execution time v/s Number of rows for Spark MLlib
and Traditional ML techniques

Figure 3 and Figure 4 give a holistic view of the accuracy and the total execution
time taken by Spark MLlib and traditional ML techniques for both Logistic regression
and SVM. While in Logistic regression, we see that Spark performs better marginally
as the time difference is not as much, for SVM, spark outperforms traditional ML tech-
niques outrightly. In case of SVM, time taken by traditional ML techniques increases
exponentially as the number of records are increased subsequently.

6 Conclusion and Future Work

After experimenting with the URL reputation dataset, we were able to compare our
Distributed Machine learning model with the traditional Machine learning model using
Logistic Regression and SVM algorithms. We came to a conclusion that when the data
being worked on was relatively small, traditional machine learning algorithms were more
efficient and performed computation in significantly lesser time. This is caused by the
overhead caused by Spark and Java wherein a lot of complexity is wasted for small
computations. However, when we increased the size of the data being worked on gradually,
Spark was outperforming traditional machine learning techniques.

Due to lack of availability of nodes while performing the experiments, Spark was
installed in a standalone mode i.e the Master and the worker were installed on a single
node. However, in the future we plan to repeat this experiment with multiple nodes
and with Spark installed in a distributed environment where we see Spark outperforming
traditional ML techniques by a very high margin as the compute capacity would be much
more. To get into a detailed analysis, we would also perform experiments using various
ML algorithms viz. Naive Bayes, Random Forest etc. Furthermore, since our code was
written in Python 2, Python 3 support will be added as Python 2 has reached EOL on
1st January, 2020.
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Appendices : Configuration Manual

A Installation of Hadoop Distributed File System

(HDFS)

Post creation of Ubuntu 18.04 VM and getting access to it, kindly do the following
steps.

Note: Please login as root user or use sudo to perform below mentioned actions. This
will prevent any permission issues.

• Step 1: Install Java Run the following command: apt install openjdk-8-jdk

Figure 5: Installation of Java

Enter Y if asked for a confirmation prompt.

• Step 2: Make the following changes in /etc/sysctl.conf and then type the command:
sysctl -p to re-read the sysctl.conf file.

Figure 6: Changes in the Kernel Module
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• Step 3: Make changes in /etc/profile to add a global path for JAVA HOME variable

Figure 7: Defining JAVA HOME variable globally

• Step 4: Add user hduser and group hadoopgroup

Figure 8: Adding hduser and hadoopgroup

We shall be running HDFS using the user hduser as running it as root is not a best
practise. Furthermore, ssh keys have also been generated for this user.

• Step 5: Download Hadoop

Move the extracted hadoop directory to /usr/local so that everyone has access to
it. Furthermore, change the owner and group of the directory so that the hduser
has access to the files under that directory.

Figure 9: Downloading and Extracting Hadoop

• Step 6: Adding export variables for HDFS to run properly.
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Figure 10: Exporting hadoop variables globally

Add the mentioned variables in Figure 10 to hduser’s .bashrc file in his home dir-
ectory for proper functioning of HDFS.

• Step 7: Making changes to Hadoop’s configuration files.

All configuration files are stored under /usr/local/hadoop/etc/hadoop. We
are going to make changes to the following files: core-site.xml, hdfs-site.xml,
mapred-site.xml and yarn-site.xml
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Figure 11: Changes in Hadoop’s configuration files

• Step 8: Create the HDFS file system

Run the following command to create the HDFS File system.

cd /usr/local/hadoop/bin && ./hdfs namenode -format
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Figure 12: HDFS File system formatting

Furthermore, it is important to look for the Success message in the stdout pertaining
to the creation of the filesystem as see in Figure 12.

• Step 9: Start the HDFS and the Yarn service.

Figure 13: Starting services

Run the start-dfs.sh and the start-yarn.sh commands simultaneously as seen in
Figure 13. Confirm that the services have started by runnin the jps command. The
jps binary shows minimalistic information of all the Java processes running on the
OS. There should be 6 processes in total as output of the jps command for proper
functioning of HDFS.

• Step 10: Check proper function of HDFS by adding and removing files

Figure 14: Confirm the working of HDFS
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B Installation of Apache Spark

Post installation of HDFS, proceed with installation of HDFS. For this exercise as well,
perform the steps with either switching to the root user or using sudo.

• Step 1: Download Spark

Figure 15: Downloading Apache spark

Post downloading and extracting spark, change the owner and group recursively of
the spark directory as shown in Figure 15

• Step 2: Add SPARK HOME variable to hduser’s .bashrc file

Figure 16: Adding export variables to hduser’s .bashrc file

• Step 3: Start Master and slave service of Spark.

Figure 17: Start Apache Spark Master and Slave

THe HTTP services runs by default on port 8080. You can browser it either via a
thin or a thich client. The URL will be in the form of http://IP Address:8080 as
seen in Figure 17

• Step 4: Confirm if slave is added to the master.
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Figure 18: Confirmation of Slave connecting to Master

In Figure 18, we see that under the workers section, one of our workers have con-
nected to the Master server and is online.

• Step 5: Confirm if Spark shell is working

We can simply confirm if spark shell is working by simply running the spark-shell
binary which is under the /bin directory of $SPARK HOME directory. A simple
print command is run which prints a line to console output in Figure 22

Figure 19: Spark Shell

• Step 6: Install Jupyter notebook (Optional)

To install the Jupyter notebook and to configure it to run with python 2, run the
following command: apt install python-pip; pip install jupyter; python2 -m
pip install ipykernel; python2 -m ipykernel install –user

You can either run the code in Jupyter notebook or command line. To start the
jupyter notebook, simply type the following command in your terminal: jupyter
notebook
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Figure 20: Installation of Jupyter notebook

C Running experiments

• Running experiment for Spark

When a job is submitted to spark, it tends to log everything to the console output.
Hence it is ideal to redirect the output to a file. This can be done using the following
command: spark-submit spark lr.py > output

Figure 21: Submitting job to spark

• Running experiment for Traditional ML code

This code can either be run on the jupyter notebook or directly from the terminal
using the command: python traditional lr.py or ./traditional lr.py
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Figure 22: Running conventional Python code
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