
Dynamic Resources allocation using Priority
Aware scheduling in Kubernetes

MSc Research Project
MSc in Cloud computing

Shelar Prasad Lahu
Student ID: X18137342

School of Computing
National College of Ireland

Supervisor: Mohammad Iqbal

www.ncirl.ie

National College of Ireland
Project Submission Sheet

School of Computing

Student Name: Prasad Lahu Shelar
Student ID: X18137342
Programme: Msc in Cloud computing
Year: 2018-2019
Module: Research in Computing
Supervisor: Mohammad Iqbal
Submission Due Date: 12 Dec 2019
Project Title: Dynamic Resources allocation using Priority Aware scheduling

in Kubernetes
Word Count: 7086
Page Count: 40

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature:

Date: 11/12/2019

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). �
Attach a Moodle submission receipt of the online project submission, to
each project (including multiple copies).

�

You must ensure that you retain a HARD COPY of the project, both for
your own reference and in case a project is lost or mislaid. It is not sufficient to keep
a copy on computer.

�

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only
Signature:

Date:
Penalty Applied (if applicable):

Dynamic Resource Allocation using Priority Aware
algorithm in Kubernetes

Prasad Lahu shelar
X18137342

Abstract

In current IT infrastructure, Microservices based architecture provides the loosely
coupled services for the development, deployment of the application. In a mi-
croservice architecture container-based application runs on the cloud service pro-
vider to achieve business continuity. Hundreds of container-based applications are
deployed on a daily basis in the service provider. In order to manage the containers
and also to scale the application, there is a need for container orchestrator and cur-
rently the leading orchestrator tools in the market are Kubernetes, Docker swarm
and Apache Mesos. By default, Kubernetes schedule containers use the Bin-packing
algorithm. The scheduler allocates the resources as per the availability vs demand in
First fit first manner. In this research, we are trying to explore Application-aware
scheduling. The mechanism involves allocating the containers based on priority
with the custom python-based scheduler in Kubernetes architecture . Our results
show that priority aware scheduler can allocate the resources without affecting the
services as well as Kubernetes default scheduler.

1 Introduction
The cloud-native approach is a more desirable approach for deploying application in dis-
tribute environment. Virtualization plays a major role to deploy the application in cloud
infrastructure. Operating system virtualization is a more suitable technique used to de-
ploy a distributed application called as Micro servicesLarrucea et al. (2018). Small virtual
instances called containers that do not require a guest operating system on the virtualiz-
ation layer. This is the reason due to which container base application is widely used to
run microservices on a large scale. Google and Amazon-like cloud-native infrastructure
service providers use container technology to run a micro service-based application Alam
et al. (2018).

Docker1 and Linux2 containers are extensively used to deploy microservices. The
reason of popularity that it provides more tool and straight forward workflow to use
application. Container technology enables GPU computing and InfiniBand which helps to
build block for a High-performance computing environment. Containers provides identical
solution as virtual machine in multi tenant architecture. Sharing of the resources are the
major role to illustrate the virtual machine and container base deployment. In virtual
machine base deployment resources are shared based on Virtual machines and container

1https://docs.docker.com/get-started/
2https://www.redhat.com/en/topics/containers/whats-a-linux-container

1

base technology resource sharing is carried out by sharing Operating system. In high
performance computing container base application increased utilization rate as well as
have less transfer delay Li and Kanso (2015).

Currently, Rapid integration of container base application in IOT, web services en-
ables the need of effective organization and management of containers in large scale
clusterRamalho and Neto (2016). In container base technology docker has defacto stand-
ard to run microservices. Container orchestrator software required to manage the con-
tainer in large scale cluster. Kubernetes, Docker swarm and and apache Mesos are leading
open source container orchestrator software available for container provisioning, resource
allocation and configuration purpose. Effective container scheduling and resource optim-
ization is the necessity in cloud service provider Netto et al. (2017a).

Bin packing algorithm is used to place the pods in container orchestrator tools like
Kubernetes and Docker Swarm. Application-aware scheduling, autoscaling and reschedul-
ing and cost-effective scheduling are the main key area of research in container orches-
tration which was put forth by Rajkumar Bhuya Rodriguez and Buyya (2018).

1.1 Research objective

Application base scheduling approach is used to manage load in data center. Critically of
an application and bandwidth are the main factor on which application aware scheduling
can be used to allocate the resource or pod placement in container orchestration. Priority
aware scheduling and Network bandwidth aware algorithm is used in cloud environments
to reduce response time and increase resource optimization in container base application.
In this research we propose Priority aware and Network bandwidth algorithm in Software
define networking environment to allocate the resources in Virtual cluster using Container
orchestrator tool like Kubernetes. Hence the our research question -

Can dynamic resource allocation of kubernetes be improve the perform-
ance of system and Quality of service via priority aware algorithm ?

Priority aware algorithm places the POD according as per the predefined application
criticality and Network resources allocated for an application.

2 Related Work
This section we can have given brief information of the section a) Microservices imple-
mentation using containers b) container orchestration Software or platform c) Importance
of application aware scheduling.

2.1 Containers virtualization in Micro-services

Containerization or container base virtualization enables the isolation for an applica-
tion rather than hardware emulation. It allowed to the user for the creation of multiple
user spaces over the same operating system kernel level. Docker has the defacto stand-
ards in container virtualization because it facilitated the application for auto-creation,
deployment, and execution. Docker host is a lightweight host which requires the minimum
resources as compared to the actual virtual machine Naik (2017). As shown in Fig 1.
Each container has abstraction of libraries of an application for an executing in isolated
environment. This isolation layer can be achieved through the Linux features namespaces
and groups. Name spaces allowed the container for restricting resources allocated to it.

2

When new containers are initiated that allowed user to create the system calls which
helps to create abstraction from an existing namespace. Cgroups is used to identify the
resources. Docker supports the Linux features Cgroups and namespaces, but it has addi-
tional feature called Advance Multi-layered Unification system (AUFS) for management
of containers. It provides the capability to docker produce multiple container from the
single base image. Updation of image can be easily tracked in docker Jha et al. (2019).

Figure 1: Docker container architecture in microservices environment

2.2 Container Orchestration platform

Containers are formed by static images which are stateless in nature. Containers are
terminated when they are shut down in the system. Due to this nature some orchestrating
tool was required for optimizing and effective use of containers in large scale deployment.
Google used the containerization of application from last 10 years to run application over
internet. Kubernetes was developed by Borg to manage the containers in large scale
environment Schwarzkopf et al. (2013). Cloud native computing foundation improve the
Kubernetes features so it can be easily accepting in cloud service provider.

Creating standards in Kubernetes technology is the objective of this foundation. In
2014, Kubernetes technology has rapid development from open source communities such
as Red hat and VMware etc. Kubernetes enables the feature like self-healing capability
which can remove unwanted or unused containers from virtual cluster. Resources are
optimized due to self-healing capability. Scheduling in Kubernetes are categorized into
two different stages i.e. predicting and prioritize. Adequate resources are decided ac-
cording the ports and disk are used and containers are placed according to the fit and
specification of Containers. Adaptive scheduling approached are taken by Open source
community to improve performance of containers Netto et al. (2017b).

Docker swarm is the proprietary scheduling tool for Docker containers. It schedules the
containers according to the First in First out manner. Docker swarm allocate CPU cores
and memory resources according to different strategies like Spread strategy, Bin pack
strategy and Random strategy . Bin pack strategy deals with container according to

3

fitting mechanism. If container is fitted on the node then it has been placed to scheduled
node. Spread strategy can be carried out according the least no of containers in node.
Random strategy is used to allocate the CPU random manner. Docker swarm supports
the filtering mechanism which can allocate the container according to the container af-
finity and priority which has the significance role in Enterprise cloud services Cérin et al.
(2018).

Apache Mesos scheduler has the centralize scheduling mechanism which can be take
input from the frameworks, resource availability and policies defined for clusters. After
considering all this factor apache Mesos calculate the resources for all tasks. Apache
Mesos have complex scheduling mechanism which has negative impact on scalability and
resilience. It has abstraction called as Resource offer which implied that resource is
encapsulated with the number of resources offer to each framework. Apache Mesos sup-
ports task base scheduling with respect to host on which task is executed. Apache Mesos
provide the functionality like apache Hadoop, apache spark, with distributed cluster for
e.g. Dkron and Chronos. Hindman et al. (n.d.)

YARN is two level schedulers in which scheduler assign the job on the base of per job
bases. It sends the requests according to the resource masters. Resource master has
the role to check the task and assign the task to appropriate virtual machine. Applica-
tion masters have responsibility to allocate the services rather than scheduling. YARN
scheduler has the functionality to allocate resources at a time, but it allows to user for ac-
cessing the multiple API’s. Application level scheduling can be taken easily from YARN
scheduler due to availability of multi functionality of APIs.Rodriguez and Buyya (2019)
Kubernetes has the functionality to allow multiple APIs and have feasibility to work on
auto scale mode. Scale in and scale out features allow to users for deployment of services
in virtual cluster. It has multi containers features on which scheduler can schedule con-
tainers like Docker, Linux, rocket. Third party support-ability is the main reason due
to which Kubernetes is popular in open source community.Table 1 shows the comparison
between kuberntes scheduler with Docker swarm and Apache mesos.

The application of Kubernetes platform is used for the fog computing in network
service provider. Kubernetes has the capability to take decision on the current state of
the system . In network infrastructure ,number of nodes are increases rapidly . By using
Kubernetes platform Node connectivity and node affinity is achieved Santos et al. (2019).

2.3 Scheduling Mechanism with related work:-

Container orchestration system is based on the Google Borg system which is used to
deploy thousands of applications on the virtual cluster in Data center. It is based on
the task base scheduling with process level performance. It has the capability to provide
support in run time environment. Borg enable the user to provide design decision and
quantitative examination of operational experience Verma et al. (2015).

Scalability is the concern in container base scheduling. Resource allocation for on
demand requests raise by consumer can be achieve through the effective use of Resource
manager. Xu apply the game theoretic method to use of effective binding between physical
resources with container resource need. Xu et al. (2015)

Resource demand is varying according to cloud consumer to the consumer in cloud
infrastructure. Non-uniform distribution resources increase the complexity of the distri-

4

Table 1: Comparing schedulers of Kubernetes,Docker swarm, Apache mesos , YARN

Truyen et al. (2018)
Characteristics kubernetes

Scheduler
Docker
swarm
scheduler

Apache
mesos Sce-
hduler

YARN Sched-
uler

Container supportab-
ility

Docker,rkt ,
CRI , API im-
plemnetation ,
OCI-compliant
runtimes

Docker mesos con-
tainers and
Docker

Linux group
based , Docker

Application deploy-
ment model

workload suppor-
taility

Long time
job and
task base
scheduling

Schedules
per task per
time and
colocated
task

monolithic for
task scheduling
and bach process
scheduling

Scheduler architecture Distributed and
monolithic

Distributed
and mono-
lithic

two level but
offer base
schdeuling

two level but offer
base schdeuling

cluster Elasticity and
scalability

Elastic but
manual sup-
ports autoscaling
functionality

Elastic but
manual
supports
autoscaling
functionality

Elastic but
manual
supports
autoscaling
functionality

Elastic but
manual sup-
ports autoscaling
functionality

Supports Hypervisor
isolation

yes no no no

Port mapping and IP
per port features

Scheduler can not
map port with IP

Scheduler
can not map
port with IP

Port map-
ping with Ips
are supports

Does not sup-
ports Port map-
ping

Computer perfomance
isolation and Resource
Quota per user bases

Yes No Yes yes

bution of resources. For achieving, optimization of resources in a heterogeneous cloud
environment, Kawase proposes the ant colony algorithm with Docker swarm. Resources
distribution is depending upon the probability distribution function. Some group of con-
tainers, it allocated the resources according to the random manner and the rest of the
container allocation is based on the ant behavior Kaewkasi and Chuenmuneewong (2017).

Container automation and management have issues while implementation in large
scale environment. Container automation and management have issues while deployment
in a large-scale environment. Guerrero highlighted that Container automation proposed
the genetic algorithm . This algorithm helps in achieving effective system provisioning,
optimization, and failure detection.Apart from Resource allocation, cost reduction is a
major challenge in the cloud service provider. Brownout proposes that if microservices
are not running then some of the components need to be shut which can effectively save
resource consumption of an application. Brownout proposes the model which is respons-
ible for fine-grained control in containers. Several scheduling policies had been applied to
the containers. Docker swarm is used to implement this model which has functionality to
activate and deactivate the microservices Tao et al. (2017). For Dynamic resource alloc-
ation, Xuedong propose the node selection logic. In this node selection logy fuzzy logic

5

implemented for prediction of node where containers can be deployed. The objective of
this research was the optimum use of resource configuration and improves the perform-
ance of the cluster Xu et al. (2019).Kubernetes scheduling architecture is used in CNC
system which is advance processing system in manufacturing industry. By using sched-
uler strategy CNC various task are distributed across the kubernetes component Jin et al.
(2019).Weaver architecture is propose the SQL queries raised in the cluster. Monitoring
of this queries with the help of kubernetes propose by Lalit from Vmware.Suresh et al.
(2019)

Elastic provisioning of virtual machines for container deployment which has taken het-
erogeneous configuration into account. Optimization of QOS is the main concern of this
deployment. Elastic provisioning is illustrated with the help of linear programming model
Nardelli et al. (2017). In 2018, Rajkumar Bhuyya proposed priority aware scheduling al-
gorithm in Software defined networking to allocate the virtual machine in Data center.
This algorithm based on the placement of the application criticality which helps to in-
crease the QOS and resources optimization of the system . Closest proximity of virtual
machines is the main key aspect of experimental setup Son and Buyya (2018).

3 Methodology

3.1 Architecture Design

We have proposed the priority aware scheduling mechanism with using Kubernetes ex-
isting default scheduling mechanism. Architecture proposed to implement Priority aware
algorithm required one master with multiple slaves configuration. Kubernetes K8s scalar
platform described as shown in figure 2. Proposed architecture is divided into the dif-
ferent sections.Section 1 included a brief overview of the Kubernetes master component
whether section 2 has primarily focused on slave node design. Apart from master-slave ar-
chitecture, we have explained open source monitoring tools like Prometheus and Grafana.

Figure 2: Priority aware Scheduling mechanism with the Kubernetes Platform

6

Kubernetes Master3:-
In section 1, we are discussing about Kubernetes master configuration which has ma-

jor role to allocate the Pod in Kubernetes cluster and it is centralize unit through which
all components are monitored and allocated the task. Kubernetes master consist of API
server, Controller and Kubernetes default scheduler. For deployment of Kubernetes mas-
ter and slave we must allocate the dedicated virtual machines with IP reach ability.The
functions of components which are used in our deployment. Kubernetes master compon-
ent are etcd, default scheduler, API server and control managerChang et al. (2017)

• Etcd:– Etcd is used to store the stage of the system. Pod status and logs are
the stored in etcd system. After watching etcd state scheduler takes the action for
execution of Task.

• Default scheduler:Kubernetes default scheduler is used to allocate the pod with
worker node or slave. According to CPU and memory score Kubernetes allocate
the pods.

• Controller Manager: The controller manager has the responsibility to analyses
the components of the system. If the state of the system changes then the controller
manager forced to Kubernetes component for maintaining the desired state.

In Section 2 Besides of the Master node, Kubernetes has the slave nodes which can be
run other virtual machines. Pods and services are deployed on worker node. Kubelet and
POD are the component of Kubernetes worker node which is described as below.

• POD: - Pod is a basic atomic element in Kubernetes which has allocated one or
multiple containers. Each Pod must assign a significance IP address using the flan-
nel network. In our case we are using flannel network with IP pool of 40.168.0.0/16..

• Kubelet:- Kubelet is the node agent that is installed on each worker nodes. It has
the responsibility to monitor the POD specification through the masters and slaves.
Resource utilization, pod status, and node events are highlighted by Kubelet.it
exposes the information on port number 10255.

• Kubernetes namespaces: - Process isolation is important factor while deploy-
ment service. In kubernetes cluster,Name spaces has the responsibility to isolate
the pods or containers. Pods in same namespaces can be communicate to each
others.

• Replication controller: - Replication controlled is used to control number of
replicas of pod in kubernetes cluster, Minimum number of replicas we have set to
be 1.

Monitoring Module:- we are using the below three software for implementation and
analysis of nodes and pods statistics. This three modules are grafana , Prometheus and
Kubernetes dashboard services.

• Grafana4 is pluggable data source model which has the supportability of time
series database like Graphite and Prometheus and OpenTSBDB. It has monitoring
support with cloud service provider like Google and Amazon.

3https://kubernetes.io/docs/concepts/overview/components/
4https://grafana.com/

7

• Prometheus5 is open source monitoring system and having alter managing system.
It scraps and stores the time series data. It pulls information over http and target
discovery can be take place using service discovery and Static configuration.

• Kubernetes dashboard6 is used to identify the cluster as well as allocate the
resources and Pods creation and deletion. It is a web interface through which we
can modify and troubleshoot the containerized application. It also provides the logs
of the existing nodes like CPU, memory .

3.2 Priority aware Algorithm implementation using Kubernetes
orchestrator

In cloud service provides, Placement of container can be taking place according Bin
packing algorithm. Bin pack algorithm fits the application according to the resource
availability at nodes. This criteria of deployment of application may be unsuitable to
deploy the critical application. The bin pack algorithm first fits on the first bases. Pri-
ority Aware application state that we must consider the priority into account to deploy
the services. This algorithm proposed that if an application with the closest proximity
improve the user experience in SDN environment. In our research work, we implement
this priority aware algorithm to the placement of POD using the help of Kubernetes
default scheduling and policy base schedule Son and Buyya (2018). Application with the
highest priority needs to be scheduled first in the queue. Key highlights of this algorithm
are below.

• The algorithm states that the nodes which have the closest proximity can be pre-
ferred to the allocation of application to avoid network congestion. Closest prox-
imity can be defined using the states of the workers in the system.

• The highest priority of an application carrying pod should be the first scheduler
and create a group of scheduled pods with the priority according to group or policy.

• If we place the application with the same group, then we can assign it to the
same nodes. We must consider the current resource consumption or availability of
memory and CPU to allocate the Pod carrying application.

In Figure 3 represents the pseudo code of priority aware algorithm which shows the
application aware scheduling. Application running on container can assign the priority
and this priority is carried out through the sorting mechanisms.Queue group is created
to align the container on the basis of priority. If priority of application is high then
the containers needs to be place on the first come first bases.Nodes proximity are main
objective of Priority Aware scheduling.

5https://prometheus.io/docs/introduction/overview/
6https://kubernetes.io/docs/tasks/access-application-cluster/web-ui-dashboard/

8

Figure 3: Psuedo code for Priority Aware algorithm

4 Design Specification
In our experimental setup we are used the oracle virtual box 6.0 to create the virtual

machine with Ubuntu operating system 18.0.4. Master and slave configuration required
for Kubernetes this is achieved through the interconnection of Virtual machine. We are
created additional interface enp0s8 which is used for control message and API interaction
between master and slave.Kubernetes uses kubectl version v1.16.3 as command line
interface for checking ,modification and creation of pods, deployment, and services. we
are allocated 4GB RAM and minimum two virtual cpu allocated for each node in cluster.
Kubernetes required 2 CPU with 2GB RAM minimum for running POD and services.
For experimental setup design prospective the list of component with specification is
highlighted in Table 3.

Whenever virtual machines will be evoked it shows the error of localhost or port is
not defined. For resolving this error we have to off the partion using swappoff -a
command or we can do permanent in partion of linux library /etc/fstab. Proxy setting
of the ubutu machines need to be check. Kubernetes by default proxy works on the port

9

Table 2: System configuration for Kubernetes Cluster

Deployment essentials Description
Virtualization software for VM creation Oracle Virtual Box 6.0
Container orchestrator software Kubernetes 1.16.0
container software Docker 19.0.3
Application container Ngnix, Redis
operating system Ubuntu 18.04
Process configuration AMD ryzen 5 with 2.0 GHZ
No of vcpu reuired for master and slave 7 vcpu
RAM 16 GB minimum
Hardisk 1 TB HDD
Custom scheduler code language Python 2.7 used
Manifiest language for intercommunication YAML

number 8001.We have to evoke this proxy using command kubectl proxy –port=8001.Inter
pod communication can be form using flannel network. We have defined the ip pool
40.168.0.0/32 for flannel network as shown in figure 4.

Figure 4: Flannel Network for Pod communication

5 Implementation

5.1 Kubernetes Master and Slave Formation

Docker’s 19.03 version had been installed before running any command of the Kubernetes
cluster. we have to enable the docker version on both master and slave nodes. Kubernetes
master and slave formation can be achieved through installation of Kubernetes admin-
istrator package as kubeadm v1.16.3 in nodes. kubeadm has the responsibility to
consider all preflight check which consists of partitioning disabled or not, docker version
and enabled or not. It also creates the kubeadm join request which initiate the slave to
join master. As shown in figure 5, Kubectl get nodes command show the availability of
nodes in cluster and slave with there versions.

10

Figure 5: Master and slave configuration

5.2 Priority Aware Custom scheduler Implementation

For implementation of priority aware scheduling, we have to create the PAVA.py file.
Kubernetes default scheduler code is written in go language. We are trying to implement
the python base custom scheduler which can interact with Kubernetes API for getting
live statistics and perform the sort pod using priority bases. We have followed step by
step approach as shown in figure 6 to run redis and container application on kubernetes
platform.

Figure 6: Implementation of Priority aware algorithm in Kubernetes

Step 1:- Pods has been created using the pod.yaml files as shown in figure 7 on which
redis or ngnix containers are running.

Step 2:-We are created five yaml files. Pod 1 ,2 and 3 are defined with priority as high
medium and low whether Pod 4 and 5 are without priority field .As shown in Figure 7.
pod.Yaml , we are added the Scheduler name field as Priority aware (PAVA). This fields is
used to identifier for scheduling.If scheduler name is not defined then Kubernetes schedule
the pod using default scheduling mechanism.Virtual CPU is set 1 in redis application. In
request filed we have to set ram information for running application.

11

Figure 7: Pod.yaml and pod.class file configuration for deployment of redis application

Policy map functionality we have to defined in separate yaml file. This class. Yaml
files helps to mapping the priority with respective pods. There are 5 pods. Yaml file
for creation of pods and 3 policy map files for define the priority. We have to install
Kubernetes python libraries for intercommunication between python client to api server.
Pip install Kubernetes command is used for importing Kubernetes package in python. We
are using config, watch and client from Kubernetes library for implementation purpose.
In pod. Yaml we are adding the Scheduler name field as Priority aware PAVA. This
fields is used to identified the scheduler name. If scheduler name is not defined then
kubernetes default scheduler starts deploying pods on slaves.

Step 3 :- Policy map functionality we have to defined in separate yaml file. This class.
Yaml files helps to mapping the priority with respective pods. There are 5 pods. Yaml
file for creation of pods and 3 policy map files for define the priority. We have to install
Kubernetes python libraries for intercommunication between python client to api server.
Pip install Kubernetes command is used for importing Kubernetes package in python. We
are using config, watch and client library from Kubernetes library for implementation
purpose. We are uses V1 api version and pod as kind in yaml file. Config load kube
config is the main function of Kubernetes, which helps for running custom scheduler with
Kubernetes components.

Figure 8 denotes the state diagram of pod binding process,In this First step is pods
creation, which can be responsible to carry ngnix or Redis container for deployment of
services. kubectl command sends the request to Kubernetes api server at 192.168.56.101
to start the pods in yaml. This state is saved in storage element of Kubernetes that’s is
etcd. There are three states of pods which are pending, running and evicted. Pending
state denotes pods are not ready to deploy. Running state denotes pods are ready to run
the services. Running is the ideal state of the pod. Evicted state denotes that’s pods are
not running due to resource availability, API issue or else Medel et al. (2018).

12

Figure 8: State diagram of pod creation

Step 4 :- We are using sorting functionality in PAVA scheduler fields with priority value
100, 500 .1000 in pod1 and pod2 and pod3 respectively.The input from client.CoreAPi()
of kubernetes give brief information of the namespace ,metadata and scheduler name,
priority etc. On the basis of this information empty array of scheduling priority and
group pod is created .

Figure 9: Priority base sorting function

13

Step 5:- As shown in figure 9, PAVA scheduler uses zip function for combining group
name and group priority. This function help to stored the pods in the form of Queue
buffer group_pod. Sorting function generally use lowest to highest priority, so we have
to set reverse flag value as true in sorted dictionary variable.In the watch function,
watch method checked the readiness of the slaves.

step 6:- After sorting function and slave node readiness, Binding function is evoke to
bind slave with pods using target and Body parameter. Target significance to slave
information whether the body denotes the pod’s information which includes metadata,
Api version etc..

Step 7) Important parameter throughout this process is namespace. The namespace is
the unique process ID that can be used for binding function. We are setting the value of
namespace as “default”. There is an internal namespace called Kube-system which can
be used for the communication between a component of the system. We cannot use this
namespace for our scheduling and processing of the pods. V1 create binding function is
used for attachment of pods. Binding function is in python in development sometimes
its response does not attach to Kubernetes binding parameter. This is the reason which
causes that error comes from the system is Target not found. Alternative solution for
this problem is delete pods and create pods with scheduler name as default. we have to
disable SSL setting in kubernetes for binding of the pods in node.Below are the setting
needs to be add in library.

config = client. Configuration()
config. verify_ssl=False

Binding of the pod can be take place using v.client_name spaced_binding() func-
tion in which we have defined the body of the pods which includes the apiVersion field
as V1,metadata name as pod name. Target is defined whether we have to send our
pods .we can customized the pod by setting target value as slave name.. In target field
we have to defined kind value as node then only response of binding function given to
the API server.

Step 8:-We have calculated available CPU score and memory score and store using
function compute_ allocated_resources function.

step 9:-By using Kubernetes dashboard services, we are analysing the node statistics,
pods status and services deployed on the virtual cluster. CPU statistics and Network
traffic information is a more detail manner in Prometheus and Grafana. We are using node
exporter services for nodes stats and HTTP requests running on the node. Kubernetes
dashboard give brief information of pods status, phase and CPU, memory statistics. We
deployed . Prometheus version-2.13.1 Linux amd and Grafana 6.4.4 version are
deployed in the Kubernetes cluster for graphical representation of logs collected by node
exporter

.

6 Evaluation
Experimental setup To demonstrate the potential capabilities of priority aware schedul-
ing, we have performed experiments with the Kubernetes framework. In this experimental
setup, we have deployed the Redis application on the container and assign the priority

14

by applying the policy-map respective pods as described before in implementation. Eval-
uation can be carried out with a maximum number of 5 pods. The priority of pods is
defined as 1000,500 and 100 respectively. we uses grafana for Graphical representation
of CPU and memory statistics received from Prometheus server. We have performed 3
cases for evaluation priority aware algorithm as follow.

6.1 Case 1:- Pods without priority with kubernetes scheduler

In the first experiment, we have not assigned any priority to scheduled or nonscheduled
pods. Nodes’ choice is also random. When default scheduler creates pods using kubectl
command pods runs with the redis application.The status of pods as shown in figure 10.
In this scenario pods are deployed in random manner.

Figure 10: Pod status while default scheduling works

Figure 11: Grafana status of CPU performance

As shown in figure 11, we have observed that system CPU utilization is vary between
25 to 50 range when default scheduling works.After 5 minute of interval system become
stable at 39 percentage.we are concern on the CPU statistics of master as compared to
slave.

15

Figure 12: Kubernetes dashboard shows CPU performance

Figure 13: Netstat for default scheduler

Figure 13 showes that Netstat interface running on the masters. The graph represent
that CNI interface traffic. CNI interface is used for kubectl traffic. The receive traffic
from slaves towards master is 49kilobytes in default scheduling.

16

6.2 Case 2: Priority base scheduling with default kubernetes
scheduler

In second experiment we have configure pod 1,2 and 3 are 1000,500 and 100 respectively.
This experiments statistics are taken on the bases of Default scheduling to check whether
the changes in performance occurred or not. As shown in figure 14 , CPU performance is
vary between 25 to 50 range.In kubernetes dashboard showes the same 28 percent CPU
utilization.

Figure 14: Priority with default scheduler

When we apply the priority on the pods there is a rise in receiving traffic of Kubernetes
CNI interface as shown in figure 15. This rise in Kubernetes traffic has increased the CPU
spike in CPU/memory inputs as shown in the figure. CNI interface receiving traffic is
almost double after priority assign to pods. Overall CPU utilization for the master is the
same but on the slave, CPU utilization is increased due to the placement of pods.

Figure 15: Priority with default scheduler

17

6.3 Case 3 :- Priority aware scheduling with custom scheduler

In this experiment setup, We have set the priority of the pods pod1=1000, Pod2=500,
Pod3=100, and scheduler name as "PAVA" in pod.yaml (Priority aware). Pod3 and pod4
are set zero with default scheduling mechanism.The time interval is 15 min to take logs
of the system. our pods are initiate container and pod status goes to the pending state as
shown in figure . Kubernetes default scheduler unscheduled this pod1, pod2, and pod3.
Kubectl describes pods information to give brief information on Kubelet. Kubelet give
container status of information on the bases of binding functionality of pods.

Figure 16: Priority with default scheduler

After running Priority Aware scheduler pods changes its state from pending to running
state. CPU spikes while running due to PAVA schedule. Python process of API calling
and binding requires some additional resources due to that CPU utilization increases as
shown in figure 17.

Figure 17

After some 10 minute of interval process is stable. Kubelet sends information through
of status so there is additional traffic is shown in netstat graph. In figure 18 CNi interface
receive traffic is above 100 Kilobytes for 5 minutes of interval.

18

Figure 18: Priority with default scheduler

Kubectl give status of slave and update to master. The events happen which can be
analyze by command line interface kubectl as shown in figure 19. Its check the status
of container deployment on the node and according to that container creation steps will
be initiated.

Figure 19: Events for deploying pods in Priority aware algorithm

6.4 Results and Discussion

Figure 20 showes the overview of results on the bases of experiment. Experiment 1
gives statistics of the threshold value of CPU utilization and network traffic in the CNi0
interface while the default scheduling is performed. This experiment gives the minimum
threshold value which useful to determine whether our custom scheduler is over-processed
or not. Default mechanism is bin packing algorithm which enables the pods in first come
first bases and randomly assign. CPU utilization is 28 percent according Kubernetes
dashboard services in default mechanism. Second experiment is used for scheduler pods
with Kubernetes priority mechanism and this experiment cni0 interface through which
control traffic received become doubled .CPU utilization is still constant throughout the
process. We have not targeted any particular node for deploying the nodes.

In third experiment we have set the priority and scheduled the pods using the PAVA
scheduler. This scheduling is achieved through the scheduler name as PAVA in yaml file.
Pod 1,2 and 3 are scheduled by PAVA custom scheduler whether pods 4 and pods 5 are
scheduled using default one. In this state pods become in pending state CPU utilization
is increases due to additional process working with scheduler. The rise in CPU is upto
50 percent but within 10 minutes it stabilizes as per the default scheduler. Pending state

19

Figure 20: Events for deploying pods in Priority aware algorithm

cause additional cni0 interface traffic upto 100 kBites. Kubernetes pods events denote
that scheduler name is not shown in events because binding functionality defined by
Kubelet not Kubernetes scheduler.

7 Conclusion and Future Work
Kubernetes Scheduler have capability to deal with custom scheduler mechanism. If we

have to run priority aware (PAVA) custom scheduler then we have to add some additional
resources . Additional advantage of priority aware scheduling , we can schedule the
application parallel with default Kubernetes scheduler. We can modify the sequence ,
deletion ,creation of pods according to application requirements. For example, we have
done priority for scheduling purpose , we can use network statistics or IP base pods
binding on selective node or random manner.

In whole experimental setup challenge is the api integration of python client and
libraries and platform dependencies like partitioning . Kubernetes default scheduling is
written in go language so python base api library or binding function is in development
phase. This can create API exception issues or mismatch parameters of API. We have to
take accountability of security parameters. For example, when SSL settings is off then
only the Custom Priority aware scheduler can be communicated with Kubernetes core
API. Node affinity and node selectivity with network parameters like bandwidth, port
base POD forwarding will be the area to be explore.

8 Acknowledgement
I would like to express special thanks to my supervisor Mr. Mohammad Iqbal one who
encourages and guide us in every single stage of research work. His valuable inputs and
problem-solving ability help us in our implementation phase. I also like to thanks my
family and friends one who constantly supports me in this journey.

References
Alam, M., Rufino, J., Ferreira, J., Ahmed, S. H., Shah, N. and Chen, Y. (2018). Orches-
tration of Microservices for IoT Using Docker and Edge Computing, IEEE Commu-
nications Magazine 56(9): 118–123.

Cérin, C., Menouer, T., Saad, W. and Abdallah, W. B. (2018). A New Docker Swarm
Scheduling Strategy, Proceedings - 2017 IEEE 7th International Symposium on Cloud
and Service Computing, SC2 2017 2018-January: 112–117.

Chang, C. C., Yang, S. R., Yeh, E. H., Lin, P. and Jeng, J. Y. (2017). A Kubernetes-Based

20

Monitoring Platform for Dynamic Cloud Resource Provisioning, 2017 IEEE Global
Communications Conference, GLOBECOM 2017 - Proceedings 2018-January: 1–6.

Hindman, B., Konwinski, A., Zaharia, M., Ghodsi, A., Joseph, A. D., Katz, R., Shen-
ker, S. and Stoica, I. (n.d.). 2011_Benjamin Hindman_Benjamin Hindman_Mesos A
Platform for Fine-Grained Resource Sharing in the Data Center.

Jha, D. N., Garg, S., Jayaraman, P. P., Buyya, R., Li, Z., Morgan, G. and Ranjan, R.
(2019). A study on the evaluation of HPC microservices in containerized environment,
Concurrency Computation (April): 1–18.

Jin, H., Wang, Y., Wang, Q., Liu, J., Wang, S., Zhang, J., Hao, S. and Fu, H. (2019).
Architecture modelling and task scheduling of an integrated parallel cnc system in
docker containers based on colored petri nets, IEEE Access 7: 47535–47549.

Kaewkasi, C. and Chuenmuneewong, K. (2017). Improvement of container scheduling for
Docker using Ant Colony Optimization, 2017 9th International Conference on Know-
ledge and Smart Technology: Crunching Information of Everything, KST 2017 pp. 254–
259.

Larrucea, X., Santamaria, I., Colomo-Palacios, R. and Ebert, C. (2018). Microservices,
IEEE Software 35(3): 96–100.

Li, W. and Kanso, A. (2015). Comparing containers versus virtual machines for achieving
high availability, Proceedings - 2015 IEEE International Conference on Cloud Engin-
eering, IC2E 2015 pp. 353–358.

Medel, V., Tolosana-Calasanz, R., Bañares, J. Á., Arronategui, U. and Rana, O. F.
(2018). Characterising resource management performance in Kubernetes, Computers
and Electrical Engineering 68(May 2017): 286–297.
URL: https://doi.org/10.1016/j.compeleceng.2018.03.041

Naik, N. (2017). Docker container-based big data processing system in multiple clouds
for everyone, 2017 IEEE International Symposium on Systems Engineering, ISSE 2017
- Proceedings .

Nardelli, M., Hochreiner, C. and Schulte, S. (2017). Elastic Provisioning of Virtual
Machines for Container Deployment, pp. 5–10.

Netto, H. V., Lung, L. C., Correia, M., Luiz, A. F. and Sá de Souza, L. M. (2017a).
State machine replication in containers managed by Kubernetes, Journal of Systems
Architecture 73: 53–59.
URL: http://dx.doi.org/10.1016/j.sysarc.2016.12.007

Netto, H. V., Lung, L. C., Correia, M., Luiz, A. F. and Sá de Souza, L. M. (2017b).
State machine replication in containers managed by Kubernetes, Journal of Systems
Architecture 73: 53–59.
URL: http://dx.doi.org/10.1016/j.sysarc.2016.12.007

Ramalho, F. and Neto, A. (2016). Virtualization at the network edge: A performance
comparison, WoWMoM 2016 - 17th International Symposium on a World of Wireless,
Mobile and Multimedia Networks pp. 1–6.

21

Rodriguez, M. A. and Buyya, R. (2018). Containers Orchestration with Cost-Efficient
Autoscaling in Cloud Computing Environments.
URL: http://arxiv.org/abs/1812.00300

Rodriguez, M. A. and Buyya, R. (2019). Container-based cluster orchestration systems:
A taxonomy and future directions, Software - Practice and Experience 49(5): 698–719.

Santos, J., Wauters, T., Volckaert, B. and De Turck, F. (2019). Towards network-Aware
resource provisioning in kubernetes for fog computing applications, Proceedings of the
2019 IEEE Conference on Network Softwarization: Unleashing the Power of Network
Softwarization, NetSoft 2019 pp. 351–359.

Schwarzkopf, M., Konwinski, A., Abd-El-Malek, M. and Wilkes, J. (2013). Omega:
Flexible, scalable schedulers for large compute clusters, Proceedings of the 8th ACM
European Conference on Computer Systems, EuroSys 2013 pp. 351–364.

Son, J. and Buyya, R. (2018). Priority-Aware VM Allocation and Network Bandwidth
Provisioning in Software-Defined Networking (SDN)-Enabled Clouds, IEEE Transac-
tions on Sustainable Computing 4(1): 17–28.

Suresh, L., Loff, J., Kalim, F., Narodytska, N., Ryzhyk, L., Gamage, S., Oki, B., Lokhand-
wala, Z., Hira, M. and Sagiv, M. (2019). Automating Cluster Management with Weave.
URL: http://arxiv.org/abs/1909.03130

Tao, Y., Wang, X., Xu, X. and Chen, Y. (2017). Dynamic resource allocation algorithm
for container-based service computing, 2017 IEEE 13th International Symposium on
Autonomous Decentralized System (ISADS), pp. 61–67.

Truyen, E., Van Landuyt, D., Lagaisse, B., Joosen, W. and Bruzek, M. (2018). Evalu-
ation of Container Orchestration Systems for Deploying and Managing NoSQL Data-
base Clusters, IEEE International Conference on Cloud Computing, CLOUD 2018-
July: 468–475.

Verma, A., Pedrosa, L., Korupolu, M., Oppenheimer, D., Tune, E. and Wilkes, J. (2015).
Large-scale cluster management at Google with Borg, Proceedings of the 10th European
Conference on Computer Systems, EuroSys 2015 .

Xu, M., Toosi, A. N. and Buyya, R. (2019). ibrownout: An integrated approach for
managing energy and brownout in container-based clouds, IEEE Transactions on Sus-
tainable Computing 4(1): 53–66.

Xu, X., Yu, H. and Pei, X. (2015). A novel resource scheduling approach in container
based clouds, Proceedings - 17th IEEE International Conference on Computational
Science and Engineering, CSE 2014, Jointly with 13th IEEE International Confer-
ence on Ubiquitous Computing and Communications, IUCC 2014, 13th International
Symposium on Pervasive Systems, Algorithms, and Networks, I-SPAN 2014 and 8th
International Conference on Frontier of Computer Science and Technology, FCST 2014
pp. 257–264.

22

Appendix

1. Introduction

Kubernetes cluster formation require step by step approach. This document helps to

deploy Kubernetes cluster with Priority Aware application custom scheduler . Our

configuration manual is classified into three section. Section 2 includes system

configuration whether section 3 is brief overview of Priority aware scheduler code and

step 4 represent evaluation software tool like Grafana and Prometheus

2 System configurations :-

Kubernetes cluster is deployed on the local virtual machine with ubuntu operating

system. The details configuration has been listed below. Virtual machines are managing

with oracle virtual box software 6.0 platform.

2. Master and Slave configuration :-

We are deployed the master with 2 slave nodes in Kubernetes cluster which has the

functionality to deploy the container base application for example Redis , ngnix. This master

and slave are deployed on different virtual machine with specific configuration as listed below.

Virtual machine configuration for Implementation :-

Master VM configuration: -

• Virtual machine Ubuntu 18.04

• vCPU -3

• RAM =8 GB

• Storage =40 GB

Slave VM configuration: -

Virtual machine Ubuntu 18.04

VCPU -3

RAM =4 GB

Storage -40

Step 2) Installation of Docker container on master and Slave

In this we must enable the docker version in existing ubuntu Linux virtual machine. We have to

enable docker in Linux operating system by below command. we are using docker version

19.03.2 for OS/architecture linux amd 64

#sudo apt-get install docker.io

sudo systemctl enable

Step 3) Curl package and GPG key for installation for Kubernetes 1

sudo apt-get install curl

1 https://www.docker.com/

https://www.docker.com/

curl -s https://packages.cloud.google.com/apt/doc/apt-key.gpg | sudo apt-key add2

Step 4) we have to add this key in google repository.

#sudo apt-add-repository "deb http://apt.kubernetes.io/ kubernetes-xenial main“

Step 5) Installation of Kubernetes component that is Kubeadm , Kubectl

Kubeadm –

 Kubeadm is a tool built to provide kubeadm init and kubeadm join as best-practice “fast

paths” for creating Kubernetes clusters

Kubectl - line interface for running commands against Kubernetes clusters.

#sudo apt-get install kubeadm

Check Kubectl version using command # kubectl version

Step 6) Partitioning need to be on the system using command. if not happen then local host.

error can come. There is need to be one or 2 minutes required to reflect effect. Kubernetes

cannot start without partitioning of Virtual machines.

swap off -a

Step 7) Assignment of extra interface for intercommunication of Virtual machines. Check

reachability of Virtual machines.

Step 8) Each Pod required IP address to allocate the resource. Kubernetes support multiple

networks like flannel and calico network. We have to define some of private IP pool address to

deploy POD which is not visible in public network. In our case we are using 40.168.0.0 /16 IP

pool which can be used for allocating 65536 Ip address to POD.

Command to allocate to allocate the IP pool range and API server IP address is as below.

Kubeadm need to be installed on master node only we have set APIserver Ip address as

192.168.56.101 interface address.

Command :- # sudo kubeadm init --pod-network-cidr=<ip pool of Pods> --apiserver-advertise-

address=<interface address>

Step 9) we have to allow the access to local user for running kubectl command. Blow are the

configuration needs to be run on the master node only.

 mkdir -p $HOME/.kube

 sudo c3p -i /etc/kubernetes/admin.conf $HOME/.kube/config

 sudo chown $(id -u):$(id -g) $HOME/.kube/config

3 https://kubernetes.io/docs/setup/production-environment/tools/kubeadm/create-cluster-kubeadm/

https://kubernetes.io/docs/setup/production-environment/tools/kubeadm/create-cluster-kubeadm/

Command output of Kubeadm needs to be save on notepad and execute the slave node of the

cluster. we are executing this command slave 1 and Slave 2.

Step 10) Kubernetes token is created which can be help for authentication and signing

Below is the command is used for verification of the token.

kubeadm token list

Step 10) Token creation done using below command through which we can access

Kubernetes dashboard.

openssl x509 -pubkey -in /etc/kubernetes/pki/ca.crt | openssl rsa -pubin -outform der

2>/dev/null | openssl dgst -sha256 -hex | sed 's/^. * //'

Step 11) Create Flannel network for intercommunication of PODs. Cluster role bindings are

defined in this cluster.

sudo kubectl apply -f

https://raw.githubusercontent.com/coreos/flannel/master/Documentation/kube-flannel.yml4

Step 12) Master configuration verification :--

Kubectl get nodes command is used to check whether master is created or not.

#kubectl get nodes

kubectl get namespaces for checking isolation of process. Kube-node-lease,kube-public and

kube-system are the Kubernetes internal namespaces .

ip a show flannel command is used to check the flannel ip pool status.

4 https://kubernetes.io/docs/concepts/overview/working-with-objects/namespaces/

https://raw.githubusercontent.com/coreos/flannel/master/Documentation/kube-flannel.yml
https://kubernetes.io/docs/concepts/overview/working-with-objects/namespaces/

Step 13) Dashboard creation on the Kubernetes

Kubernetes dashboard contain the cluster node binding , deployment and services bindings.

kubectl apply -f

https://raw.githubusercontent.com/kubernetes/dashboard/v1.10.1/src/deploy/recommended/

kubernetes-dashboard.yaml

Step 14) Kubernetes slave configuration: -

In this we are repeating step from step 1 to step 6 after that we must use join request created

on the master K8-master node. we must use join command to slave nodes.

Kubectl get nodes

Step 15) Token creation required to form Kubernetes dashboard services, we have to form

admin account in dashboard services. We have form default setting to access the Kubernetes

Dashboard services.

https://raw.githubusercontent.com/kubernetes/dashboard/v1.10.1/src/deploy/recommended/kubernetes-dashboard.yaml
https://raw.githubusercontent.com/kubernetes/dashboard/v1.10.1/src/deploy/recommended/kubernetes-dashboard.yaml

Command to create Dashboard setting is as Below.

Kubernetes create serviceaccount dashboard -n default

Step 16) In this step we have to create cluster role binding with Kubernetes dashboard service.

This binding is required to access all nodes pods information.

Step17) Kubectl proxy command is used to allowed to start proxy server. If proxy server is not

working, then we have to check whether 8001 port is bind with some other service or not.

Command for checking port binding: -

netstat -tulp| grep 8001

Kubectl proxy --port=8001

Step 18) Kubernetes dashboard can be access from below link on web brower. We have to use

token base authentication command .

kubectl get secret $(kubectl get serviceaccount dashboard -o jsonpath="{.secrets[0].name}") -

o jsonpath="{.data.token}" | base64 –decode

http://localhost:8001/api/v1/namespaces/kubernetes-

dashboard/services/https:kubernetes-dashboard:/proxy/

5

5 https://kubernetes.io/docs/tasks/access-application-cluster/web-ui-dashboard/

http://localhost:8001/api/v1/namespaces/kubernetes-dashboard/services/https:kubernetes-dashboard:/proxy/
http://localhost:8001/api/v1/namespaces/kubernetes-dashboard/services/https:kubernetes-dashboard:/proxy/
https://kubernetes.io/docs/tasks/access-application-cluster/web-ui-dashboard/

PODs and Priorty class configuration for scheduling

Section 3) Priority Aware schdeuler deplouyment

First step of implemnetration of PAVA scheduler is creation of Pods.yaml file.We are used 5

fives pods for deployment and evaluation puroposes.

Step 18) Pod creation we have to define api version as V1 and kind should be in Pod as shown

in figure. In Metadata name filed is used to identification pupose whether in specification. We

have to defined the schedulerName as PAVA.

For Pods pod4 and pod5 are scheduler by default scheduler mechanism. For yaml file we have

to define the scheduler name as default.

Step 19) we have to create policy map for assigning the policy map to define scheduling the

pods. We are set priority as 100,500,1000. According to this priority values PAVA scheduler

the nodes.

Step 20) After creation of pods , we will create the pods using the # kubectl create -f

<podname.yaml>. The state of pods is shown in command line interface when we execute

the command #kubectl get pods

Step 21) Experimental code for Priority Aware scheduling Algorithm is as below .

We have to install the python kuberntes library to interatct python command lines the

kuberntes core api. Pip install kubnertes command in useses for API interaction only .

The libaries that are using for Kuberntes API interaction purpose are kuberntes client,config

and watches. Without this libraries our client api can not works.

#config.load_kube_config() – we are using for the loading kubenrtes all core class config.

C1=client.configuration

C1.verify_ssl= This configuration we are using to avaoid ssl issue . Kubernetes API interaction

can be taken without ssl from this configuration.

Schdeuler_name as PAVA (priority aware we had set for matching purpose)

• We are using for loop for taking the metatdata,namespace and priority field from the

vore api of Kuberntes. As shown in digaram below priority aware algorithm sorting

functionality returns to sort pods name against the priority and store this value in

sorted_pod dictionary.

• We are setting the Reverse flag as True which assign the pods name and value in

Highest to lowest manner.

reverse=True

• Compute allocated resoources are function which can is used for calculation of memory

and CPU score utilizaed by the kubernte master and slave.We are stored this memory

score and cpu score in data1 variable.

• Watch functionality is used to create watch stream which checks the status of pods

whether it is pending and macthces with schdeuler name as “PAVA “ . After matching

two conditioons scheduler check status of node to bind the pods.

group_pod stores the pod metadata name and value as priority field. We are running binding

function for each pod against metadata nam (“group_name”)

We have bind the pods with namespace as default , api_version= “v1 and execute the

v1.create_namespaced_binding function.

Section 4:- Monitoring tool Grafana and prometheus setup

Prometheus setup:- prometheus is open source tool which is intergrated with node exported

software tool to extract the linux information while running kubernetes master. In our

experimental setup we are using prometheus 2.13.1-linux amd version .

 Step 23) Prometheus software can be get from wget https://prometheus.io/download/prometheus-

2.13.1.linux-amd64.tar.gz

https://prometheus.io/download/prometheus-2.13.1.linux-amd64.tar.gz
https://prometheus.io/download/prometheus-2.13.1.linux-amd64.tar.gz

Step 24) Node exporter download from the below official link of prometheus

wget https://github.com/prometheus/node_exporter/releases/download/v*/node_exporter-*
.*-amd64.tar.gz

tar xvfz node_exporter-*.*-amd64.tar.gz

cd node exporter-*.*-amd64

./node exporter

Step 24) we have to edit the configuration in File name iof prometheus.yaml at

/etc/prometheus

Step 25) Grafana setup for prometheus as Datasource.

Grafan download from the the official wensite http://grafana.com

http://grafana.com/

• wget https://dl.grafana.com/oss/release/grafana_6.5.1_amd64.deb

• sudo dpkg -i grafana_6.5.1_amd64.deb

• sudo systemctl daemon-reload ---------- For demone reloaded

• sudo systemctl start grafana-server ------ for starting grafana server

• sudo systemctl status grafana-server ------ To check the status of Grafana

• sudo systemctl status grafana-server ---- Starting of Grafna server

Step 25) Server will be start at http:\\localhost:3000\

Conclusion :-

In this manual we are explaniing brief overview of step by step approach to deploy the

kubernetes cluster with monitoring tool grafana and Prometheus. The necessary results are

shown and highlighted . Code explanation has been given in such a way that user will

understand the basic understanding of the code.

	Introduction
	Research objective

	Related Work
	Containers virtualization in Micro-services
	Container Orchestration platform
	Scheduling Mechanism with related work:-

	Methodology
	Architecture Design
	 Priority aware Algorithm implementation using Kubernetes orchestrator

	Design Specification
	Implementation
	Kubernetes Master and Slave Formation
	Priority Aware Custom scheduler Implementation

	Evaluation
	Case 1:- Pods without priority with kubernetes scheduler
	Case 2: Priority base scheduling with default kubernetes scheduler
	Case 3 :- Priority aware scheduling with custom scheduler
	Results and Discussion

	Conclusion and Future Work
	Acknowledgement
	References

