
Enhancing Cloud Gaming User Experience
through Docker Containers in Fog Nodes

MSc Research Project

Msc. in Cloud Computing

Manoj Kannan
Student ID: x18131581

School of Computing

National College of Ireland

Supervisor: Manuel Tova-Izquierdo

www.ncirl.ie



National College of Ireland
Project Submission Sheet

School of Computing

Student Name: Manoj Kannan

Student ID: x18131581

Programme: Msc. in Cloud Computing

Year: 2019

Module: MSc Research Project

Supervisor: Manuel Tova-Izquierdo

Submission Due Date: 12/12/2019

Project Title: Enhancing Cloud Gaming User Experience through Docker
Containers in Fog Nodes

Word Count: 5996

Page Count: 17

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

I agree to an electronic copy of my thesis being made publicly available on TRAP the
National College of Ireland’s Institutional Repository for consultation.

Signature:

Date: 12th December 2019

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). �
Attach a Moodle submission receipt of the online project submission, to
each project (including multiple copies).

�

You must ensure that you retain a HARD COPY of the project, both for
your own reference and in case a project is lost or mislaid. It is not sufficient to keep
a copy on computer.

�

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.



Office Use Only

Signature:

Date:

Penalty Applied (if applicable):



Enhancing Cloud Gaming User Experience through
Docker Containers in Fog Nodes

Manoj Kannan
x18131581

Abstract

The attraction towards cloud gaming has reached to a high intensity in modern
days. The proliferation of gassed-up networks and the development in the field of
cloud computing has attracted the researches to deep study and identify the gaps
in Cloud Gaming to provide high-end quality of gamer experience. In time-horned
cloud gaming model, the game scenes are rendered in a sophisticated game server
and corresponding game video is generated. The generated game video will be
encoded and sent over the network to the thin clients. The thin clients decode the
encoded video and stream the video back to the players device. The fundamental
requirement of gaming is to provide maximum quality of gamer experience. Cloud
gaming suffers in terms of providing Quality of Experience (QoE), because the
network transmission of game scenes from cloud game server to gamer device is
distant. Since the traditional cloud gaming is deployed in virtual machine there
is performance-overhead which also affects the QoE. We endeavour to minimize
latency and increase performance in cloud gaming through this paper. The cloud
game server will be offloaded to the fog nodes which is present at the edge network
of the player based on Node selection algorithm. To increase the performance of
cloud gaming, traditional virtual machine is replaced by light-weight containers.
The proposed system achieves new methodology by deploying cloud game server
through docker containers in fog nodes. Evaluation results has proved that fog-
node based gaming has minimized the latency and increased the performance of
cloud gaming.Fog assisted gaming has shown about 1.3MB increase in terms of
TCP transfer rate over cloud gaming.

Keywords— Cloud gaming, Fog computing, Docker Container.

1 Introduction

Gaming industry has evolved all through the development of an Internet era. Early stage of the
gaming era, the graphics rendering capabilities were low and also the Quality of user Experience
(QoE) was not mediocre. Later as the field of gaming developed, we have advanced graphics
with ultimate Quality of Experience for the user. In order to achieve high QoE in gaming, users
are forced to upgrade their Graphics Processing Unit(GPU) which is quite expensive and gets
outdated periodically.

In recent ages, cloud computing has engrossed the research community. Cloud Computing
provides environment to perform high computations on powerful servers at low cost. It made
researchers to have a deep dive and make the possible applications to move to the cloud envir-
onment. Both the providers and the users relish the benefits of cloud computing. Author Cai

1



et al. (2014) has discussed about providing the Gaming as a Service. He discusses about the
benefits of adopting cloud gaming to both users and provides. This is because the Architecture
of the Cloud game is designed in such a way that only the command emulator and video decoder
will be present in the thin clients. On the other hand cloud game servers must have GPU ren-
dering, video encoding and video streaming hardware support and provides support to the thin
clients. Since all the powerful computations takes place in the cloud, players are relieved from
having powerful hardware components.Author Chuah et al. (2014) discusses about the green
solution of adopting the cloud gaming model. Author Cai et al. (2016) has debated the open
challenges in Cloud gaming. Author states that, despite the great opportunity in cloud gaming,
still there are several crucial challenges. One such Challenge is the latency issues which directly
affects the QoE for the user. Since video streaming plays a vital part in QoE, the user and
the cloud gaming server needs to be in sync recurrently. The delay in sync of this data affects
the QoE.This delays is because of the distance between the cloud game server and the thin
clients.Also the cloud gaming server uses virtual machines there is a significance performance
overhead which also widely affects the user experience.

Figure 1: Workflow of the Traditional Cloud Gaming Architecture

Though Cloud Computing serves major advantage in the field of computing, it also suffers
from its own drawbacks such as latency and bandwidth issues. This is mainly because of the
distance between the cloud server and the user is located at a far distant. In order to reduce
this latency issues researchers formed a new framework,named Fog nodes. Both Cloud and fog
share most of the elements similar, but fog node will be located at the edge network closest to
the user.This makes the application to be latency sensitive even to perform high computation
tasks. All the data insensitive tasks can be offloaded from the cloud server to fog server.This
additional node will help the cloud to reduce the latency issues.Also, the availability of the data
is also high, since the data transfer over the network is less compared to the cloud. Another
important break-through in the field of computing is virtualization using which virtual machine
is created, but in order to perform high computational tasks virtual machines suffers from the
performance-overhead issues.In recent years researchers paved a way for Docker containers, an
replacement for the traditional virtual machine (Joy; 2015). Containers does not virtualize the
entire Operating system,where as it virtualizes only the running applications. This makes the
containers to improve the performance over virtual machines.

The proposed research aims to offload the cloud game server from cloud to fog which will
enhance the user experience by reducing the latency issues. The traditional method of deploying
the game server through virtual machines are replaced with Linux based Docker Containers.
The Cloud game server decides which fog node to be selected based on the node selection
algorithm. Node selection Algorithm calculates the servers with minimal latency based on the

2



Figure 2: Docker Architecture

user location, GPU and hardware support to host game server.Thus, we propose Linux-based
docker container in fog nodes which can achieve high Quality of Experience in cloud gaming
than traditional Cloud Gaming.

Research Question:

Can performance of cloud gaming be improved by deploying docker container
in fog nodes ?

Can the cloud game server be offloaded to fog nodes based on node selection
algorithm to reduce latency in cloud gaming ?

The research aims to minimize latency and increase performance of the overall cloud gaming
system. This is achieved by replacing traditional virtual machine into light weight contain-
ers.Node selection Algorithm identifies the fog nodes with minimal latency, located at the users
edge network.Light weight frameworks are then deployed in computing fog nodes.Communication
between the user and the fog nodes are established.

2 Related Work

Solution for the latency issues faced in cloud gaming: -
In Cloud Gaming the way of transmission of the encoded video and then decoding the video,

affects the quality of experience due to the latency over the network. In order to minimize the
response delay and the transmission delay author Lin and Shen (2016) has proposed a new
architecture by recommending super nodes placing between the thin clients and the cloud game
server. The paper proposes to offload the video encoding and decoding to the supernode where

3



as the computation takes place at the cloud game server. Author has approached the supernode
selection based on the reputation score, the reputation score is calculated by taking the node
with less transmission delay and the available capacity of the supernode. One drawback is that,
due to the additional layer, many junk files can be transmitted over the network to the super
node which can also affect the Quality of Experience for the player.

Author Choy et al. (2012) also discussed the way of solving the latency issues in the on-
demand gaming. The author proposed an effective approach in solving the latency issues by
offloading the computation to the nearest edge nodes which is present at the edge network of the
players. Earlier in CDN the computations was not able to be performed. Author has enhanced
the GPU rendering options in the CDN edge nodes and therefore the computations can be
performed in the edge nodes. The evaluation of the proposed approach against the traditional
approach was measured by performing players play against the EC2 instance versus the planet
lab nodes which is the edge node and the end results proves that the Edge node minimizes the
latency than the traditional approach.

Zhang et al. (2019) has approached the latency issues by placing the edge node but the
node selection is achieved through the deep reinforcement learning. The author has adapted
the sandbox technique in order to form the V-nodes. The virtual machines are replaced with
the help of these Vnodes which reduces the play start-up delay experienced by the players.
The workflow of proposed by the author is explained such that once the initial play request
reaches the cloud game server, the game server identifies the nearest edge with minimal latency
experienced by the player. Once the edge node is found the game request will be started from
the edge node and the V-nodes are started based on the CPU/GPU rendering. The paper
also proposed a Artificial neural network approach for streaming the video which enhances the
Quality of Experience for the player. The neural network approach will adjust the frame bit
rates based on the User Experience.

Author Cai et al. (2018) has approached the solution for the latency issues in cloud gaming
through component-based ubiquitous Gaming system. Author has approached this by analysing
the game players status and also by cognitively allocating the resources for different scenarios
and different components of a game. Author has evaluated and the as per the outcome it is
noted that well balanced way of allocating the resources to the cloud game server and the thin
clients reduces the performance of the overall cloud gaming model.

Author Xu et al. (2014) proposed a effective algorithm which reduces the bit frame rate
naturally. Homograph technique is used to predict the motion of the images in the video codec.
Additionally the author also proposes a edge interpolation algorithm which is used to minimize
the residues edge regions which can be used to perform the cloud gaming. Author uses x264 to
test the proposed algorithm and the evaluation results displays that the proposed methodology
18% BD-rate reduction when compared with the traditional x264 approach.

Virtualization Advancement: -
The advert development in the field of virtualization made effective when the invention of

sharing the GPU from the host to guest Operating system was invented. Author Qi et al. (2014)
has proposed an effective way resource scheduling algorithm for cloud gaming. Author has
approached this proposal by developing an API which enhances not only resource scheduling
but also improves the performance of the On-demand gaming. Author has approached the
solution with three scheduling algorithms, which also keeps the SLA metrics under the control.
Based on the SLA metrics the scheduling algorithms works as per the requirement. Author has
evaluated by using the real game scenes and has proved that VGRIS is capable of adapting to
the virtual machine. Author has also discussed about the drawback in the system is that the
author has majorly contributed towards the SLA metrics rather than the cloud gaming metrics.

Author Yadav and Annappa (2017) discusses the problem faced by the on-demand gaming
where the current cloud gaming model has GPU allocation based on First come First server
basis. This makes the traditional approach to fail from the SLA, there by they allocate ded-

4



icated GPU servers with sophisticated hardware support. In this paper author has proposed
an Adaptive way of sharing the GPU which can run the dedicated gaming servers. Author
has approached this algorithm with para virtualization technology and hook technique. After
implementing author has evaluated the proposed performance by running Return to proxycon
and fierly forest in 5 Virtual machine simultaneously. The proposed system shows 48 percent
of the average frame rate where as the GPU is also shared by the 5 virtual machine. Author
has set the resolution for only about 720p where as cloud gaming model runs with atmost 4k
ultra resolution.
Light-weight Framework for Performance Optimization : -

The user experience in the cloud gaming is directly dependent on the latency and the per-
formance of the system. Author Kämäräinen et al. (2015) has improved the overall performance
of the cloud gaming by replacing the traditional virtual machine with the Operating system level
name Containers. Author has evaluated the characteristics of a virtual machine and a container
by having Gaming Anywhere as a base, which is a open source cloud gaming framework. X-
server is shared among all the container which is used for security purpose. The performance of
the CPU, GPU Memory usage and the game start time is measured among the QEMU VM vs
the Linux based container. In which the Linux based containers outperformed and has showed
a greater improvement when compared with traditional cloud gaming system.

Author Mondesire et al. (2019) analyses the new method through which the he has made
the load balancing effectively. The proposed framework is the way of combining the containers
inside the virtual machine. Based on the demand the way of allocating the resources such as
GPU and memory of the overall system. Author has weighed the overall experiment results
with four systems in comparisons namely three system are traditional method and the last one
is the proposed system (. i.e.) combination of the virtual machine and containers. Out of
which the proposed system lacks only in terms of Network bytes sent where as the proposed
system outperformed in process memory. But the overall cost is being optimized in the proposed
system. The anticipated system is also more secured when compared with that of the existing
system.

The performance of the light weight framework containers against traditional virtual ma-
chine is analysed by the AuthorAhmed and Pierre (2018). Author has analysed the scalability
and the deployment time in containers and virtual machine. Author has used the PostgreSQL
database server as a back-end which is used for information retrieval to the front end and front
end of the application is with Joomla PHP server. After evaluation author examined the results
of the experiment and it is noted that containers outperformed well of handing 10000 request
at a time where as virtual machine was able to handle only about 1800 request. For scalability
comparison, word press application is used in the container-based application are deployed faster
of about 22x times when compared to that of the virtual machine. Author has not compared
about the security issues in both the systems.
Docker Container in Fog Computing Infrastructure: -

Deploying the docker container in fog computing infrastructure is widely studied by Author
Raghavendra and Chawla (2018). Author has address the pain point in deploying the docker
container in fog infrastructure such as the docker pull tasks takes longer duration. Author
identified that the resources are under utilized during the docker pull because the pull request
execute in parallel fashion. Author has made the pull request to be in a sequential manner .
The proposed system had shown the improvement in the deploying the docker container in fog
infrastructure by 4 times faster than traditional approach.

AuthorYin et al. (2018) has reviewed the need of the docker container in the fog infrastruc-
ture. The data that are transferred form the IOT devices has to be made highly available and
has to be computed in a rapid fashion, thus docker container is used to process effectively, Ad-
ditionally the portable feature in the docker container makes the computation to transfer the
data faster than traditional approach. Author proposes a hierarchical approach by connecting

5



Approach Performance Latency Gaming Over Cloud
Lin and Shen (2016) NO YES YES
Choy et al. (2012) NO YES YES
Zhang et al. (2019) NO YES YES
Cai et al. (2018) NO YES YES
Xu et al. (2014) NO YES YES
Qi et al. (2014) YES NO YES
Yadav and Annappa (2017) NO NO YES
Kämäräinen et al. (2015) YES NO YES
Mondesire et al. (2019) YES NO YES
Ahmed and Pierre (2018) YES NO NO
Raghavendra and Chawla (2018) YES NO NO
Yin et al. (2018) YES NO NO
Proposed System YES YES YES

Table 1: State of the Art.

the IOT devices with the fog nodes and the fog nodes are also inter connected to each other.
All these connections are controlled with the help of fog controller, which acts as a master node.
By introducing the containers in the fog nodes high scalability is achieved for intensive tasks
also the performance overhead is reduced.

Author Hoque et al. (2017) has approached the paper through a specific application and
the use of deploying the application in the fog computing platform. The way of deploying the
docker containers in the fog nodes makes the system to minimize the delay between the tasks
and also increases the task scheduling. The overall process is divided into two. At first the
device has to approve the task and second is to decide on which platform does the task has
to be made (i.e .) on fog or cloud environment. A node is placed which decides based on the
request evaluation algorithm which fog node can perform the computation by also keeping the
resource constraint and the task scheduler decides where the task has to be assigned to fog or
cloud environment. The experimental evaluation has shown that there is a 5 percent increase
in the effective task scheduling also there is a difference in the overall execution time, which is
because of the docker containers.

Author Hong et al. (2014) has discussed about the container orchestration in the fog com-
puting infrastructure. Author discusses about the container orchestration tools, and the way
of achieving the performance and scalability through the orchestration tools. He also discusses
about the need of the container in the fog nodes. Author has evaluated the performance of the
of docker container and it noted that about 0.036s container is faster than the traditional one.
Author also evaluated the orchestration tools such as docker swarm, Kubernetes and Mesos-
Marathon out of which docker swarm shows better performance while deploying containers in
the fog infrastructure.

3 Methodology

In traditional cloud gaming architecture, the user inputs are captured and the captured input
is transformed into commands through the command emulator. These commands are then
converted into game events based on the game logic. The game events are rendered as the game
video and the rendered video is encoded through a video encoder. The video is being encoded
since it has to be sent back to the thin clients over the network. The encoded video will then be
decoded in the thin clients. This way the traditional architecture suffers from the latency and

6



performance issues because of the far distance between the cloud game server and the player.
This indirectly affects the Quality of Experience for the user.

The proposed methodology is inspired by the Author Lin and Shen (2016) by offloading the
computations to the supernode which is located close to the user location. Author has made the
decision to offload based on the reputation score of the player and the social server assignment.
Author Kämäräinen et al. (2015) has made a proposal by replacing virtual machine into light
weight containers. Though the Linux based container the game configurations was prepared.
The combination of these two proposals is experimented in this research where containers in
Fog nodes helps to maintain high QoE.

The proposal by the author Lin and Shen (2016) has not minimized the latency efficiently
because the super nodes proposed is not located at the edge network of the user. Thus the
latency can still be optimized from the proposal made by Lin and Shen (2016). Also the
combination of deploying docker containers in Fog nodes for cloud gaming is not discussed in
the state of the art. The proposed model engages Node selection algorithm in order to select
the suitable fog nodes and deploy the docker containers in the selected fog nodes. The proposed
architecture is implemented using Gaming Anywhere an open source cloud gaming platform,
through which the game can be deployed. The Gaming anywhere system comprises of the
command emulator, video encoder and video streaming codecs. The selection of the additional
layer (. i.e.) Fog layer is determined based on the few checks which is written as a bash script.
The Node selection is based on the steps explained below,

• Initial screening of which fog nodes needs to be selected is based on the minimal distance
of which the Cloud gaming can have minimal latency compared to the traditional one (.i.
e) the fog nodes are sorted based on the distance from the thin clients and the cloud as
stated by the author Hong et al. (2014).

• Then the Quality of Experience threshold will be set and the fog nodes which meet the
QoE threshold will be selected Dhib et al. (2016) .

In order to build the game server as a container, docker file has to be written. The docker
file comprises of the Gaming Anywhere by author Huang et al. (2013) source code as a base
and all the necessary packages are written in the docker file. From the docker file the container
image will be created. In order to support the graphical display in container X-window is used
using VNC desktop mode.

Once the fog node is selected based on the above checks, docker image will be deployed to
the selected fog node. The docker container is allocated with the underlying resource of the fog
nodes. The deployed container is the dedicated game server with the game resources such as
video and audio encoder and decoder, Real time streaming service is pre-deployed.

By successful deployment of cloud game in docker containers and offloading the container to
the fog nodes makes the proposed system to reduce the latency and enhances the performance of
the cloud gaming. Game server is deployed as the docker image which also makes the deployment
faster in the Fog node. The well-balanced Fog node selection and the proper deployment of the
docker container in the fog nodes will make the Fog-assisted Cloud gaming system to reduce the
latency also enhances the performance in a rapid fashion. Overall the Quality of Experience in
cloud gaming for the player will be enhanced in the proposed architecture.

7



4 Design Specification

The Design specification of the proposed architecture includes multiple layers. First and fore-
most, layer for the cloud gaming is to set up a game server which has to be hosted in the cloud.
AWS EC2 instance is chosen to host the game server in the cloud. The instance type chosen
in EC2 was g3s.xlarge EC2 instance, because of the GPU support which was the most suitable
instance to host the game server. Even though the EC2 instance has the GPU instance it was
not having the graphics display to stream to the player. In order to obtain the video display in
the EC2 instance a VNC connection was set up to a display monitor through which the videos
can be streamed back to the thin clients. An open source cloud gaming framework Gaming
Anywhere which was developed Huang et al. (2013)in the year 2013 was used as a game server.
Since GA was developed in 2013 it has compatibility issues and the version issues. Initially
the GA system was developed in ubuntu 12.04, but it has multiple compatibility issues. So
to configure and set up the Gaming anywhere Ubuntu 16.04 operating system is taken into
consideration. The Library packages for video streaming, encoding and decoding of the video
also needs to be installed. The libraries required such as FFMPEG, libx264, libx265, libvpx
and so on. All these libraries are pre-compiled in the docker container image. A docker files
is written with all the installation of libraries, dependencies and the packages. Along side the
installation of the Gaming Anywhere server is also wriiten in the docker file. A docker image
is created with the help of the docker file . The developed docker image is then pushed to the
docker hub. The components required to set up a game server with Gaming Anywhere is

• libx264 : It is a open source software which is used to encode the video streaming service.

• X-Server: To run the graphical applications inside the container.

• Nvidia Driver: To support the GPU acceleration.

• Docker CE Debian package: - To support docker containers in ubuntu.

• libva1 - An API for video accelerations.

• libasound 2 :- For Audio enhancement and sound management in the ALSA library

• libswscale 2 :- For video scaling and rendering.

• libxtst6 :- For client interface x-window.

5 Implementation

The implementation of the proposed system comprises different phases and each of the phase
is explained below.

• Docker image creation

• Cloud game server

• Fog server identification and resource allocation to container

• Offloading to the Fog server

• Communication between the Fog server and the thin clients

8



Docker image creation:
Initial stage for the implementation is to create a docker image with all the required libraries
and packages installed. Since the docker container does not support graphical display the X-
window needs to be installed in the docker file for creating the docker image with graphical
support. Additionally, the docker image should also have the NVidia support graphics which
supports the GPU graphics acceleration along with the image. All the game configurations has
to be pre-build inside the docker file.

Cloud Game Server:
A cloud server with Ubuntu machine as a base along with the GPU support needs to be launched.
The launched cloud server needs to have the container package installed along with the other
networking packages to be installed. The connection for the traffic outbound and inbound rules
needs to be modified according to the client traffic flow.

Fog Node Identification:
Once the play request is reached the game server, game server will fetch the IP address of
the player and locate for the edge node based on the algorithm proposed in the paper Hong
et al. (2014). The proposed algorithm not only takes the Fog server identification as the only
task but also to identify the Fog server without allowing the players to degrade the Quality
of Experience. The formulation to calculate Quality of Experience Dhib et al. (2016)is given
below

Q(x,p,v) = γ1Nx + γ2D(p,v) —— 1

Where Network delay function is denoted by Nx and D(p,v) is the processing delay and γ1 and
γ2 are parameters. If the Quality of Experience is greater than the threshold of the QoE then
add the fog nodes to the selected list. Once the selection list is prepared, then for each of the
selected fog servers calculate the server location which is present nearest to the player location
with minimal latency Hong et al. (2014). By achieving this the 95 percent of the quality of
experience for the user is achieved.

Algorithm 1 Node Selection Algorithm

Require :
p: number of players, QoEThr: trheshold of minimal QoE requested
1: for each player x ε 1..p do
2: calculate the QOE function Q(x,p,v)
3: if Q(x,p,v) ≥ QoEThr then add the server to possible selection list
4: endfor
5: for each possible selection
6: sort servers on network latency to p in asc. order
7: select the server node with minimal latency
8: endfor

Offloading to the Fog Server:
Once the server has been identified the docker image which contains the game server and the
game configurations are offloaded and deployed at the Fog server and the game server kick
starts from the selected Fog node. This makes the proposed gaming model to minimize the
latency from traditional model also since the docker image is created and offloaded all the pre-
requisite for the game will be installed which makes the deployment of the server 10x times
faster compared to the traditional deployment.

9



Figure 3: Workflow of the proposed Gaming Architecture

Communication between the Edge Server and the Thin Clients :
Once the game server starts the IP address of the game server will sent over to the client and
the user actions from the client device are transferred as commands and are sent to the newly
got Fog server IP address, This establishes the communication to stay in between the Fog server
and the player. Additionally, all the user data are uploaded simultaneously to the cloud server
so that the continuity of the user profile will be maintained game server.

The work flow of the proposed architecture is explained in the below steps.

• Initial play request will be dispatched from the thin clients to the cloud game server.

• Cloud game server identifies the Public IP address of the player and sends as an input to
the node selection algorithm.

• Node selection algorithm selects the fog nodes with minimal latency to the user by also
meeting the Quality of user experience threshold limit.

• Fog Node is selected at the edge network of the player and the command to deploy the
container image will be sent to the fog nodes.

• After the container image is deployed, the game server will be ready to host the game in
fog nodes.

• The fog nodes receives the public IP of the player from cloud game server, therefore
the play request will be dispatched to the thin clients and the communication will be
established.

• Once the communication is established, the gamer starts to play the game , and the player
actions are sent over the network to the fog nodes. Command emulator in the fog nodes
transforms the user actions into commands.

• The transformed commands are executed as per game logic. Once the game logic is
applied, the game videos are generated through graphics rendering process.

• Game video will then be encoded through the video encoder and are transferred to the
video streaming service.

10



• The video streaming service sends the encoded game video to the thin clients and the
encoded video will be decoded and the game video will be streamed back to the player
device.

6 Evaluation

6.1 Experiment / Case Study 1

The proposed research is implemented and tested by considering AWS EC2 GPU instance as
the cloud game server. The first-person shooter game Assault cube is considered for the test
case. Gaming Anywhere an open source gaming framework which provides the source code of
the game. The game server is deployed in the AWS Ohio region and the Fog node is considered
as AWS EC2 GPU instance Ireland region. All the dependencies of the game is developed as a
docker file. Additionally the other configurations to build a docker file with graphical windows
and the network configuration to accept the in bound and out bound docker and pushed to
the docker hub. The game request is dispatched from the thin clients located in the Ireland
to the game server located in the Ohio region. The game server identifies the location of the
player and selects the fog node located at the edge network to the player. Game server then
sends the command to initiate the play request along with the docker image to the selected fog
node. The docker image is deployed in the fog nodes and the game is initiated. To evaluate
the performance and the latency of the traditional cloud gaming and the proposed approach
IPERF and PING commands are used. Additionally for CPU performance Phoronix test suite
bench marking tool was used.

Initially the game is made to run on Cloud servers and the result is evaluated and the same
game is offloaded to the edge server and the game kick starts from the edge. Both the results
are examined and the results are displayed below figure. The results are taken by using the
IPERF command from the client machine to the cloud and Fog servers. TCP transfer rate is
identified in Figure 4 through which the transfer bytes for fog server was high compared to
cloud. On the average fog node transferred 14.9mb per transfer where as cloud transfer rate
was only upto 13.2mb. This proves that the proposed edge system has outperformed in terms
of TCP transfer rate thus reducing the latency in the overall cloud gaming model. .

Further to study the performance of the cloud gaming system, the CPU performance was
measured. Phoronix test suite benchmark tool was used to study the CPU performance by run-
ning the Assault cube game in traditional EC2 instance versus Linux-based docker containers.
On examine the chart in figure 5, docker container has shown improvement in terms of CPU
performance when compared to virtual machines. Additionally docker CPU performance does
not vary significantly where as in virtual machine the performance varied.

6.2 Discussion

The proposed system is implemented using Gaming Anywhere open source framework which
was developed in 2014. Since then, the advancement in video encoding and decoding has
grown where as Gaming Anywhere still supports only older version. This makes the gaming
framework outdated. So much efforts were spent in terms of rebuilding the Gaming anywhere
framework. As the advancement in the virtualization is at the peak, efforts can be spent in
terms of virtualizing GPU resources for containers through Kubernetes device plugin can be
studied. This makes cloud gaming more efficient in terms of allocating resources to containers.,

11



Figure 4: Cloud vs Fog TCP Transfer

Figure 5: CPU Performance evaluation Virtual Machine vs Containers

7 Conclusion and Future Work

The proposed system is to minimize the latency in the cloud gaming by offloading the cloud
game server into suitable fog nodes with the help of docker containers. The overall result after
implementation has proved that the Fog assisted cloud game increases the quality of experience
for the user.The improvement of the CPU performance is studied after deploying the game
server in docker containers.The end result of the proposed system is to improve the Quality of
User Experience which is achieved by the help of fog nodes and docker containers. Future work
can be made in terms of allocating virtualized resources to the GPU. One or more containers
can share a single GPU by the help of kubernetes using Device plugin. Further the study can
also be in improving the Node selection algorithm by dynamically allocating containers based

12



on the available regions.

References

Ahmed, A. and Pierre, G. (2018). Docker container deployment in fog computing infrastructures,
2018 IEEE International Conference on Edge Computing (EDGE), IEEE, pp. 1–8.

Cai, W., Chen, M. and Leung, V. C. (2014). Toward gaming as a service, IEEE Internet
Computing 18(3): 12–18.

Cai, W., Chi, Y., Zhou, C., Zhu, C. and Leung, V. C. (2018). Ubcgaming: Ubiquitous cloud
gaming system, IEEE Systems Journal 12(3): 2483–2494.

Cai, W., Shea, R., Huang, C.-Y., Chen, K.-T., Liu, J., Leung, V. C. and Hsu, C.-H. (2016). A
survey on cloud gaming: Future of computer games, IEEE Access 4: 7605–7620.

Choy, S., Wong, B., Simon, G. and Rosenberg, C. (2012). The brewing storm in cloud gaming:
A measurement study on cloud to end-user latency, Proceedings of the 11th annual workshop
on network and systems support for games, IEEE Press, p. 2.

Chuah, S.-P., Yuen, C. and Cheung, N.-M. (2014). Cloud gaming: a green solution to massive
multiplayer online games, IEEE Wireless Communications 21(4): 78–87.

Dhib, E., Boussetta, K., Zangar, N. and Tabbane, N. (2016). Modeling cloud gaming experience
for massively multiplayer online games, 2016 13th IEEE Annual Consumer Communications
& Networking Conference (CCNC), IEEE, pp. 381–386.

Hong, H.-J., Chen, D.-Y., Huang, C.-Y., Chen, K.-T. and Hsu, C.-H. (2014). Placing virtual
machines to optimize cloud gaming experience, IEEE Transactions on Cloud Computing
3(1): 42–53.

Hoque, S., de Brito, M. S., Willner, A., Keil, O. and Magedanz, T. (2017). Towards container
orchestration in fog computing infrastructures, 2017 IEEE 41st Annual Computer Software
and Applications Conference (COMPSAC), Vol. 2, IEEE, pp. 294–299.

Huang, C.-Y., Chen, D.-Y., Hsu, C.-H. and Chen, K.-T. (2013). Gaminganywhere: an open-
source cloud gaming testbed, Proceedings of the 21st ACM international conference on Mul-
timedia, ACM, pp. 827–830.

Joy, A. M. (2015). Performance comparison between linux containers and virtual machines, 2015
International Conference on Advances in Computer Engineering and Applications, IEEE,
pp. 342–346.

Kämäräinen, T., Shan, Y., Siekkinen, M. and Ylä-Jääski, A. (2015). Virtual machines vs.
containers in cloud gaming systems, 2015 International Workshop on Network and Systems
Support for Games (NetGames), IEEE, pp. 1–6.

Lin, Y. and Shen, H. (2016). Cloudfog: leveraging fog to extend cloud gaming for thin-client
mmog with high quality of service, IEEE Transactions on Parallel and Distributed Systems
28(2): 431–445.

Mondesire, S. C., Angelopoulou, A., Sirigampola, S. and Goldiez, B. (2019). Combining vir-
tualization and containerization to support interactive games and simulations on the cloud,
Simulation Modelling Practice and Theory 93: 233–244.

13



Qi, Z., Yao, J., Zhang, C., Yu, M., Yang, Z. and Guan, H. (2014). Vgris: Virtualized gpu
resource isolation and scheduling in cloud gaming, ACM Transactions on Architecture and
Code Optimization (TACO) 11(2): 17.

Raghavendra, M. S. and Chawla, P. (2018). A review on container-based lightweight virtualiz-
ation for fog computing, 2018 7th International Conference on Reliability, Infocom Techno-
logies and Optimization (Trends and Future Directions)(ICRITO), IEEE, pp. 378–384.

Xu, L., Guo, X., Lu, Y., Li, S., Au, O. C. and Fang, L. (2014). A low latency cloud gaming
system using edge preserved image homography, 2014 IEEE International Conference on
Multimedia and Expo (ICME), IEEE, pp. 1–6.

Yadav, H. and Annappa, B. (2017). Adaptive gpu resource scheduling on virtualized servers
in cloud gaming, 2017 Conference on Information and Communication Technology (CICT),
IEEE, pp. 1–6.

Yin, L., Luo, J. and Luo, H. (2018). Tasks scheduling and resource allocation in fog computing
based on containers for smart manufacturing, IEEE Transactions on Industrial Informatics
14(10): 4712–4721.

Zhang, X., Chen, H., Zhao, Y., Ma, Z., Xu, Y., Huang, H., Yin, H. and Wu, D. O. (2019).
Improving cloud gaming experience through mobile edge computing, IEEE Wireless Com-
munications .

8 Appendix

8.1 AWS Instance setup

For experimental setup we have chosen Amazon EC2 instance with Ubuntu as a underlying
operating system.

. Step 1 :- Select AWS EC2 instance with Ubuntu 16.04 AMI

Step 2 :- Select the GPU instance to support graphics acceleration.

Step 3 :- Configure the Inoubound and outbound security connections to support the
traffic flow.

Step 4:- Launch the AWS instance

8.2 Install Docker Container

Step 1 :- Update the packages in the ubuntu EC2 instance created.

sudo apt-get update

Step 2 :- Remove the older version of the docker if present.

sudo apt remove docker-engine docker.io

Step 3 :- Install the docker container

sudo apt install docker.io

14



Step 4 : - Start and enable the docker engine

sudo systemctl start docker

sudo systemctl enable docker

sudo docker version.

8.3 Configure Docker Container for Cloud Gaming System :-

Step 1:- Set up docker graphical desktop to support cloud gaming. To support the graphical
application we need to allow the X-server in the container. Also install the required packages.

sudo apt install xeyes

Also while buildingruning the docker container the special arguments has to be set.

sudo docker run –net-host –env=”DISPLAY”

Step 2 :- Install the Nvdia graphics driver to support the GPU accleration in the cloud
gaming.

sudo apt install NVIDIA driver

Run the graphics driver by sh /tmp/NVIDIA-DRIVER.run
This will install the NVIDIA driver inside the docker contaier which will enhance the GPU
accleration in the docker containers.

8.4 Configure the Gaming Anywhere Frameworkinside docker
container

Step 1 :- Create a docker file which has to contain all the necessary installation setups to build
a docker image of Gaming Anywhere open source frame work.

vi dockerfilename

Step 2 :- Since Gaming Anywhere setup is having dependencies issues, the compiled version
of Gaming Anywhere server framework is placed in the github repository given below.

https://github.com/CloudMaster-Manoj/gaminganywhere.git

Above snippet in Figure 4 is the steps involved in creation of the docker file.

Step 3 ;- Once the docker file is created docker image has to be build from the below
command

sudo docker build -t reponame/tag .

Step 4 Once the docker image has been build successfully,the docker image has to be pushed
into the docker hub.

15



Figure 6: Docker file creation

Figure 7: Node Selection Algorithm

8.5 Offloading the cloud game server to Fog nodes through
Docker Container

Step 1 :- Involves the identification of Fog nodes located at the edge server. This is selected
with the help of Node selection algorithm.

Once the Fog server is selected, docker image has to be pulled from the docker hub.

16



docker pull imagename

Once the docker image is pulled the game server engiene starts the deployment of the game.

8.6 Client Configuration

: -
Step 1 :- Download the prebuild Gaming Anywhere file from the below link

http://gaminganywhere.org/download.html

Change the client configuration based on the Game setup

Step 2 :-
Client game has to be configured and the RTSP client has to be opened to accept the

incoming video streaming from fog server.

Step 3:- Set-up X-server VNC desktop connection to support the streaming service.

8.7 Game play start

Final step is to run the game with the below command

./ga-client config/client.rel.conf Ip-address-of-selected-fognode/desktop

17


	Introduction
	Related Work
	Methodology
	Design Specification
	Implementation
	Evaluation
	Experiment / Case Study 1
	Discussion

	Conclusion and Future Work
	Appendix
	AWS Instance setup
	Install Docker Container
	Configure Docker Container for Cloud Gaming System :-
	Configure the Gaming Anywhere Frameworkinside docker container
	Offloading the cloud game server to Fog nodes through Docker Container
	Client Configuration
	Game play start


