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Enhancement of Network Throughput in SDN Using
Shortest Path Routing Algorithms

Sayali Kapse
x01731279

Abstract

Software-Defined Network has bought a massive change in traditional networks,
which has enabled dynamic adaption and configuration. In data centers, SDN
helps to create a virtual network where the controller forms centralized control
for the entire network, but the network topology used in data centers needs to be
more scalable and flexible to avoid network congestion. Thus, in this project, the
fat-tree network topology is created to find the shortest paths between the source
node and the destination node. Openflow protocol is used for the transmission of
messages. The experiments are performed for a specific time interval to evaluate
the TCP and UDP network bandwidth. Also, a comparison is made between the
two parameters i.e., hop count and delay based on the shortest path. To simulate
the entire network Mininet emulator tool is used to design the network topology,
and the RYU controller is used for packet routing. This research shows that the
network throughput can be improved when the packets transmitted from source to
destination have low hop count and delay(weight).

1 Introduction

Cloud computing today has become an essential and efficient service that provides a
platform to the user for accessing and accumulating required data. It also includes cloud
storage where users can store their required data, which can be used in the future for re-
trieval as well as for analysis. With a close connection to the Internet of Things, the data
routing and storage are controlled by the software-defined system and the cloud platform
(Govindarajan et al.; 2013). On the other hand, for user feasibility, the cloud platform is
also utilized in the form of remote access systems like Software as a Service, Platform as
a Service or Infrastructure as a Service where the user can avail of their required software
and even hardware support. All these services all supported by the Software-Defined
Network, which creates a Virtual Network. This helps for the faster exchange of data
in a network with a high analytical performance that is desired for the data. So, the
Internet of Things, Cloud Service, and Software Defined Network are, in turn, correlated
for the utilization of remote data and to access it for the analytical purpose (Fernández
et al.; 2018).

The purpose of establishing a Software Defined Network is to take control of the net-
work elements like router and switches, which are responsible for data routing. Data
is transferred from one node to another in the network to reach from the source to the
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destination following a particular path. Sometimes if the path is long or there is a phys-
ical presence of a passive device in the route, there are chances of some data loss (Akin
and Korkmaz; 2019). The traditional network of cloud computing contains highly dense
servers and switches that are not controlled centrally. An overview of such a traditional
network and SDN is shown below Figure. 1 where data is coming from cloud computers
and transferred to the user.

Figure 1: Comparison of Traditional Network and SDN.

In the traditional cloud network, there is no specific control over the network device to
generate a decision for the shortest route from the source to destination. Thus, the data is
traversed through the network, and with the availability of the free path, it will be navig-
ated to reach the destination. It means the data routing is executed without any centrally
controlled device. The main drawback of the traditional network is the low throughput
so. There was a need to design a network that can be controlled centrally for the determ-
ination of the path through which the data will be navigated easily and without any loss.
Thus, this is when Software Defined Network has emerged. Software-Defined Network
is the latest technology in the field of cloud computing, which controls the Routers and
Switches using the SDN Protocol. Software-Defined Network or SDN communicate with
the routers and switches using its protocol, known as OpenFlow (Kreutz et al.; 2015).
In OpenFlow control, the routing mechanism contains multiple routing tables which are
designed with multiple packet forwarding rule. So, at the time of packet transaction,
the decision can be taken by the SDN Controller about the rule to be applied. With
the application of such Rules in OpenFlow, different actions like forwarding of packet,
modification of the content of the packet as well as the routing path and dropping of the
packets are performed (Lee and Sheu; 2016a).

Also, (de Oliveira et al.; 2014) addresses that a good simulation environment is also
necessary for simulating large scale networks on a virtual machine. Thus, a Mininet
emulator helps to test, customize SDN networks, and also support default network topo-
logies. In the Software-Defined Network, few parameters determine the performance of
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the operation made by SDN controlled network. They are:

• Scalability: In a traditional network, if additional devices are added, the com-
plexity of the network increases. SDN network scalability feature is dependent
on controller and switches in the network. Scalability in SDN can be achieved
by improving the network throughput and creating a distributed network for data
transmission (Govindarajan et al.; 2013).

• Bandwidth: Network bandwidth is another feature of the network, which allows
the maximum amount of data to be transferred from source to destination or in
other words in between two or multiple nodes. The bandwidth can be controlled and
varied as per the required data density and devices involved (Akin and Korkmaz;
2019). For example, if the device is the Gigabit Ethernet, the speed can be increased
up to 1000 Mbps to 1250 Mbps. With this feature, the desired amount of data can
be transferred within the nodes.

• Security: Security defines the policies that the network adopts for securing the
data within the network. In SDN architecture, the centralized control mechanism
over the virtual network prevents the files and contents of the network from any
external attack or unauthorized access, modification, and misuse of the data (Son
and Buyya; 2018). So, the data become safe during the execution by SDN.

• Flexibility: The network can become efficient if it is flexible in adopting and
managing the traffic distribution and network latency. In SDN architecture, the
network latency and the traffic distribution can be controlled, which are the most
sensitive parameters for the data transaction among the nodes or switches and
routers (Paluck and Jain; 2018).

1.1 Research Problem

In this research, due to the several limitations of the traditional network, the SDN will
be used for the design of the network to manage the resource of it and to take control
for routing purposes. So, the ultimate objective is to find the shortest route from the
source node to the destination node so that the performance of the SDN can be improved
further. The proposed research questions are as follows:-

• Can the proposed algorithm find the shortest path in SDN networks to minimize the
network traffic while sending data packets from source to destination node?

• Can the proposed algorithm improve the network performance which depends on the
hop counts between the switches to transmit the data between two hosts?

1.2 Research Objective

The following research objectives are addressed to reduce the network traffic for packet
transmission from the source node to the destination node. Further, to evaluate per-
formance parameters and ensure Quality of Service (QoS) in SDN, the algorithms are
implemented in the router control plane.

• Objective 1: To determine the TCP and UDP traffic between to nodes.

• Objective 2: To compare the hop count and delay for the shortest path found in
the network.
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2 Related Work

2.1 SDN Architecture Overview

In the traditional network structure, there are three planes, namely, Data Plane, Control
Plane, and Management Plane. These are the layers of the network device to perform
different tasks. As those are connected in a network device, the routing of data is less
efficient because it lacks the decision to detect the path of the data. So, there should
be the alternation of the network paradigm, which is capable of making a decision over
the path of the data traversed in the underlying network by separating the control plane
and the data forwarding plane (Cox et al.; 2017). This makes Software Defined Network
applicable in the field of the virtual or cloud network structure as it is able to make a de-
cision over the network routing centrally with the help of the programming at the control
plane and the data forwarding plane is simplified with its own routing table to transact
off the data suitably (Li et al.; 2018). In SDN architecture, there are three layers involved
to perform different objectives for the data routing with the application of the OpenFlow
Protocol. The brief description of the planes of the SDN architecture are discussed below:

Data Plane: This layer includes the hardware and software components of the router
and switches. The objective of this plane is related to the packet forwarding in between
interfaces or nodes according to the instructions from the control plane. This plane also
involves the MAC address, which shows the address of the packet from where it is trans-
ferred and the location where the packet will be transferred. The plane is also known
as the forwarding plane as it forwards the packet from one node to another node. The
packet is transferred from one hop to another through the router using the routing logic
and tables (Challa et al.; 2017).

Control Plane: The control plane is the integrated part of the network device which
carries the packet and traffic, and this plane is liable for routing of data and packet. This
plane originates from the address of the interface where the packet will be routed. It uses
different routing protocols like BGP, EIGRP, IS-IS, etc. for data routing. This plane
is responsible for deciding the traffic to be sent to the next-hop (Jarraya et al.; 2014).
So, the network algorithm should be executed in this plane so that the intelligent packet
routing can be executed. While executing the algorithm for finding the shortest route for
packet transaction, the control plane can change the routing table as per the requirement.
In the controller layer of the SDN structure, the employed controller is operated in three
separate modes, which prepare a new entry for packet flow and the packet forwarding
among or between the switches. The modes are briefed below:

• The first mode is referred to as the Reactive mode, where the packet flow seeks the
rule from the flow table when it is directed to the switch. If there is no flow observed,
that means there is no rule specified for that flow. The packet is redirected to the
controller using C-DPI rule. The new flow entry is created by the controller for the
recognition of such new routing.

• The second mode is referred to as the Proactive mode. In this mode, all the possible
combination of the packet routing is pre-set in the flow table, and thus, the switches
know the direction of the packet routing. In this case, for the creation of the new
entries of the flow table, the controller is not involved.
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• The third mode contains the Hybrid model. This mode is the combination of
the previous two modes and works alternatively as per the flow entries specifica-
tion (Karakus and Durresi; 2017).

Management Plane: This plane is responsible for the device configuration by using
different protocols like SNMP or SSH. The packet is routed through the configured device
that is controlled by the centralized OpenFlow protocol in SDN.

2.2 OpenFlow Protocol in SDN

OpenFlow is the specific protocol that is exclusively used and standardize in Software-
Defined Network (Jarraya et al.; 2014). OpenFlow is specifically defined for communica-
tion in Software Defined Network that makes the SDN Controller interact directly with
the data forwarding plane and to work with the network devices like routers and switches
in both the Virtual and Physical network configuration. SDN Controller works as the
central brain of the network, which drives the network with its defined protocol. In a
Software Defined Network, if any device wants to connect with the network component,
the communication should be made through the OpenFlow network (Paluck and Jain;
2018). In Software Defined Network, OpenFlow is used for controlling the hardware by
providing instruction of routing. In this case, the Switches and the Routers are instructed
to select the path and the flow of the packet. So, the entire network will be entirely man-
aged by the administrator (Jesús Antonio Puente et al.; 2018). Apart from the OpenFlow
Protocol, the Software-Defined Network contains two more entities, namely, OpenFlow
Switch and the external controller. These latter two are controlled by the OpenFlow
Protocol.

The routing of the packet is controlled and decided by configuring the routing table,
and that routing table is basically the result of the soft definition of the OpenFlow
Protocol (Challa et al.; 2017). The switches of the OpenFlow protocol and is categorized
on the basis of the requirement made in two layers of the network, namely, Layer2 Layer3,
where the traffic is redirected by the Legacy Protocol. The legacy protocol is used for
the packet redirection in Ethernet, Router, and Switches and using LLP or Lower Layer
Protocol and RPST or Rapid Spanning Tree Protocol. When one or more packets are
coming towards a Switch and need to be redirected to the destination address, these two
protocols help to redirect this, and the decision is made by the OpenFlow Protocol. The
address is checked from the packet header, and the data can be retrieved from the packet,
which is encapsulated. Depending upon the address, the packet is redirected (Karakus
and Durresi; 2017).

2.3 Scalability Issues In SDN Control Plane

(Karakus and Durresi; 2017) and (Govindarajan et al.; 2013) did a survey about the
network scalability issues for the SDN architecture. The issue of the scalability occurs
due to several reasons like separation of Data Plane from Control Plane, a number of
requests and events managed by the controller, and the associated communication delay
between controller and switch. The reasons are briefed below:

5



Separation of control plane and data plane: The control plane in the SDN
architecture makes the decision for the packet routing around the network, and finally,
the packets are redirected to the specific destination by observing the flow table through
the data plane. Thus, the data plane is not eligible to make the decision for the flow
control, and all the flows are controlled in the SDN architecture remotely. So, the separ-
ation of the data plane and the control plane create the network scalability issues in SDN.

Amount of Request and Event management: The desired network should be
dynamic in terms of the number of devices being operated. If more devices are added,
the number of requests and event handling will be higher. So, with the increase in the
number of the hosts and switches, the load of the controller will also be increased. Thus,
this will affect the computational resource of the controller that can lead to undesired
load balancing, or there are chances that all the requests or events cannot be processed
by the controller.

Controller-switch communication delay: This issue is created by the distance
factor between the devices in the network and Controller. The high will be the distance,
the latency time will be higher, and this will affect the Round-Trip-Time of the packet
forwarding in the network. This leads to the delay in communication between the two
entities.

2.4 SDN Packet Routing Frameworks

In a network, the routing algorithm determines all possible paths and finally select the
best one. These routing algorithms can be characterized into different parameters like
time is taken to reach the destination. A routing algorithm is said to be more efficient
when the traffic across multiple links is reduced and, the links used to divert the traffic
improve the network throughput (Lee and Sheu; 2016b).

Frameworks in the Software-Defined Network are designed to eliminate the drawbacks
of the scalability issue in the network and to minimize the communication delay between
the Controller and Switch and the network device. Those drawbacks eventually create
drawbacks like Path Congestion and packet loss. MPLS or Multi-Protocol Level Switch-
ing is generally used as the remedy for the minimization of the communication time (Lee
et al.; 2015). Now to avoid traffic congestion, the best way is to find the shortest path
between two nodes in the network tree. In this technique, primarily, the network will
find and create the network topology through which the packet transaction will occur,
and after that, in the second step, it finds all possible paths between these two nodes
and compute the optimal path through which the packet transaction will happen. Lastly,
after the creation of the topology and path detection, the set of flow control rules are
prepared so that the switch will follow the shortest path and packet will travel through
the less congested real-time path (Akin and Korkmaz; 2019).

(Jiang et al.; 2014) has introduced the technique to find the shortest path in the
Software-Defined Network with the modification of the existing Dijkstra Algorithm. In
this paper, they have considered the Edge weight as the general Dijkstra Algorithm does,
and additionally, they have considered the Node weight also in the graph underlying
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the Software-Defined Network. As the Dijkstra works for the unweighted graph in the
network, with the consideration of the node weight and with the implication of the Abi-
lene Network topology for the end-to-end latency, the analysis was done on the directed
graph. They have shown their simulation using Mininet Tool, and it was found that this
extended Dijkstra Algorithm is outperforming other algorithms.

(Sun et al.; 2016) have shown the path planning with the application of the extended
Dijkstra Algorithm for the weighted and directed graph where the strategies are followed
that were implicated in (Jiang et al.; 2014). Using the algorithm and with the applic-
ation of the heuristic search, they have established the path planning for the weighted
and directed graph by recovering all the possible drawbacks that can be found in the
existing algorithms like Dijkstra’s. Thus, the shortest path is the critical issue for the
Software-Defined Network, which acts as a crucial parameter to define the efficiency of
the network topology.

The currently used shortest path algorithm performance is hampered as the network
size is increased. As these algorithms run shortest path queries for each flow, the per-
formance is decreased. The shortest path is over-utilized, choking the bandwidth. The
rest of the links are idle. In some cases, the selection of the shortest path does not
optimize network performance. The SDN controllers check for the shortest path even
in large-scale networks. If the network size is large, the central query on each flow is
time-consuming. Hence, Graph compression is introduced, which improves the path cal-
culation. The large-scaled network is scaled down, maintaining the critical parameters.
The best path is calculated on this scaled-down graph, and later it is implemented in a
large scale network. It calculates the bandwidth of all links and selects the most optimum
path (Li et al.; 2018) and (Xu et al.; 2016). The scaled-down version of the network
reduces redundant nodes and edges, which helps in the faster calculation.

3 Methodology

In this research, the primary objective is to increase the network throughput by designing
the shortest path algorithm, where there is the successful routing of data packets from
the source node to the destination node without any network congestion. If the number
of nodes is increased, the load of the network will be increased, and thus, the static
routers and the tables will not be able to control all the newly added nodes or devices.
This creates link failures and network congestion in SDN (Lin et al.; 2016). Thus with
the implication of SDN and the OpenFlow protocol, the network can be managed more
efficiently. The controller in SDN is the central brain of the network where all the network
information and path computation is done. Figure. 2 below explains how the incoming
packets at the switch are forwarded from source to destination via the SDN controller.
Thus, the section further explains the methods taken into consideration for implementing
the shortest path algorithm.

3.1 Building of Platform

In this project, the algorithm is implemented in the virtual environment that is created
by the Oracle Virtual Box. In the Virtual Box, Ubuntu 16.04 is installed for creating
the operating environment for the simulation. The simulation of the network is done
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Figure 2: Packet Forwarding from Source to Destination

using a Mininet simulator, which is capable of creating the network environment and
the relevant simulation within the scope of the virtual environment. The framework is
designed where network topology is created to find the shortest path between the source
node and the destination node. The framework is segregated into different layers of the
network, and in each layer, there are some network components present which define
the data routing partially. The bottom layer contains the data plane layer in which the
mininet simulation environment is installed. So, all the network creation will be done
here. The upper section or layer contains the Network Control Layer, where the Ryu
Controller is installed where the routing control is done in this layer. So, below are the
description of the required simulation components and the environments (Zhang et al.;
2017).

3.1.1 Mininet

In a virtual environment to simulate a large network, Mininet is the open-source network
simulator for Software Defined Network. The primary reason to use the Mininet is that
it supports OpenFlow Protocol, which is essential for the network configuration and
computation for Software Defined Network. It also provides an inexpensive platform
for developing, testing, and creating custom topologies in the network. The remarkable
features of Mininet1 are:

• Mininet is not sensitive to a specific programming language. So, any programming
language can be used for the creation of the network topology within the scope of
the environment.

• Mininet is capable of virtualizing the network topology in the virtual system of the
host, and when the topology executes, the relevant source code will not be modified.
So, the network topology can be created easily within the environment.

• The network that is created within the mininet simulator is done in real-time, and
so the real-time network topology can be created and so the simulation can be done
in real-time.

• Mininet is feasible to add huge numbers of hosts and nodes into the network, and
thus, the dense network can be created in real-time.

• The network that is designed using Mininet can act as the real network. It means
the behavior of the designed network supports the features of the real network
devices.

1http://mininet.org/overview/
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• Mininet is Open Source, and the use of the Mininet in the virtual Box does not
draw any credential and, thus, easy to use for this design.

3.1.2 RYU Controller

Ryu controller is basically the SDN Controller, which works as the main controlling device
in the SDN. It makes control over the switches and the devices. Additionally, it controls
the flow table so that the packet can be routed throughout the network using the Switch
Control. The approach of using Ryu Controller in this project is that Ryu Controller
can be easily programmed with Python language and is supported by the OpenFlow
protocol, which is essential for the design and packet routing operations (Asadollahi
et al.; 2018). Figure. 3 below represents how the RYU controller acts as a mediator
between the application plane and data plane in SDN.

Figure 3: RYU SDN Framework.

3.1.3 Iperf and Gnuplot Tool

Iperf is a network performance tool that is used to measure the bandwidth and datagram
loss in a network. This project measures the Transport Control Protocol (TCP) and User
Datagram Protocol (UDP) network throughput and data streams. The iperf tool helps
to measure the network performance by creating a client and server functionality for both
source and destination node. The gnuplot tool is used to plot the graph for TCP and
UDP traffic.
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4 Design

This section explains about the algorithmic flow and the network topology design used
in the proposed project.

4.1 Algorithm Description

The aim of the routing algorithm is to identify all available network paths in the topo-
logy and discover the best and the shortest path with the least cost in order to route
the large flow. All the flow will be pushed to the switches and forwarded accordingly.
The algorithm is calculating the transmitted and received bytes on the switch ports and
further calculating the computational cost of all the paths to get the minimum cost to
reach the destination.

The ArpHandler class in the controller is used to initialize the information of net-
work topology. The create interior links function gets all the links of the source and the
destination ports. The packet in handler function checks if the packet contains all the
packet header information. If it is present, the algorithm is executed, and if not, the
packet is dropped. When the MAC address of source node and destination node match
all the packet header, information is passed to install path function. Finally, the packet
is sent to the destination node, and the datapath is printed. The Process flow of the
algorithm can be seen in the Figure. 4 below:

Figure 4: Algorithm Flowchart.
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4.2 Network Topology Specification

Mininet can be used to create the network topology using the node, edges, and the host
that are discussed in the previous section. While the creation of the network topology,
the Ryu controller will be acting as the interface controller, and thus, the packet routing
can be taken place in that network design. In this project, Fat-tree network topology is
designed with the following specifications:

• 8 Hosts

• 20 Switches

• RYU Controller

As network throughput and fault tolerance are the main objectives of data networks;
thus, Fat-tree topology is used in SDN Open flow protocol (Raghavendra et al.; 2012).
In this topology, all the switches are interconnected to each other, forming a three-layer
architecture of switches: core switches, aggregation switches, and edge switches (Wu
et al.; 2016). The graphical representation of Fat-tree topology used in this project is
shown in Figure. 5 below:

Figure 5: Fat-tree Network Topology.

The ryu manager helps to load the shortest path algorithm files in the RYU controller.
It observes links that are formed between hosts and switches and get the shortest path
for hop count and delay.
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5 Implementation

This section explains the steps taken to implement the proposed shortest path algorithm.
To achieve efficient utilization of network resources, the Mininet tool is used for network
topology generation that interacts with the RYU controller for sending messages to the
destination node. The hosts and switches are controlled by the Controller with the help
of flow tables (Ortiz et al.; 2016). In order to choose a suitable path, the algorithm
suggested, and network traffic is monitored by the Controller.

5.1 Topology Generation

The controller in SDN stores all the information of network topology. And the proposed
algorithm is used to find the shortest path for the available network topology. Figure. 6
below represents that the network is established between the host and switches. To
check the connectivity, the pingall command in the mininet displays the connectivity
between every host in the system and tests whether every host is active and reachable
to each other. If the hosts are active, it shows 0% dropped, and all the packets are
received. Sometimes pingall command may take about 30 minutes or more to complete
the connection between the hosts. The links between the hosts and switches are set to
0.20 Mbit, 0.10 Mbit, and 0.05 Mbit bandwidths for the transmission of data packets.

Figure 6: Network Topology in Mininet.
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5.2 Communication between Mininet and RYU Controller

To create a connection between network topology and controller, the switches commu-
nicate with the controller using the default port 6633. Each switch in the topology is
assigned a unique port for keeping track of packages sent. In this project, 20 Openflow
switches are connected to 8 hosts. Out of these 20 switches, 4 switches from S1001 to
S1004 are the core switches then, 8 switches from S2001 to S2008 are the aggregation
switches, and the last 8 switches are edges switches which are connected to 8 hosts in the
network. To calculate the shortest path for the fat-tree topology, the controller script is
executed. Figure. 7 below states that all the topology switches and ofp handler events
are loaded for the sending and receiving packets between the switches.

Figure 7: Controller Files loading.

6 Evaluation

This section presents the outcome for the packet transmission between the source node to
the destination node. The performance parameters considered for the packet simulations
are Hop count, Delay (weight), Path bandwidth (throughput), Packets transferred, and
Time.

6.1 Shortest Path Computation

In SDN, the shortest path is determined based on Open shortest Path First (OSPF),
which communicates with the Openflow controller and routers in the network. The packet
information is stored in ARPHandler in the controller, which is based on the Address
Resolution Protocol (ARP). As the controller operates in two modes, i.e., proactive mode
and reactive mode. In the proactive mode, the controller gets the information from
switches, and in the reactive mode, the switches forward the ARP request to the controller
and compute the shortest path.

6.1.1 Shortest Path with Hop Count

Figure. 8 evaluates the shortest path for H001 and H008. The hop count for path ”H001
to H008” and ”H008 to H001” is ”5,” which is the same. But, the path of packet flow
through the switches is different.
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Figure 8: Shortest Paths between (Host1 and Host8).

6.1.2 Shortest Path with Delay

Figure. 9 evaluates the shortest path for H001 and H008. The delay (weight) for every
path from hosts H001 to H008 is calculated. But,the delay with least is the shortest path
for packet transmission. In this Figure. 9 the path whose is delay : 913 is the shortest
path.

Figure 9: Shortest Paths between (Host1 and Host8).

6.2 Experiment Results

6.2.1 Network throughput and Response Time

The bandwidth in the network is measured using the iperf tool. The controller in SDN
uses RYU handlers and decorators for sending OpenFlow messages between the nodes.
With the iperf tool, the TCP throughput along with UDP throughput and data loss is
measured by sending and receiving TCP and UDP packets between pair of hosts. Also,
the time taken by both TCP and UDP is calculated for data packets sent and received.

• Case Study 1 : TCP Throughput Measurement

The TCP packet transmission is carried out between two hosts i.e., H001 and H008.
The H001 is set to client mode where the TCP packets are sent to H008 for a default
85.3 KByte window size, and it calculates the time and bandwidth for the amount of
data sent. On the other side, H008 is set to server mode, which receives the TCP packets
and calculates the same bandwidth and time for the data received. The Figure. 10 below
represents as Client and Figure. 11 represents as Server. Thus, the average throughput
between the time interval 0 - 45.2 sec sent from H001 (10.0.0.1) to H008 (10.0.0.8) is 92.8
Kbits/sec. And the total packet transfer is 512 KBytes.
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Figure 10: TCP traffic for Host1

Figure 11: TCP traffic for Host8

• Case Study 2 : UDP Throughput and Data Loss Measurement

Similarly, the TCP packet transmission is carried out between two hosts, i.e., H001
and H008. The H001 is set to client mode, where the UDP packets are sent to H008
with a 10M sending rate. It calculates the time, bandwidth for the amount of data sent.
It also calculates the messages sent. On the other side, H008 is set to server mode,
which receives the UDP packets and calculates the same bandwidth and time for the
data received. Figure. 12 below represents as Client and Figure. 13 represents as Server.
Thus, it can be stated that the average throughput between time interval 0 to 17.5 sec is
136 Kbits/sec with 291 KBytes of data sent. Also, 203 datagrams of messages were with
few data loss after 10 tries.
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Figure 12: UDP traffic for Host1

Figure 13: UDP traffic for Host8

• Case Study 3 : Comparison of TCP and UDP Measurement

In a network, the performance of packet transmission from source to destination is
dependent on the bandwidth of data and the average data rate of packets transferred.
In general, the difference between TCP and UDP bandwidth is that the amount of data
generated in a network is calculated by TCP, while in UDP, the rate of data to be
transmitted needs to be defined. Figure. 14 and Figure. 15 represents the throughput for
a specified time interval. The graph is plotted using gnuplot tool where X-axis is set to
”Time (sec)”, and Y-axis is set to ”Throughput (Gbps)”. Thus, It can be stated that
for TCP, the bandwidth keeps on fluctuating, and the highest bandwidth measured was
around 119.8 Gbps at 0 to 2 sec time interval. While for the UDP, the highest bandwidth
was 58.8 Gbps at 0 to 2 sec time interval.
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Figure 14: TCP Throughput

Figure 15: UDP Throughput

• Case Study 4 : Comparison of Hop Count and Delay

In a network, the hop count is dependent on the number of switches that a packet
transmits between the source and destination. It the distance measured in the network
based on the number of networking devices (switches). In general, if the hop count is
less, it cannot be stated that the packet transmission between the source and destination
will be faster. Also, if the hop count is high, it might transfer packet faster via different
paths. The delay is the weight of the links in the network. In this project, the delay for
all the paths in the network is calculated, and finally, the delay with the least weight is
the shortest path. Figure. 16 represents the comparison of hop count and delay of the
network for the transmission of the packets from source to destination. The hop count
with ”3” are all grouped, and similarly, hop count with ”5” are grouped together. The
graph also represents the delay for every shortest path calculated.
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Figure 16: Hop Count and Delay Comparison

6.3 Discussion

In this project, experiments were performed based on four case studies. The simulation
results show that the proposed algorithm finds the shortest path for fat-tree topology. The
shortest path found is based on two parameters of network hop count and delay, which
further determines the TCP and UDP bandwidth of the network. While performing these
experiments, it was found that not all the time connectivity was established between the
hosts. Also, in case study 3, not all the data packets were sent for UDP traffic, there was
some data loss after 10 tries. In case study 4, it can be found that for every hop count for
the hosts in the network was 3 and 5; also, the delay for every path kept on fluctuating.

7 Conclusion and Future Work

Today SDN has changed the traditional network into a more flexible and programmable
platform that creates and supports virtualization of large networks. In SDN, though sep-
aration of data plane and control plan has improved the network performance, but due to
network traffic in the control plane, the bandwidth(throughput) is reduced. Thus, in this
project, a virtual simulation environment was created where path selection is made for
packet transfer from the source node to the destination node. The proposed algorithm
implemented for fat-tree network topology brings to the insights that the shortest path
with least hop count and delay improves the network throughput.

In the future, this project can be enhanced using Layered Shortest Path Algorithm
for different custom network topologies and different controllers. Also, this project is
implemented on local machines considering a small network of 8 hosts and 20 switches
so, in future Wide Area Network can be considered.
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8 Appendix- Configuration Manual

8.1 Introduction

In the proposed project, an algorithm is developed for routing a packet from the source
node to the destination node in the SDN network. This configuration manual explains
the steps taken to implement the shortest path algorithm.

8.2 Installation Prerequisite

To achieve efficient network throughput in SDN, the section below explains the simulation
environment set up for the evaluation of results.

8.2.1 Operating System Environment

In this project, Intel Core i5 8th Gen machine with 8GB RAM is used as a host machine.
On this to create a cross-platform virtualization Oracle Virtual Box is installed. Later
Ubuntu 16.04 operating system is installed on Oracle VB.

8.2.2 Mininet

It is a network simulator tool that creates a virtual network on a single machine and
connects multiple hosts and switches. Run the following command in the terminal to
download source code for Mininet 2 from GitHub.

$ git clone git://github.com/mininet/mininet

To create a network topology Mininet tool creates a link between hosts and switches.
In this project, fat-tree topology is created using ”8 hosts” and ”20 switches”. This to-
pology is controlled by a remote-controlled to form communication between every host
and switch. To run the topology file go to the folder mininet, i.e. ”cd mininet/custom”
and run the following command:

sudo python tree topology.py

• Hosts and Switches Initialized and Topology Creation:

The class Fattree is created as shown in Figure. 17 and all the Core switches,
Aggregation switches, and Edge Switches are initialized. The hosts are defined on
the basis of edge switches density.

The code below Figure. 18 shows that every layered switch is connected to each other,
and the last layer edge switches are connected to hosts.

2http://mininet.org/download/
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Figure 17: Topology Initialized

Figure 18: Links created Code

The code below Figure. 19 shows the creation of fat-tree topology.

Figure 19: Topology Code

8.2.3 RYU Controller

To create links and communication between hosts and switches, the RYU controller is
used in this project. It is used to write the shortest path algorithm code in python. Run
the following command in the terminal the command to download source code for RYU
3 from GitHub.

3https://osrg.github.io/ryu/
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$ git clone git://github.com/osrg/ryu.git

In the RYU controller, the shortest path code is written for hop count and delay.
It contains four different files in two different folders. These files are located in ”cd
/ryu/ryu/app/shortest-path-hop” and ”cd /ryu/ryu/app/shortest-path-delay. After ex-
ecuting the topology creation command in one terminal. Open another terminal and run
the following command for first executing the shortest path algorithm for hop count.

ryu-manager shortestpath-hop.py –observe-links

• ARPHandler and Shortest Path Initialization and Creation

When the file is executed, the ARPHandler app class is created and initialized
(Figure 20) to all the information on network topology. The class initialization is
the same for both the shortest path files.

Figure 20: ARPHandler Class created

After the ARPHandler app is initialized (Figure 21), the Class ShortestPath from the
shortest path files is initialized where all the information of paths is stored in datapaths.
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Figure 21: Shortest Path Class created

The shortest path for hop count is calculated based on the following code Figure. 22

Figure 22: Shortest Path Hop Count Code

Similarly, after executing the algorithm for hop count again follow the same com-
mands from the creation of network topology and then run the following command for
executing the shortest path algorithm for the delay.

ryu-manager shortestpath-delay.py –observe-links

The code below Figure. 23 explains the logic to set the shortest path for the delay.

8.2.4 Iperf Tool

To check the performance of the network after executing the algorithm, Iperf tool is used
for evaluating TCP and UDP traffic. From the terminal where mininet shell is running,
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Figure 23: Shortest Path Delay Code

use xterm h008 and xterm h001 command to open the node windows. Then create node
h008 as server and h001 as a client. Execute the following commands for TCP traffic
from root:

• For h008 : iperf -s -p 5566 -i 1 > output

• For h001: iperf -c 10.0.0.8 -p 5566 -t 15

In this command s denote server, p denote port number, i and t denote time, and c
denote client. The results are redirected to the ”output” file.

Execute the following commands for UDP traffic from root:

• For h008 : iperf -s -u -p 5566 -i 1 > udpoutput

• For h001: iperf -c 10.0.0.8 -u -b 10M -t 15 -p 5566

In this command s denotes server, u denote udp server, p denote port number, i and
t denote time, c denote client and b denote packet sending rate.

8.2.5 Gnuplot Tool

To plot a graph for the evaluation results based on network throughput vs. time in TCP
and UDP gnuplot tool is used. To install gnuplot execute the following command in a
new terminal.

sudo apt-get install gnuplot-nox

To plot the results initially execute the following command:

• For TCP from node h008:
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• For UDP from node h008:

Then from the h008 terminal node run gnuplot, which redirects to gnuplot shell. The
shell starts and executes the following command for TCP and UDP:

plot ”new output” title ”TCP Flow” with linespoints”

plot ”new result” title ”UDP Flow” with linespoints”

Run set xlabel ”Time (sec)” to set X-axis and set ylabel ”Throughput (Gbps)” to set
Y-axis.

8.3 Proposed Shortest path Analysis

After executing the commands from Section. 8.2.3, the hop count for every shortest path
between all hosts is taken down in excel. Similarly, the least delay (weight) for every
shortest path is taken down in excel. This data is further imported to the Visualization
tool Tableau for analysis. A bar graph is plotted, as shown in Figure. 16. Thus, from the
graph, it can be stated that most of the shortest paths have hop count 5, and the delay
is different for every shortest path.
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