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Abstract: Recently, the demand for remote sensing image retrieval is growing and attracting the
interest of many researchers because of the increasing number of remote sensing images. Hashing,
as a method of retrieving images, has been widely applied to remote sensing image retrieval.
In order to improve hashing performance, we develop a cohesion intensive deep hashing model for
remote sensing image retrieval. The underlying architecture of our deep model is motivated by the
state-of-the-art residual net. Residual nets aim at avoiding gradient vanishing and gradient explosion
when the net reaches a certain depth. However, different from the residual net which outputs
multiple class-labels, we present a residual hash net that is terminated by a Heaviside-like function
for binarizing remote sensing images. In this scenario, the representational power of the residual net
architecture is exploited to establish an end-to-end deep hashing model. The residual hash net is
trained subject to a weighted loss strategy that intensifies the cohesiveness of image hash codes within
one class. This effectively addresses the data imbalance problem normally arising in remote sensing
image retrieval tasks. Furthermore, we adopted a gradualness optimization method for obtaining
optimal model parameters in order to favor accurate binary codes with little quantization error.
We conduct comparative experiments on large-scale remote sensing data sets such as UCMerced and
AID. The experimental results validate the hypothesis that our method improves the performance of
current remote sensing image retrieval.

Keywords: remote sensing image retrieval; deep hashing; residual net; cohesion intensive;
gradualness optimization

1. Introduction

1.1. Background

The data set volume of remote sensing images has been expanding rapidly [1–3]. Remote sensing
images have a wide range of applications including remote sensing scene classification [4] and
scene-driven object detection [5]. It is difficult to efficiently find one image with specific content
in an extremely large data set. Therefore, effective retrieval based on content has become one important
problem in the literature of remote sensing. Content-based image retrieval (CBIR) extracts the content
information of images and retrieves them by matching the content information between images.
CBIR reduces the process of manual annotation and improves the retrieval efficiency. It has been
widely applied in disaster prevention, soil erosion monitoring [6], etc.
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As one class of CBIR, hashing is a family of quantization techniques and enables efficient and
effective retrieval of target remote sensing images [7]. It quantizes remote sensing images into
fixed-length binary codes, which are referred to as hash codes. In hash-code-based retrieval operations,
the hash codes are used for efficiently measuring the distance between images, and the images having
small distance with the inquiry image are returned as retrieval results. Benefiting from the binary
representations, hashing-based image retrieval renders a fast retrieval speed with simple operations.
Conventional hashing methods such as locality sensitive hashing (LSH) [8], spectral hashing (SH) [9],
and iterative quantization (ITQ) [10] have been applied to various tasks including image retrieval.
Luka et al. [11] were among the first to introduce hashing into remote sensing image retrieval by
proposing an improved LSH-based image hashing method. Demir et al. [12] developed a kernelized
locality sensitive hashing (KLSH) and a supervised hashing model with kernels (KSH) for retrieving
remote sensing images. Li et al. [13] proposed an unsupervised partial randomness hashing (PRH)
method. Li et al. [14] developed an online hash algorithm which is capable of processing continuously
updated image data.

Most of the conventional hashing methods rely on the hand-crafted image features.
The hand-craft image features refer to those extracted by hand-craft feature extraction algorithm
such as scale-invariant feature transform (SIFT) [15] and GIST [16]. Hand-craft image features are
extracted based on image contents, not for a specific task. Hand-crafted image-feature-based image
hashing methods hardly satisfy requirements of image retrieval tasks because such features have
limited representation capability. Differently from conventional hashing methods, deep-learning-based
hashing methods learn hash codes from image deep features, which are extracted by neural networks
without human interaction and are, thus, more representative. Recently, researchers have applied
deep learning methods to remote sensing field and achieved good performance [17,18]. Specifically,
convolutional neural network (CNN)-based hashing schemes [19,20] have been widely used in remote
sensing image retrieval.

1.2. Motivation

Straightforwardly applying existing deep learning models to hash code generation cannot
sufficiently characterize the sophisticated data metrics concerning large-scale remote sensing data sets.
The reasons for this limitation are two-fold. Firstly, data imbalance arises in remote sensing image
retrieval. In deep hashing task, the loss is computed with respect to pairs of images. In the training
process, each image in the data set is compared with other images to compute the loss. This leads
to a problem that the number of image pairs from one common class is far less than those from
different classes. This is the data imbalance problem investigated in our work. In this scenario, it is
unreasonable to treat images from one common class and those from different class images equally in
the loss function. Secondly, the activation functions in most deep neural network models generate
continuous outputs and are not suitable to produce hashing codes, which are discrete in nature.
The continuous activation induces unexpected error to the final binarization for hashing.

1.3. Contribution

In order to address the above limitations, we develop a cohesion intensive deep hashing (CIDH)
model for remote sensing image retrieval. Specifically, we make three contributions. Firstly, we exploit
the architecture of the state-of-the-art residual net for developing a novel residual hash net which has
effective representational power. Secondly, in order to address the data imbalance problem, we develop
a cohesion intensive loss function, which intensifies the intraclass cohesion of hash codes, for effectively
training the residual hash net. Specifically, the cohesion intensive loss function makes the hash codes
generated by one common class remote sensing images have short Hamming distance. Last but not
least, we replace the continuous activation functions by a Heaviside-like function, which outputs binary
values and is capable of eliminating the error caused by continuous activation function. Experimental
results validate the effectiveness of our CIDH model.
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2. Cohesion Intensive Deep Hashing

Let {(Ii, Ji)|i = 1, 2, ..., N} denote a set of remote sensing images, where Ji represents the class
label of the remote sensing image Ii. These labels are provided by professional organizations. N is
the number of images in the data set. We will present a cohesion intensive deep hashing model for
converting the remote sensing images into K bit binary codes B = {b1, b2,..., bN}, where bi ∈ {−1, 1}K

is the hash code for the ith remote sensing image.

2.1. Residual Hash Net

We present a deep net architecture for generating remote sensing image hash codes. Though a
deep net tends to lead to a great representational power, gradient vanishing or gradient explosion
becomes severe when the net reaches a certain depth. Once the performance on the training set
saturates, the net suffers from degradation problems. Residual nets [21] have been proposed to
overcome the defects of net deepening by allowing the original output information transmitted directly
to immediate layers. In this scenario, the residual net exhibits greater representational power than
existing deep nets and achieves state-of-the-art performance for image classification.

However, it is inappropriate to straightforwardly apply the residual net to hashing, because the
outputs of the residual net are not binary codes but multiple class labels. For binarizing remote sensing
images, we improve the residual net architecture and present a residual hash net whose outputs are
binary codes, as shown in Figure 1. Similar to the residual net, our residual hash net consists of a
convolutional layer (Conv1), four residual blocks (Res-Block1, Res-Block2, Res-Block3, Res-Block4),
and a fully connected layer (Fc1). One residual block has a unique internal structure with several
residual units and one residual unit has a certain number of convolutional layers, as shown in Figure 2.
Different from the residual net, the fully connected layer of our residual hash net is activated by a
Heaviside-like function and outputs K-bit binary codes for hashing. The architecture configuration
of the residual hash net is specified in Table 1. The residual hash net comprehensively exploits the
representational power of the residual net for the purpose of hashing remote sensing images.

Most existing deep hashing models use sigmoid as the activation function of the final fully
connected layer, and are thus unable to output exact binary codes. Replacing the sigmoid by the
Heaviside function is one approach to binary code generation.

However, the Heaviside function is nonlinear and nonconvex, which may cause gradient
vanishing in training the net with back propagation. To address this deficiency, we do not simply
use the Heaviside function but exploit a Heaviside-like function. The gradualness optimization
method [22] is used for approximating the Heaviside function. Specifically, we use the continuous
function tanh(τy) with a positive scaling parameter τ and the Fc1 output y for Heaviside approximation.
As τ increases, tanh(τy) gradually approaches sgn(y), as shown in Figure 3. The approximation is
formulated as follows:

lim
τ→∞

tanh(τy) = sgn(y) =
{
+1, y≥0;
−1, y<0. (1)

We commence the training procedure of the residual hash net by setting τ1 = 1 and training the
network up to convergence. This accomplishes stage 1 in Figure 3. We then repetitively train the net
up to convergence with respect to an increasing τ. This drives the Heaviside-like function to vary from
stage 2 to stage T in Figure 3. Consequently, the residual hash net outputs accurate K bit hash codes
of an image with little quantization error. We refer to the residual hash net along with the training
strategy subject to the cohesion intensive loss function as the cohesion intensive deep hashing model.
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Figure 1. The residual hash net consists of a convolutional layer (Conv1), four residual blocks
(Res-Block1, Res-Block2, Res-Block3, Res-Block4), and a fully connected layer (Fc1). A Heaviside-like
function plays the role of the activation function for binarizing the outputs of Fc1. One input of the
network is a remote sensing image, and the corresponding output is a piece of K-bit binary code
for the image.
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Figure 2. A residual block: Res-BlockQ {Q = 1,2,3,4} represents a residual block, which consists of p
residual units. For Res-Block1, Res-Block2, Res-Block3, and Res-Block4, p is 3, 4, 6, 3, respectively.
A residual unit contains three convolution layers. A residual unit takes both the input and output of its
previous residual unit as the inputs.

Table 1. Residual hash net configuration.

Layer Configuration

Conv1 7 × 7, 64, Stride 2

Res-Block1

 1× 1, 64
3× 3, 64

1× 1, 256

× 3, 3× 3 max pooling

Res-Block2

 1× 1, 128
3× 3, 128
1× 1, 512

× 4, 3× 3 max pooling

Res-Block3

 1× 1, 256
3× 3, 256

1× 1, 1024

× 6, 3× 3 max pooling

Res-Block4

 1× 1, 512
3× 3, 512

1× 1, 2048

× 3, 3× 3 max pooling

Fc1 K dimensions, average pooling
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Figure 3. The process of tanh(τy) gradually approaching sgn(y) as τ increases, where 0 < τ1 < τT < ∞.

2.2. Cohesion Intensive Loss Function

We describe how to develop loss functions for training the residual hash net presented in
Section 2.1. For the image data set {(Ii, Ji)|i = 1, 2, ..., N}, we define C =

{
cij
}N×N as a common

class indicator matrix. Specifically, for the ith and jth images, if Ji = Jj, cij is 1 and 0 otherwise.
The inner product bi

Tbj is related to the Hamming distance. A big bi
Tbj value reflects a small Hamming

distance. The conditional P(cij|bi, bj) of the common class indicator cij given the hash code pair {bi, bj}
is modeled in terms of multinomial logistic regression as follows:

P(cij|bi, bj) =
(eλbi

Tbj)
cij

1 + eλbi
Tbj

, cij ∈ {0, 1}. (2)

The parameter λ is a normalized parameter to control the inner product value of bi and bj in the
interval (−1, 1) when generating different length hash codes. In experiments, lambda is empirically
set to be 1/K, where K is the length of hash codes. It does not affect the weight between different
image pairs. When Ii and Ij are similar, a large value of bi

Tbj is obtained, which leads to a large value
of P(cij = 1|bi, bj) and vice versa.

Motivated by the continuation setting [22] for enhancing the intraclass similarity, we introduce
a weight mij for a pair of remote sensing images Ii and Ij. Suppose that there are totally Ni images
belonging to the class Ji, where the image Ii is from. The weight mij between Ii and Ij is given as follows:

mij =
{N/Ni , Ij∈Ji ;

N/(N−Ni), Ij /∈Ji .
(3)

We formulate a weighted likelihood function ln P(C|B) as follows:

ln P(C|B) =
N

∑
i=1

N

∑
j=1

mij ln P(cij|bi, bj). (4)

Based on (2) and (4), we have the loss function for training the residual hash net as follows:

min
Ω

N

∑
i=1

N

∑
j=1

mij(log(1 + eλ(bi
Tbj))− λcij(bi

Tbj)), (5)

where Ω represents parameters of the residual hash net. The residual hash net is trained subject
to minimizing (5) by updating Ω. The weighting scheme enables the image similarities within one
common class to play a more dominant role than those from different classes in the loss function.
Specifically, the weight mij in (5) increases the loss for intraclass similar images. We refer to the loss
function (5) as a cohesion intensive loss function. In a remote sensing data set, it is very common
that the target image belongs to a class which only has a small proportion of images in the data set.
This requires a retrieval algorithm to look for similar images from a big amount of almost irrelevant
images. The data imbalance poses a big challenge for remote sensing image retrieval. The cohesion
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intensive loss function in turn neutralizes the data imbalance problem in terms of enhancing intraclass
similarities.

3. Experimental Results

3.1. Experimental Setup

Land cover refers to the observed biological or physical cover on the earth’s surface
(http://www.fao.org/3/x0596e/X0596e01e.htm). Strictly speaking, land cover should be limited
to describing vegetation and manufactured cover. For example, Copernicus CORINE (https://land.
copernicus.eu/pan-european/corine-land-cover) consists of an inventory of land cover in 44 classes.
It has a wide variety of applications in many domains such as environment, agriculture, transport,
and spatial planning. We use the two land-cover benchmark data sets, i.e., UCMerced and AID, in our
work for experimental comparison. As commonly used remote sensing data sets for experimental
evaluation, these two data sets comprise a number of geographic categories including natural and
man-made land-cover. Experiments on these two data sets validate the effectiveness of the proposed
CIDH in distinguishing a variety of geographical categories.

The UCMerced [23] data set was produced by the University of California. The data are images
manually extracted from the US national maps of city areas, which were made by the US Geological
Survey. It contains 21 land-cover classes and each land-cover class includes 100 images. Each image
has 256×256 pixels. The image has a pixel resolution of one foot. In order to augment the UCMerced
data set for extensive experimental evaluations, we rotate the original image by 90◦, 180◦, and 270◦,
separately. The size of the UCMerced data set is then increased to 8400 images. We use 7400 images
as training data and 1000 images as inquiry data. The data augmentation (e.g., rotation and flip) is
very useful to explore the representational power of deep models for remote sensing image processing.
It has been widely accepted that a deep model trained by an augmented training data set outperforms
that by the original training data set for general remote sensing image analysis tasks [17].

The AID [24] data set is a large-scale remote sensing image data set produced by Wuhan University
in 2017. Images are collected from the Google Earth imagery, and labeled by specialists in the
field of remote sensing image interpretation. Each image has 600×600 pixels. It has 30 classes of
high-resolution images, and 200∼400 images for each class. We use 8000 images as training data and
2000 images as test data. Some examples of UCMerced and AID are shown in Figure 4.

Our CIDH model is implemented based on the open-source caffe framework
(http://caffe.berkeleyvision.org/). We employ the residual net architecture [21], fine-tune a
pretrained residual net model, and train a new layer Fc1 to produce hash codes. The metrics for
evaluating retrieval accuracy are the mean average precision (MAP), the precision-recall (P-R) curve,
and t-distributed Stochastic Neighbor Embedding (t-SNE) [25].

3.2. Results and Analysis

We compare the retrieval performance of CIDH with several shallow hashing methods, i.e.,
partial randomness hashing (PRH) [13], kernel-based supervised hashing (KSH) [12], supervised
discrete hashing (SDH) [26], and column sampling-based discrete supervised hashing (COSDISH) [27].
The above methods are based on GIST features. In order to illustrate the advantages of the proposed
CIDH model, we also compare it with the existing deep neural network models, including deep
hashing network (DHN) [28], deep supervised hashing (DSH) [29], and deep hashing neural networks
(DHNNs) [19]. The comparison deep hashing methods except DHNNs are reimplemented with open
source code provided by the authors. All the parameter values are set to be those optimized by
the original authors, resulting in favorable results expected by the authors. Additionally, we make
comparison with the experimental results of DHNNs reported in the original paper. In order to
make fair comparison, we follow the experimental settings of DHNNs. Especially, we set our

http://www.fao.org/3/x0596e/X0596e01e.htm
https://land.copernicus.eu/pan-european/corine-land-cover
https://land.copernicus.eu/pan-european/corine-land-cover
http://caffe.berkeleyvision.org/
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data augmentation configuration to be the same with the state-of-the-art DHNNs, and the common
experimental setting guarantees a fair comparison. The results are shown in Table 2.

Beach Dense 
residential Freeway

Mobile 
home park River Storage 

tanks

Illustration of the UCMerced data set(a) UCMerced.

Airport Bridge Commercial

Mountain PlaygroundPort

Illustration of the AID data set(b) AID.

Figure 4. Illustration of UCMerced and AID data set. UCMerced contains 21 geography classes and
each class has 100 images. We give some examples of several classes. AID contains 30 geography
classes and each class has 200∼400 images. We give some examples of several classes of both data sets.

Table 2. Mean average precision (MAP) and average retrieval time (s) of comparison methods on
UCMerced data set.

Method GIST PRH KSH COSDISH SDH DSH DHN DHNNs CIDH

Bits mAP Time mAP Time mAP mAP mAP mAP mAP mAP mAP

K = 32 0.4672 0.022907 0.3361 0.000846 0.4609 0.3235 0.5943 0.6327 0.6768 0.9396 0.9846
K = 64 0.4672 0.022907 0.3667 0.000927 0.5049 0.3631 0.6551 0.6831 0.7423 0.9718 0.9853
K = 96 0.4672 0.022907 0.4015 0.000971 0.5114 0.3840 0.6809 0.7342 0.7867 0.9762 0.9858

In order to validate the gain of hashing methods in retrieval time, we have compared the efficiency
of hashing-based retrieval and a hand-craft feature-based retrieval method. We use GIST [16] as the
comparison hand-craft feature-based method. The GIST feature for one image is a 512-dimensional
float value vector. In addition, we extract the GIST features and generate hash codes for each image
in the database, separately. We measure the time of computing the distance between pairs of images,
in terms of GIST features and hash codes, separately. The retrieval based on GIST features requires
Euclidean distance with float value manipulations and that, based on hash codes, requires Hamming
distance with binary operations. The retrieval time is shown in Table 2, where Time represents average
retrieval time of one image. We observe that about 100 × Time is reduced by hashing retrieval instead
of float value retrieval. The experiments validate the gain of hashing methods over feature-based
retrieval methods in retrieval time.
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PRH, KSH, SDH, and COSDISH are hash algorithms based on hand-craft features, and the others
are hash algorithms based on deep neural networks. We observe in Table 2 that the performance of the
hash algorithms based on deep neural networks is far superior to those based on hand-craft features,
and our CIDH achieves the best performance. This is because the deep hash algorithms couple the
feature extraction and hashing, encouraging these two processes to adapt to each other. As the latest
remote sensing image retrieval hashing method, DHNNs use the uniform loss weights and thus does
not address the data-imbalance problem. Our CIDH exploits a specific weighting strategy to balance
the loss of different image pairs. The specific weights make the image loss of the common class larger
than that of different classes. Therefore, the hash codes generated by the common class of images are
encouraged to be closer. This enables our model to outperform DHNNs.

In order to further illustrate the performance results of remote sensing image retrieval, we draw
the P-R curves of CIDH and competing deep neural network approaches. Here, both the coverage of
retrieval results and the ordering of retrieval results are considered. Figure 5 shows the P-R curves of
the methods based on different hash code lengths. At the same recall rate, the accuracy of our method
is significantly higher than the three competitor methods. Similarly, the recall rate of our method is
significantly higher than the other methods at the same accuracy rate. As shown in Figure 5, CIDH is
superior to other methods in terms of both accuracy and recall.
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Figure 5. The precision-recall (P-R) curves of deep methods on UCMerced data set.

In addition, we present a visual comparison of deep hashing methods in Figure 6—the 1st, 5th,
10th, 20th, 30th, 40th, and 50th retrieval results are shown. In order to demonstrate the cohesion
intensive properties of CIDH, a tennis court image is used as the inquiry image. The appearance of
such images is very similar to other classes (such as buildings), and it is easy for retrieval algorithms to
fail. It is observed that DHN and DSH retrieve several false images. On the other hand, our cohesion
intensive loss function ensures that the hash codes of different images within one class are as similar
as possible. In addition, the tennis court images with different rotations are correctly retrieved by our
CIDH. This validates again that the retrieval result of CIDH is significantly better than other methods.

We also perform experiments on the AID data set. Table 3 shows the results on AID with different
hash code lengths. The number of images in each class in the AID data set is different from one another.
Our cohesion intensive loss addresses this variability, and our CIDH performs the best on AID data set.
The P-R curves on AID (shown in Figure 7) validate that our method achieves superior performance.

Table 3. MAP and average retrieval time (s) of comparison methods on AID data set.

Method GIST PRH KSH COSDISH SDH DSH DHN DHNNs CIDH

Bits mAP Time mAP Time mAP mAP mAP mAP mAP mAP mAP

K = 32 0.2439 0.040966 0.1816 0.000801 0.2164 0.1988 0.2444 0.4191 0.6953 - 0.8780
K = 64 0.2439 0.040966 0.2051 0.000872 0.2492 0.2245 0.3285 0.4585 0.7464 - 0.9043
K = 96 0.2439 0.040966 0.2199 0.000946 0.2599 0.2158 0.2599 0.4636 0.7682 - 0.9245
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Figure 6. Visual image retrieval results of different deep methods examined with 32 bits. The 1st,
5th, 10th, 20th, 30th, 40th, and 50th retrieval results are shown. In addition, false retrieval results are
marked with red rectangles.
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Figure 7. The P-R curves of deep methods on AID data set.

In addition, in order to demonstrate the cohesion enhancement proposed by CIDH, we visualize
the t-SNE of the hash codes generated by comparison methods on the AID data set in Figure 8.
As we have described above, the AID data set not only contains more geographical categories than
the UCMerced data set, but also each category includes a different number of images. Thus, it is
challenging to cohere hash codes from the same class of images. According to Figure 8, we observe
that the hash codes learning by CIDH has discriminative distribution, and each category is well
separated. However, the hash codes learning by comparison methods do not have such discriminative
distribution and a considerable number of different category hash codes are mixed up. The t-SNE
results suggest that our CIDH better brings together hash codes generated by the same category images
than comparison methods.

The above experimental results verify that our method has superior performance on large-scale
remote sensing data sets.

We have released our code for public evaluation (https://github.com/lrhan/CIDH-caffe).

https://github.com/lrhan/CIDH-caffe
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Figure 8. The t-distributed Stochastic Neighbor Embedding (t-SNE) of different length hash codes
generated by comparison methods on AID data set.

4. Conclusions

We have developed a cohesion intensive deep hashing model for remote sensing image retrieval.
We have initially developed a residual hash net for binarizing remote sensing images. The proposed
residual hash net learns accurate binary hash codes by optimizing a novel cohesion intensive loss
function. This ensures that the hash codes of different images within one class are as similar as possible.
The residual hash net is then effectively trained, subject to gradualness optimization, which favors
accurate binary codes with little quantization error. We have conducted comparative experiments on
extensively large remote sensing data sets such as UCMerced and AID. The experiments clearly show
the effectiveness of the proposed model compared with other state-of-the-art models.

The visual features for remote sensing images from different categories are quite different.
For example, the urban views have rich visual features while the rural landscapes have rare visual
features. Most deep learning models address these differences in an indiscriminative manner.
It is worth improving the CIDH by considering different visual features from different categories.

Author Contributions: L.H., P.L. and P.R. conceived and designed the experiments; L.H. performed the
experiments; L.H., X.B., C.G. and X.Z. analyzed the data; C.G. polished the paper; and L.H. wrote the paper.
All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the National Key R&D Program of China under Project 2017YFC1405600,
National Natural Science Foundation of China under Project 61602517, Shandong Provincial Key R&D Program
under Project 2017CXGC0902, and Research Fund for the Creative Research Team of Young Scholars at Universities
in Shandong Province under Grant No. 2019KJN019.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Wang, Q.; Gao, J.; Yuan, Y. Embedding Structured Contour and Location Prior in Siamesed Fully
Convolutional Networks for Road Detection. IEEE Trans. Intell. Transp. Syst. 2018, 19, 230–241. [CrossRef]

2. Ma, J.; Zhou, H.; Zhao, J.; Gao, Y.; Jiang, J.; Tian, J. Robust feature matching for remote sensing image
registration via locally linear transforming. IEEE Trans. Geosci. Remote Sens. 2015, 53, 6469–6481. [CrossRef]

3. Ma, J.; Zhao, J.; Jiang, J.; Zhou, H.; Guo, X. Locality preserving matching. Int. J. Comput. Vis. 2019,
127, 512–531. [CrossRef]

4. Li, Y.; Tao, C.; Tan, Y.; Shang, K.; Tian, J. Unsupervised Multilayer Feature Learning for Satellite Image Scene
Classification. IEEE Geosci. Remote Sens. Lett. 2016, 13, 157–161. [CrossRef]

http://dx.doi.org/10.1109/TITS.2017.2749964
http://dx.doi.org/10.1109/TGRS.2015.2441954
http://dx.doi.org/10.1007/s11263-018-1117-z
http://dx.doi.org/10.1109/LGRS.2015.2503142


Remote Sens. 2020, 12, 101 11 of 12

5. Li, Y.; Zhang, Y.; Huang, X.; Yuille, A.L. Deep networks under scene-level supervision for multi-class
geospatial object detection from remote sensing images. Isprs J. Photogramm. Remote Sens. 2018, 146, 182–196.
[CrossRef]

6. Patil, R.; Sharma, S.K.; Tignath, S. Remote Sensing and GIS based soil erosion assessment from an agricultural
watershed. Arab. J. Geosci. 2015, 8, 6967–6984. [CrossRef]

7. Wang, J.; Kumar, S.; Chang, S.F. Semi-supervised hashing for scalable image retrieval. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, San Francisco, CA, USA, 13–18 June 2010.

8. Datar, M.; Immorlica, N.; Indyk, P.; Mirrokni, V.S. Locality-sensitive hashing scheme based on p-stable
distributions. Symp. Comput. Geom. 2004, 8–11, 253–262.

9. Weiss, Y.; Torralba, A.; Fergus, R. Spectral Hashing. Neural Inf. Process. Syst. 2008, 8–11, 1753–1760.
10. Gong, Y.; Lazebnik, S. Iterative quantization: A procrustean approach to learning binary codes. IEEE Trans.

Pattern Anal. Mach. Intell. 2012, 35, 2916–2929. [CrossRef] [PubMed]
11. Lukac, N.; Zalik, B.; Cui, S.; Datcu, M. GPU-based kernelized locality-sensitive hashing for satellite image

retrieval. In Proceedings of the 2015 IEEE International Geoscience and Remote Sensing Symposium
(IGARSS), Milan, Italy, 26–31 July 2015; pp. 1468–1471.

12. Demir, B.; Bruzzone, L. Hashing-Based Scalable Remote Sensing Image Search and Retrieval in Large
Archives. IEEE Trans. Geosci. Remote Sens. 2016, 54, 892–904. [CrossRef]

13. Li, P.; Ren, P. Partial Randomness Hashing for Large-Scale Remote Sensing Image Retrieval. IEEE Geosci.
Remote Sens. Lett. 2017, 14, 464–468. [CrossRef]

14. Li, P.; Zhang, X.; Zhu, X.; Ren, P. Online Hashing for Scalable Remote Sensing Image Retrieval. Remote Sens.
2018, 10, 709. [CrossRef]

15. Lowe, D.G. Distinctive Image Features from Scale-Invariant Keypoints. Int. J. Comput. Vis. 2004, 60, 91–110.
[CrossRef]

16. Oliva, A.; Torralba, A. Modeling the Shape of the Scene: A Holistic Representation of the Spatial Envelope.
Int. J. Comput. Vis. 2001, 42, 145–175. [CrossRef]

17. Yu, X.; Wu, X.; Luo, C.; Peng, R. Deep learning in remote sensing scene classification: A data augmentation
enhanced convolutional neural network framework. Gisci. Remote Sens. 2017, 54, 741–758. [CrossRef]

18. Xie, M.; Jean, N.; Burke, M.; Lobell, D.; Ermon, S. Transfer Learning from Deep Features for Remote Sensing
and Poverty Mapping. In Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence, Phoenix,
AZ, USA, 12–17 February 2016.

19. Li, Y.; Zhang, Y.; Huang, X.; Zhu, H.; Ma, J. Large-Scale Remote Sensing Image Retrieval by Deep Hashing
Neural Networks. IEEE Trans. Geosci. Remote Sens. 2018, 56, 950–965. [CrossRef]

20. Li, Y.; Zhang, Y.; Huang, X.; Ma, J. Learning Source-Invariant Deep Hashing Convolutional Neural Networks
for Cross-Source Remote Sensing Image Retrieval. IEEE Trans. Geosci. Remote Sens. 2018, 56, 6521–6536.
[CrossRef]

21. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the
Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 26 June–1 July 2015.

22. Cao, Z.; Long, M.; Wang, J.; Yu, P.S. HashNet: Deep Learning to Hash by Continuation. In Proceedings of the
IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017; pp. 5609–5618.

23. Yang, Y.; Newsam, S.D. Bag-of-visual-words and spatial extensions for land-use classification. In Proceedings
of the 18th SIGSPATIAL International Conference on Advances in Geographic Information Systems, San Jose,
CA, USA, 2–5 November 2010; pp. 270–279.

24. Xia, G.S.; Hu, J.; Fan, H.; Shi, B.; Xiang, B.; Zhong, Y.; Zhang, L. AID: A Benchmark Dataset for Performance
Evaluation of Aerial Scene Classification. IEEE Trans. Geosci. Remote Sens. 2017, 55, 3965–3981. [CrossRef]

25. Donahue, J.; Jia, Y.; Vinyals, O.; Hoffman, J.; Zhang, N.; Tzeng, E.; Darrell, T. DeCAF: A Deep Convolutional
Activation Feature for Generic Visual Recognition. In Proceedings of the International Conference on
Machine Learning 2014, Beijing, China, 21–26 June 2014.

26. Shen, F.; Shen, C.; Liu, W.; Shen, H.T. Supervised Discrete Hashing. In Proceedings of the Computer Vision
and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 37–45.

27. Kang, W.; Li, W.; Zhou, Z. Column sampling based discrete supervised hashing. In Proceedings of the AAAI
Conference on Artificial Intelligence 2016, Phoenix, AZ, USA, 12–17 February 2016; pp. 1230–1236.

http://dx.doi.org/10.1016/j.isprsjprs.2018.09.014
http://dx.doi.org/10.1007/s12517-014-1718-y
http://dx.doi.org/10.1109/TPAMI.2012.193
http://www.ncbi.nlm.nih.gov/pubmed/24136430
http://dx.doi.org/10.1109/TGRS.2015.2469138
http://dx.doi.org/10.1109/LGRS.2017.2651056
http://dx.doi.org/10.3390/rs10050709
http://dx.doi.org/10.1023/B:VISI.0000029664.99615.94
http://dx.doi.org/10.1023/A:1011139631724
http://dx.doi.org/10.1080/15481603.2017.1323377
http://dx.doi.org/10.1109/TGRS.2017.2756911
http://dx.doi.org/10.1109/TGRS.2018.2839705
http://dx.doi.org/10.1109/TGRS.2017.2685945


Remote Sens. 2020, 12, 101 12 of 12

28. Zhu, H.; Long, M.; Wang, J.; Cao, Y. Deep Hashing Network for efficient similarity retrieval. In Proceedings of
the AAAI Conference on Artificial Intelligence 2016, Phoenix, AZ, USA, 12–17 February 2016; pp. 2415–2421.

29. Liu, H.; Wang, R.; Shan, S.; Chen, X. Deep Supervised Hashing for Fast Image Retrieval. In Proceedings of
the Computer Vision and Pattern Recognition 2016, Las Vegas, NV, USA, 26 June–1 July 2016; pp. 2064–2072.

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Background
	Motivation
	Contribution

	Cohesion Intensive Deep Hashing
	Residual Hash Net
	Cohesion Intensive Loss Function

	Experimental Results
	Experimental Setup
	Results and Analysis

	Conclusions
	References

