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Abstract The computations and neural processes underpinning decision making have primarily

been investigated using highly simplified tasks in which stimulus onsets cue observers to start

accumulating choice-relevant information. Yet, in daily life we are rarely afforded the luxury of

knowing precisely when choice-relevant information will appear. Here, we examined neural indices

of decision formation while subjects discriminated subtle stimulus feature changes whose timing

relative to stimulus onset (‘foreperiod’) was uncertain. Joint analysis of behavioural error patterns

and neural decision signal dynamics indicated that subjects systematically began the accumulation

process before any informative evidence was presented, and further, that accumulation onset

timing varied systematically as a function of the foreperiod of the preceding trial. These results

suggest that the brain can adjust to temporal uncertainty by strategically modulating accumulation

onset timing according to statistical regularities in the temporal structure of the sensory

environment with particular emphasis on recent experience.

Introduction
To date, perceptual decision making, described as the process whereby noisy sensory information is

accumulated over time towards a decision bound, has been studied predominantly using tasks in

which there is little ambiguity as to when observers should begin accumulating sensory information

(Gold and Shadlen, 2007; Ratcliff and Smith, 2004; Shadlen and Kiani, 2013; Smith and Ratcliff,

2004). It has been documented extensively throughout the temporal attention literature, that there

are significant advantages, across a wide-range of perceptual tasks, to knowing precisely when sen-

sory evidence will be available (e.g. Correa et al., 2006; Jepma et al., 2012; Niemi and Näätänen,

1981; Nobre et al., 2007; Nobre and van Ede, 2018; Vangkilde et al., 2012). However, in the nat-

ural sensory world we are not always afforded the luxury of making decisions based on sensory

events that have the same high degree of perceptual salience and/or predictability in terms of their

onset timing as those typically used in experimental tasks. Such uncertainty presents a critical chal-

lenge because mistiming accumulation onset can have detrimental consequences: premature accu-

mulation can lead to false alarms and fast errors while commencing accumulation late can lead to

information loss and slow or missed responses (Teichert et al., 2016). The aim of this study was to

shed light on the timing of evidence accumulation initiation when sensory evidence onsets are tem-

porally uncertain and hard to detect.
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Recent research has highlighted a few mechanisms that the brain could feasibly deploy. Several

studies have pointed to the possibility that, under some circumstances, the brain relies on sensory-

driven mechanisms that detect the appearance of goal-relevant sensory changes to trigger evidence

accumulation. For instance, the Gated Accumulator Model, suggests that evidence accumulation

onset is contingent on sensory input surpassing a threshold level (Purcell et al., 2010; Purcell et al.,

2012; Schall et al., 2011). Similarly, evidence from human electrophysiology suggests that in a con-

tinuous monitoring context, where the timing of target sensory changes are unpredictable, early tar-

get selection mechanisms are involved in triggering evidence accumulation (Loughnane et al.,

2016). However, the amplitude of target selection signals was found to be heavily dependent on the

strength of the sensory evidence and therefore it is not clear how broadly such a stimulus-driven

strategy can be applied. An additional possibility suggested by Teichert et al. (2016) is that the

onset of sensory evidence accumulation may be subject to top-down control and adapted in accor-

dance with the temporal context or demands of the sensory environment. Specifically, decision onset

timing may be calibrated internally in order to optimise the trade-off between accumulating informa-

tion too early, thereby risking performance errors, and accumulating too late, thereby losing valu-

able information. In the context of temporal uncertainty, behavioural modelling and psychophysics

studies have indicated that prior knowledge of sensory evidence onset does modulate the timing of

accumulation onset (Bausenhart et al., 2010; Jepma et al., 2012; Seibold et al., 2011), while

others have pointed to |effects on the quality of sensory information (Rohenkohl et al., 2012). How-

ever, these studies have relied on indirect behavioural metrics for inferring accumulation onset time

and direct neurophysiological evidence has been lacking.

In this study, we aimed to examine the mechanisms of perceptual decision making when subjects

have imperfect foreknowledge of the precise timing of a subtle, goal-relevant sensory change. To

this end, we conducted two experiments, both of which required subjects to discriminate a subtle

change in a single stimulus feature (relative contrast of two overlaid gratings in experiment one and

coherent dot motion in experiment 2). Temporal uncertainty was created by pseudorandomly impos-

ing one of three delays intervening between stimulus onset and this sensory change (from hereon

referred to as the ‘foreperiod’) on each trial. We traced activity in two previously characterised deci-

sion variable signals that trace sensory evidence accumulation: the centro-parietal positivity (CPP;

Kelly and O’Connell, 2013; Kelly and O’Connell, 2015; O’Connell et al., 2012; Twomey et al.,

2015) and effector-selective Mu/Beta band (10–30 Hz) activity (de Lange et al., 2013;

Donner et al., 2009; O’Connell et al., 2012; Siegel et al., 2011; Steinemann et al., 2018). Each of

these signals builds gradually during decision formation at a rate proportional to evidence strength,

peaks around the time of a decision-reporting movement, predicts choice accuracy and RT across tri-

als and exhibits amplitude modulations consistent with decision bound adjustments (Kelly and

O’Connell, 2013; O’Connell et al., 2012; Steinemann et al., 2018; Loughnane et al., 2016;

Murphy et al., 2015). More recently, the CPP has been further characterised within the same deci-

sion theoretic framework for a diverse range of perceptual tasks (Afacan-Seref et al., 2018;

Boubenec et al., 2017; Herding et al., 2019; Luyckx et al., 2019; Philiastides et al., 2014;

Rungratsameetaweemana et al., 2018; Spitzer et al., 2017; von Lautz et al., 2019; van Vugt

et al., 2019), has been shown to correlate strongly with subjective reports of stimulus intensity

(Tagliabue et al., 2019) and predict the timing and probability of choice error signaling

(Murphy et al., 2015). Recent work has highlighted some key functional distinctions between the

CPP and premotor Mu/Beta signals (Twomey et al., 2016). First, the evidence-dependent build-up

of the CPP has been shown to reliably precede that of motor preparation signals (Kelly and O’Con-

nell, 2013). Second, it has been shown across several studies that the CPP and motor signals

undergo distinct strategic adjustments: premotor Mu/Beta-band activity contralateral to the decision

reporting effector always reaches a stereotyped threshold level prior to response execution but both

contralateral and ipsilateral signals exhibit systematic shifts in their starting levels in response to prior

information about time constraints (Steinemann et al., 2018) and stimulus probability (Kelly et al.,

2019), as well as a temporally increasing urgency component to their build-up (Murphy et al., 2016;

Steinemann et al., 2018; Kelly et al., 2019). In contrast, the CPP has been found to not change its

starting level and its pre-choice amplitude varied systematically as a function of RT for discrete deci-

sions with a time limit (Steinemann et al., 2018; Kelly et al., 2019). Together, these data suggest

that the CPP encodes a pure representation of cumulative evidence that is fed to the motor level

where it is combined with other strategic influences.
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We found that in this situation where subjects are unable to time the onset of decision formation

to coincide with the uncertain onset of choice-relevant sensory evidence (contrast change in experi-

ment one or coherent motion onset in experiment 2), they systematically initiated evidence accumu-

lation in advance of the evidence. This was reflected in the build-up of the CPP during the

foreperiod, which, in experiment 2, directly reflected random fluctuations in motion energy, and also

in choice-predictive lateralisation of Mu/Beta band activity. The timing of accumulation onset relative

to the sensory change accounted for the pronounced foreperiod effects that were observed on

choice behaviour including increased miss rates on short foreperiod trials and elevated premature

responses and fast errors on long foreperiod trials. Furthermore, we found that accumulation onset

timing was not fixed across trials but varied systematically according to recent trial foreperiod dura-

tion, with accumulation commencing earlier if the previous foreperiod was shorter. This also gave

rise to a congruency effect whereby choice accuracy was greater if the foreperiod duration on conse-

cutive trials was congruent.

Results

Experiment 1: contrast discrimination
We analysed 128-channel EEG data from 23 human subjects performing a two-alternative contrast

discrimination task (see Materials and methods; Figure 1a). in which they compared the contrast of

two overlaid grating stimuli presented at fixation. At the outset of each trail, the gratings were pre-

sented and held constant at 50% contrast for one of three foreperiod durations (800 ms/1200 ms/

1600 ms). Once the foreperiod had elapsed, the gratings underwent antithetical changes in contrast

(one increased while the other decreased), and the participant was asked to report whether the left

or right tilted grating was higher in contrast by clicking the corresponding mouse button with their

corresponding thumb. The magnitude of the contrast change for each grating was determined sepa-

rately for each subject during preliminary training using a staircase procedure (choice accuracy at

65–70%, mean contrast: 5.5% ± 1.35, see Materials and methods). Participants were informed clearly

at the beginning of the study about the variability in the foreperiod durations. This was demon-

strated to them during practise trials in which the contrast change was very large and evidence onset

clearly noticeable. Points were awarded on each trial in order to encourage participants to respond

both as quickly and as accurately as possible. 40 points were awarded for correct responses with a

speed bonus of 0–40 additional points. Meanwhile, incorrect, missed or premature responses were

awarded 0 points. Performance feedback was presented on a trial-by-trial (correct/incorrect/clicked

too soon/too late) and block-by-block basis (accuracy, mean reaction time and cumulative points

earned).

Behaviour (experiment 1)
Taken together, our behavioural data suggest that subjects adopted a decision strategy that was

more closely timed with respect to stimulus onset than to evidence onset. First, there were signifi-

cant main effects of foreperiod on RT (Figure 1b–c; one-way repeated-measures ANOVA, F(1.13,

22.56)=1717, p=1.68�10�39), accuracy (Figure 1d–e; F(1.43, 28.64)=60.08, 8.91 � 10�13), missed

responses (Figure 1f; F(1.07, 21.38)=114.29, p=2.88�10�17), premature responses (i.e. prior to sen-

sory change onset, Figure 1g; F(1.01 20.12)=39.55, p=1.38�10�5) and points earned (Figure 1h; F

(1.17, 23.49)=26.55, p=4.60�10�8). Post-hoc tests (see Figure 1b–h; asterisks indicate significance

levels) indicate that a longer (1600 ms) foreperiod resulted in faster but less accurate responses and

an increased tendency to respond prematurely. The opposite was true of short (800 ms) foreperiod

trials where responses were slower and less error prone but misses more common. Overall perfor-

mance peaked on intermediate (1200 ms) foreperiod trials which yielded the highest levels of accu-

racy and greatest number of points earned per trial with relatively low levels of both misses and

premature responses.

Next, we analysed accuracy as a function of RT separately for each foreperiod (’conditional accu-

racy functions’; Figure 1d). This analysis revealed two key trends. Firstly, the diminished accuracy on

longer foreperiod trials manifested specifically on trials with faster RTs, reaching chance levels for

the subset of long foreperiod trials with RTs closest to the contrast-change onset. This observation

suggests that responses made close to the target change onset were based on little or no valid
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Figure 1. Two-alternative forced choice contrast discrimination task and behaviour separated by foreperiod (fp) duration. (A) Task Schematic: Each trial

commenced with the presentation of two overlaid left- and right-tilted gratings (45˚ relative to the vertical midline) within a circular aperture against a

grey background. At baseline the gratings were each presented at 50% contrast. After an initial foreperiod, the duration of which varied unpredictably

from trial-to-trial (800 ms/1200 ms/1600 ms), one grating stepped up in contrast by an individually predetermined amount (M = 5.5%, SD = 1.35%,

range = 2–7%) while the other stepped down by a corresponding amount. Schematic depicts a right-tilted target followed by a left-tilted target with

50% contrast changes for illustration purposes only. Feedback was presented at the end of each trial. (B) RT distributions separated by foreperiod and

response accuracy. Vertical line markers indicate the times of the contrast change. (C) Mean RT (corrects and errors pooled) separated by foreperiod

duration. (D) Conditional accuracy functions showing accuracy as a function of RT separated by foreperiod. Vertical line markers indicate the times of

the contrast change. Mean accuracy (E), missed response rate (F), premature response rate (G) and points earned per trial (H), separated by foreperiod

duration. Error bars represent standard error of the mean. Asterisks’ indicate statistical significance of post-hoc comparisons: **=p < 0.017,

***=p < 0.001; Bonferroni corrected critical p-value=0.017.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure 1 continued on next page
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sensory evidence. Secondly, the conditional accuracy functions also highlight that beyond 2400 ms,

accuracy diminished monotonically as a function of RT across all three foreperiod durations.

Sensory evidence representation unaffected by foreperiod duration
In order to determine whether sensory evidence representations were stable across the three fore-

period durations, we flickered each of the grating stimuli at a different frequency (20 Hz for left-

tilted gratings, 25 Hz for right-tilted gratings) thereby eliciting separate SSVEPs in those correspond-

ing frequency bands (20 Hz and 25 Hz respectively) over the occipital cortex (Figure 2a). Key charac-

teristics of these SSVEP signals indicate that they provide a read-out of the representation of the

sensory evidence for contrast-based perceptual decisions: they are highly sensitive to modulations

of stimulus contrast (Di Russo et al., 2007; Di Russo et al., 2001; Di Russo et al., 2003; Kim et al.,

2007; Norcia et al., 2015; O’Connell et al., 2012; Vialatte et al., 2010) and, their amplitudes pre-

dict both response accuracy (Steinemann et al., 2018) and RT (Loughnane et al., 2018;

O’Connell et al., 2012).

We analysed the SSVEPs (pooling correct and error trials) as a function of foreperiod duration

and stimulus (target vs non-target) using two-way repeated measures ANOVAs. As expected, the

SNR of the target SSVEP (corresponding to the grating whose contrast increased) increased follow-

ing the onset of the contrast change while that of the non-target (grating whose contrast decreased)

decreased. Consistent with this we found a main effect of stimulus (target vs non-target) on SSVEP

SNR in windows centred on 500 ms post-contrast change (Figure 2b; F(1, 18)=13.93, p=0.002) and

200 ms pre-response (Figure 2c; F(1, 18)=30.12, p=3.27�10�5). These effects are also apparent in

the difference SSVEP (d-SSVEP), which was calculated by subtracting the non-target from the target

SSVEP (Figure 2d–e). Foreperiod on the other hand did not affect the SSVEP SNR (Post-contrast

Figure 1 continued

Figure supplement 1. Choice biases in contrast discrimination task.

Figure 2. Sensory evidence representation (SSVEP) Signals separated by foreperiod (FP). (A) The topography of

the d-SSVEP measured prior to response was maximal over the occipital cortex (Oz). (B) Stimulus-aligned target

and non-target SSVEP signals separated according to foreperiod duration, plotted relative to the onset of the

stimulus. Vertical line markers at 800/1200/1600 ms indicate the times of the contrast change. (C) Response-

aligned target and non-target SSVEP signals separated according to foreperiod duration. The vertical line marker

at 0 ms denotes the time of response. (D) Stimulus-aligned d-SSVEP signal separated according to foreperiod

duration, plotted relative to the onset of the stimulus. Vertical line markers at 800/1200/1600 ms indicate the times

of the contrast change. (E) Response-aligned d-SSVEP signal separated according to foreperiod duration. The

vertical line marker at 0 ms denotes the time of response.
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change: F(2, 36)=0.06, p=0.94; Pre-response: F(1 18.40)=0.01 p=0.92), irrespective of the stimulus

(foreperiod x stimulus interactions: Post-contrast change: F(2, 36)=0.45, p=0.64; Pre-response: F

(1.05, 18.96)=0.13, p=0.73). Together these findings indicate that the representation of sensory evi-

dence was stable across the three foreperiods and could not account for the observed behavioural

trends.

Premature decision formation on trials with longer foreperiods
Figure 3b shows that, on longer foreperiod trials, significant CPP build-up was observed prior to the

onset of the contrast change (Figure 3b; one-sample t-tests: 800 ms: t(18)=1.79, p=0.14; 1200 ms: t

(18)=3.71 p=0.0016; 1600 ms t(18)=5.52, p=2�10�5; correct and error responses pooled). Consider-

ing that these data were collected over a period of five consecutive experimental sessions we sought

to establish whether this early build-up of the CPP during the foreperiod might be a phenomenon

that emerges only after extensive practice. In fact, there was significant pre-evidence build-up of the

CPP on longer foreperiod trials as early as session one (Figure 3—figure supplement 1; t(18)=4.12,

p=6.4�10-5) and the amount of pre-evidence CPP-build up did not vary systematically across train-

ing sessions (main effect of session: F(4, 72)=1.18, p=0.33).

To explore this early CPP buildup further, we analysed the CPP as a function of foreperiod dura-

tion and RT using two-way repeated measures ANOVAs. To this end we separated the data, within

each foreperiod, into six equally sized bins, according to RT. Our analyses found that the CPP ampli-

tude prior to evidence onset was larger on longer foreperiod trials (F(1.27, 22.91 = 25.00,

p=1.6�10�5; linear contrast: p=4.75�10�5; quadratic contrast: p=0.17). Moreover, there was an

inverse relationship between the amount of pre-evidence CPP build up and RT (Figure 3d; F(5, 90)

=6.56, p=3�10�5), irrespective of foreperiod duration (RT x foreperiod interaction: F(5.33, 95.91)

=1.07, p=0.39), indicating that greater pre-evidence CPP build-up was associated with faster

responses. Further, the build-up rate of the CPP during the foreperiod (measured as the slope of a

line fit to the CPP waveform between �250 ms and 50 ms relative to the contrast change) also pre-

dicted RT, irrespective of foreperiod duration (Figure 3f; main effect of RT: F(5, 90)=4.42, p=0.001;

main effect of foreperiod: F(2,36)=2.39, p=0.11; RT x foreperiod interaction: F(4.81 86.54)=0.63,

p=0.67).

In fact, an overall inverse relationship between pre-evidence accumulation and RT should not nec-

essarily be expected: whereas pre-evidence accumulation should accelerate responses when it hap-

pens to favour the ultimately chosen alternative, it would slow responses when it happens to favour

the ultimately unchosen alternative because it would serve to push the decision process further from

its final bound. Thus, the degree to which a statistically significant inverse relationship between pre-

evidence CPP and RT would manifest would depend on the prevalence of this latter subset of

‘change of mind’ trials. Such changes of mind should be far more prevalent on correct trials and

accordingly, we observed a significant RT by Choice Accuracy (RT x Choice (correct vs incorrect)

interaction: F(3, 54)=3.94, p=0.02; Figure 3—figure supplement 2b) reflecting a stronger relation-

ship between pre-evidence CPP and RT on error trials.

Further interrogation of the CPP-RT relationship observed in experiment one revealed that pre-

evidence accumulation was systematically biased in favour of left choices. Subjects were 4.17 times

more likely to choose left when responding prematurely (<150 ms; t(18)=3.20, p=0.005; Figure 1—

figure supplement 1a), 1.95 times more likely to respond left when responding quickly (<500 ms; t

(20)=5.62, p=0.1.69�4; see also Figure 1—figure supplement 1b) and had faster RTs when left tar-

gets were presented (F(1, 20)=63.65, p=1.22�7; Figure 1—figure supplement 1c). This systematic

bias can be attributed to the difference in flicker frequency between left (20 Hz) and right-tilted (25

Hz) gratings. Psychophysical research has previously shown that within this range the perceived

brightness (Bartley, 1938; Bartley, 1951; Wu et al., 1996) and contrast (Solomon and Tyler, 2018)

of flickering stimuli diminishes as a function of flicker frequency, even when they are matched in

terms of physical contrast and luminance. Since the left-tilted grating appeared higher-contrast dur-

ing the foreperiod despite physical equivalence, this may have caused pre-evidence accumulation to

be biased toward left choices resulting in fewer changes of mind when the left choice was the cor-

rect one. Indeed pre-evidence CPP declined significantly more steeply as a function of RT for left

choices than it did for right choices (RT x Choice interaction: F(3, 54)=3.19, p=0.03; Figure 3—figure

supplement 2a). Thus, it is likely that the overall statistically significant relationship between pre-
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Figure 3. Domain-general (CPP) and effector-selective (Mu/Beta 10–30 Hz). Decision Signals Separated by

Foreperiod (FP) in the Contrast Discrimination Task. (A) Topography of the ERP signal measured prior to response

(�150 ms to �50 ms) showing a positive going centroparietal component maximal over Pz. (B) Stimulus-aligned

CPP separated by foreperiod duration, plotted relative to the onset of the overlaid gratings stimulus. Vertical line

markers at 800/1200/1600 ms indicate the times of the contrast change across the three levels of foreperiod

duration. (C) Response-aligned CPP separated by foreperiod duration. The vertical line marker at 0 ms denotes

the time of response. (D) CPP amplitude measured at contrast change (�50 ms to 50 ms) and (E) at response

(�150 ms to �50 ms) plotted as a function of RT separately for each foreperiod. (F) Pre-evidence CPP build-up

rate (�250 ms to 50 ms) and (G) pre-response CPP build-up rate (�500 ms to �200 ms), plotted as a function of RT

separately for each foreperiod. (H) Topography of lateralised Mu/Beta band (10–30 Hz) activity measured prior to

response (�150 ms to �50 ms) calculated separately for each hemisphere by subtracting ipsilateral from

contralateral hand responses (LH = left hand; RH = right hand).The topography shows stronger lateralisation over

each hemisphere when preparing a contralateral response. (I) Stimulus-aligned contralateral and ipsilateral Mu/

Beta waveforms, separated by foreperiod duration, plotted relative to the onset of the overlaid gratings. Vertical

line markers at 800/1200/1600 ms denote the times of the contrast change across the three levels of foreperiod

duration. Insert: stimulus-aligned Mu/Beta lateralisation (contralateral-ipsilateral) traces. (J) Response-aligned

contralateral and ipsilateral Mu/Beta waveforms, separated by foreperiod duration with a vertical line marker at 0

ms denoting the time of response. Insert: response-aligned Mu/Beta lateralisation (contralateral-ipsilateral) traces.

(K) Mu/beta lateralisation at contrast change (�50 to 50 ms) and (L) response (�150 ms to �50 ms), plotted as a

function of RT separately for each foreperiod. (M) Pre-evidence Mu/Beta lateralisation slope (�250 ms to 50 ms)

and (N) pre-response Mu/Beta lateralisation slope (�500 ms to �200 ms) plotted as a function of RT separately for

each foreperiod.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Pre-evidence stimulus-aligned CPP waveforms on long (1600ms).

Figure supplement 2. Pre-evidence cpp amplitude on long foreperiod (1600ms).

Figure supplement 3. Contralateral and ipsilateral motor preparation as a function of pre-evidence CPP

amplitude bin (large versus small based on median split).

Figure supplement 4. Bilateral Occipital ERP aligned to Contrast Change.
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evidence CPP and RT in this experiment arises from this choice bias which reduced the prevalence

of change of mind trials.

We also measured and analyzed CPP build-up rates in the response-aligned waveforms. There

was no main effect of either RT (F(5, 90)=0.75, p=0.59) or foreperiod duration (F(2, 36)=0.56,

p=0.58) but there was a significant cross-over interaction (Figure 3g; F(10, 180)=4.24, p=2.7�10�5),

suggesting that the relationship between RT and pre-response CPP build-up rate was reversed for

short relative to long foreperiod trials. Figure 3g shows that when the foreperiod was short, faster

RTs were associated with steeper pre-response CPP slope, in line with previous observations (e.g.

Kelly and O’Connell, 2013; O’Connell et al., 2012). By comparison, the opposite was true of long

foreperiod trials where faster responses were associated with shallower pre-response CPP slope.

The shallower build-up rate of the pre-response CPP on faster RT trials can be explained in light of

the close temporal proximity of these responses to the timing of the contrast change and hence the

lesser contribution of valid sensory evidence to those decisions.

Alongside the early CPP build-up, we observed a progressive increase in motor preparation

reflected in Mu/Beta desynchronisation over the hemispheres contralateral and ipsilateral to the

response-executing hand throughout the pre-evidence foreperiod (Figure 3i). To specifically isolate

the choice-predictive component of motor preparation, we examined the differential motor prepara-

tion for the ultimately executed response relative to the withheld response, by computing the Mu/

Beta lateralisation index (contralateral minus ipsilateral to the response hand). This analysis indicated

that there was significant pre-evidence Mu/Beta lateralisation on longer foreperiod trials (Figure 3i

inset; one-sample t-tests: 800 ms: t(18)=-1.27, p=0.22; 1200 ms: t(18)=-3.64, p=0.002; 1600 ms: t(18)

=-3.91 p=0.001). To further examine this choice-predictive motor activity we analysed Mu/Beta later-

alisation as a function of foreperiod and RT using two-way repeated measures ANOVAs. Similar to

the CPP, longer foreperiods gave rise to greater pre-evidence Mu/Beta lateralisation (F(2, 36)=3.64,

p=0.04) which in turn scaled inversely with RT, irrespective of foreperiod duration (Figure 3k; main

effect of RT: F(5, 90)=2.94, p=0.017; RT x foreperiod interaction: F(5.22, 93.99)=1.68, p=0.14). Thus

greater choice-selective motor preparation during the pre-evidence foreperiod predicted faster RTs.

In addition, the rate of Mu/Beta lateralisation during the foreperiod (also measured as the slope of a

line fit to the Mu/Beta lateralisation waveform between �250 ms and 50 relative to evidence onset)

predicted RT irrespective of foreperiod duration (Figure 3m; main effect of RT: F(5, 90)=3.56,

p=0.006; main effect of foreperiod: F(2, 36)=0.47, p=0.63; RT x foreperiod interaction: F(4.82, 86.70)

=1.45, p=0.22). Also in line with the findings reported for the CPP, there was no main effect of fore-

period on the pre-response build-up rate (measured between �450 and �150 ms) of Mu/Beta later-

alisation (F(2, 36)=0.25, p=0.78) but there was a main effect of RT (F(5, 90)=5.13, p=0.01) which was

dependent on foreperiod duration (foreperiod x RT interaction: F(10, 180)=2.08, p=0.03). This inter-

action indicates that the predicted pattern of faster pre-response Mu/Beta lateralisation build-up

rates for earlier responses occurred only on short foreperiod trials but not when the foreperiod was

longer (Figure 3n). To further examine possible interactions between biased motor preparation in

the pre-evidence window and the early build-up of the CPP we divided the long foreperiod data of

each subject into two bins based on a median split of the single-trial pre-evidence CPP amplitude

values (excluding trials with RT <0 and>500 ms relative to evidence onset) and tested for cross-bin

differences in motor preparation prior to the CPP measurement window (Figure 3—figure supple-

ment 3). No such differences were observed for the window 800–1600 ms (t(18)=1.12, p=0.28; all

p>0.1 for t-tests on contra-ipsi lateralisation in contiguous 50 ms bins from 800 ms to 1600 ms). This

observation accords with recent demonstrations that prior-infromed motor level adjustments do not

impact on the CPP process (Steinemann et al., 2018; Kelly et al., 2019).

Subtle sensory evidence onsets do not elicit early target selection
responses
Recent research and models of perceptual decision making have pointed to the importance of sen-

sory-driven target selection mechanisms in triggering the onset of evidence accumulation

(Purcell et al., 2010; Purcell et al., 2012; Schall et al., 2011). In the human brain, this target selec-

tion role has long been attributed to a negative potential over occipital scalp elicited approximately

200–300 ms after the onset of a goal-relevant sensory stimulus (Luck, 2012; Luck and Hillyard,

1994). Recently we showed that the target selection process is invoked bilaterally even for a single
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stimulus at fixation that has no ostensible need for ‘selection’ and that in a continuous monitoring

context, where target onsets are completely unpredictable, the signal temporally precedes and has

a predictive influence on the onset and rate of evidence accumulation (Loughnane et al., 2016).

This highlights the potential general role for this target selection signal in triggering the accumula-

tion process under conditions of temporal uncertainty, but given its reliance on the presence of

strong, detectable stimulus transitions (Loughnane et al., 2016), it is not clear whether it could play

a major role in the current task. In fact, here, we did not observe any deflection in bilateral occipital

ERP waveforms in the N2 time window although there was a slow, sustained negativity over the

bilateral occipital cortex (Figure 3—figure supplement 4a–b). Thus, in contrast to previous continu-

ous tasks with larger evidence steps, low-level target-selection processes do not appear to play a

role in dealing with temporal uncertainty in the present context.

Foreperiod duration does not affect decision signal amplitudes at response
Recent neurophysiological studies have highlighted that when decisions must be made to a strict

deadline, time-dependent urgency signals serve to expedite the decision process, progressively low-

ering the quantity of cumulative evidence required to trigger commitment (Steinemann et al.,

2018; Murphy et al., 2016; Hanks et al., 2014; Thura and Cisek, 2016). In a recent study we

showed that these urgency effects manifested in a time-dependent reduction in CPP amplitude

(Steinemann et al., 2018). Here, however, we did not find any variation in the CPP amplitude prior

to response as a function of foreperiod duration (F(2, 36)=0.47,p=0.63; Figure 3c) or response time

(F(5, 90)=0.64, p=0.67; Figure 3e). Similarly, the amplitude of contralateral Mu/Beta at the time of

response did not vary as a function of foreperiod duration (Figure 3j; F(2, 36)=0.49, p=0.63) or

response time (Figure 3n; F(2.16, 38.95)=1.80, p=0.18), consistent with a time-invariant action-trig-

gering threshold at the motor level (Murphy et al., 2016; Steinemann et al., 2018). By comparison,

ipsilateral Mu/Beta prior to response, though not modulated significantly by foreperiod duration (F

(1.46, 26.30)=2.82, p=0.09), was more desynchronised prior to response on slower RT trials (F(1.86,

33.40)=6.50, p=3�10�5) reflecting more preparation of the unchosen response hand on these trials

and a closer ‘race’ between the alternative outcomes. Correspondingly, mu-beta lateralisation prior

to response was stronger on faster response trials (F(2.68, 48.31)=3.99, p=0.01), a finding that is

consistent with previous studies (Murphy et al., 2016).

Summary: experiment 1
The key results from experiment one show that in the absence of foreknowledge about the precise

onset timing of a subtle goal relevant sensory change, subjects were unable to align the onset of

decision formation to sensory evidence onset. On longer foreperiod trials, subjects consistently com-

menced decision formation before the target contrast change occurred, resulting in a higher inci-

dence of false alarms and fast errors. The premature onset of the decision process was reflected in

the build-up of the CPP and the emergence of choice predictive Mu/Beta lateralisation during the

foreperiod. However, these data do not allow us to definitively establish whether the early build-up

of decision-related activity reflected the accumulation of sensory noise, as opposed to some other

process such as urgency (e.g. Cisek et al., 2009; Thura et al., 2012; Thura and Cisek, 2016). To

address this in experiment 2, we used the random dot motion task in which variability in physical dot

motion energy from one frame to the next can be directly quantified by applying dot motion energy

filtering. Random variations in motion energy during the foreperiod were leveraged in order to

directly test for behavioural and electrophysiological indications of premature evidence

accumulation.

Experiment 2: dot motion discrimination
We analysed 128-channel EEG data from 23 human subjects who performed a two-alternative forced

choice random dot motion discrimination task in which participants were required to judge the dom-

inant direction of motion in a cloud of moving dots (see Materials and methods; Figure 4a). On each

trial the dots initially moved randomly (0% coherence) for the duration of an initial foreperiod that

varied unpredictably from one trial to the next across three levels (800 ms/1200 ms/1600 ms). Once

the foreperiod had elapsed, a portion of the dots began to move coherently in either a leftward or

rightward direction. The portion of coherently moving dots, which was determined separately for
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each subject using a staircase procedure (see Materials and methods) was, on average, 7.42%

(SD = 2.61%). Subjects were required to indicate the perceived direction of the coherent motion by

clicking the corresponding (left/right) mouse button with their corresponding thumb (left/right). Par-

ticipants were fully aware of the initial foreperiod and received feedback and points based on their

performance following the same method implemented in experiment 1.

Behaviour
As in experiment 1, we first analysed behaviour separated according to foreperiod duration (sum-

marised in Figure 4b–h) and observed highly similar trends including significant effects on RT

Figure 4. Random dot motion discrimination task and behaviour separated by forepriod (fp) duration. (A) Task

Schematic: Each trial commenced with the presentation of a cloud of moving dots within a circular aperture

against a black background. At baseline, the dots were displaced at random from one trial to the next. After an

initial foreperiod, the duration of which varied unpredictably from trial-to-trial (800 ms/1200 ms/1600 ms), a portion

of the dots, determined separately for each individual subject (M = 7.42%, SD = 2.61%, range = 3–12%), began to

move coherently in either a leftward or rightward direction. The schematic depicts a rightward motion trial

followed by a leftward motion trial (Note: Arrows are used here to illustrate the direction of motion but were not a

feature of the actual stimulus). Feedback was presented at the end of each trial. (B) RT distributions separated by

foreperiod duration and response accuracy. Vertical line markers indicate the time of coherent motion onset. (C)

Mean RT separated by foreperiod duration and (D) Conditional accuracy functions showing accuracy as a function

of RT separated by foreperiod duration. Vertical line markers indicate the time of coherent motion onset. Mean

accuracy (E), missed response rate (F), premature response rate (G) and points earned per trial (H), separated by

foreperiod. Error bars represent standard error of the mean. Asterisks’ indicate statistical significance of post-hoc

comparisons: *=<0.05, **=p < 0.017, ***=p < 0.001; Bonferroni corrected critical p-value=0.017.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Choice biases in contrast discrimination task.
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(Figure 4b–c; F(1.07, 19.20)=150.60, p=1�10�10), accuracy (Figure 4d–e; F(1.47, 26.38)=7.69,

p=0.005), miss rate (Figure 4f; F(1.08, 19.42)=63.76, p=9.7�10�8), premature response rate

(Figure 4g; F(1.08, 19.40)=58.80, p=1.8�10�7) and points earned per trial (Figure 4h; F(142, 25.50)

=10.10, p=0.002).

Decision formation commenced prematurely on longer foreperiod trials and
was predictive of behaviour
The results from experiment two broadly replicate those of experiment 1. As before, there was sig-

nificant build-up of the CPP prior to the onset of the coherent motion (Figure 5b) for longer foreper-

iod trials (one-sample t-tests: 800 ms: t(17)=1.21 p=0.24; 1200 ms: t(17)=2.28, p=0.03; 1600 ms: t

(17)=3.49, p=0.003), with longer pre-evidence foreperiods resulting in larger CPP amplitudes at the

time of coherent motion onset (F(2, 34)=5.45, p=0.009). Also in line with experiment 1, there was no

effect of foreperiod duration on the build-up rate of the CPP either pre-evidence (F(1.45, 24.57)

=1.96, p=0.17) or pre-response (F(2, 34)=0.04, p=0.96). Similarly, we observed desynchronisation in

Mu/Beta band activity over the hemispheres contralateral and ipsilateral to the response-executing

hand throughout the pre-evidence foreperiod, with a progressive lateralisation toward the contralat-

eral hemisphere on longer foreperiod trials (Figure 5i; 800 ms t(17)=-.40, p=0.69; 1200 ms: t(17)=-

1.65, p=0.12; 1600 ms: t(17)=-3.23, p=0.005; main effect of foreperiod: F(3, 34)=3.49, p=0.04). The

rate of Mu/Beta lateralisation did not vary across foreperiod durations either during the pre-evi-

dence period (F(3, 34)=0.72, p=0.49) or pre response (F(2, 34)=0.09, p=0.92). Like experiment one

the CPP amplitude prior to response did not vary significantly as a function of foreperiod duration

(Figure 5c; F(1.29, 21.92)=0.04, p=0.96) or response time (Figure 5e; F(2, 34)=0.52, p=0.6). Like-

wise, the amplitude of contralateral Mu/Beta at the time of response did not vary as a function of

foreperiod duration (Figure 5j; main effect foreperiod: F(2, 34)=0.13, p=0.88) or response time

(Figure 5j; main effect response time: F(2, 34)=0.74, p=0.48).

Although the principle findings of experiment one were replicated in experiment 2, confirming

the early onset of the decision formation process on longer foreperiod trials, some trends from

experiment one were notably absent in experiment 2. Specifically, the relationship between RT and

pre-evidence CPP amplitude (F(2, 34)=0.12, p=0.89), pre-evidence CPP slope (F(1.45, 24.57)=1.96,

p=0.16) and pre-response CPP slope (F(2, 34)=2.08, p=0.14) did not reach statistical significance.

Likewise, there was no relationship between RT and Mu/Beta lateralisation in the pre-evidence

(Amplitude: F(2, 34)=1.73, p=0.19; Slope: F(2, 34)=0.71 p=0.50) or pre response time periods

(Amplitude: F(2, 34)=1.80, p=0.18; Slope: F(2, 34)=0.33, p=0.72). We believe that the absence of

these effects can be attributed to the fact that, unlike in experiment 1, there was no evidence that

premature responses were biased in favour of either choice outcome (Figure 4—figure supplement

1a–b; Ratio of Left to Right choices = 0.88; t(16)=-.69, p=0.50; subjects with fewer than 10 prema-

ture choices were excluded) and no difference in RT between left and right targets (Figure 4—figure

supplement 1c; Left Responses: M = 998 ms, SD = 89.28 ms; Right Responses: M = 1091 ms,

SD = 117.37 ms; F(1, 21)=0.94, p=0.34). This is unsurprising given that the movement of the dots

during the foreperiod was entirely random and thus, by comparison with experiment one where left

and right stimuli differed in flicker frequency, it was not possible for the sensory evidence to system-

atically favour either choice. In the absence of any bias early accumulation would have the effect of

speeding up responses on some trials (e.g. when evidence during the foreperiod by chance favoured

the upcoming target or was strong enough to cause subjects to cross a decision bound) and slowing

responses on others (change of mind trials). It is also possible that experiment two was less sensitive

to RT effects compared to experiment one due to the lower trial numbers that were acquired per

subject.

Pre-evidence cumulative motion energy predicts fast choices and pre-
evidence CPP build-up
In order to quantify the degree to which the dot motion stimulus by chance favoured one decision

alternative or the other during the incoherent motion foreperiod, we performed dot motion energy

filtering (see Materials and methods; Adelson and Bergen, 1985; see also Urai et al., 2017). On the

basis that the effects of random motion energy fluctuations should be most prominent for early

choices, we separated long foreperiod trials into fast (<500 ms) and slow responses (>500 ms) and
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then calculated the integral of dot motion energy during the foreperiod (100 ms-1600ms). One-sam-

ple t-tests confirmed that there was significant sustained motion energy in the direction of the cho-

sen response on fast RT trials (Figure 6a; t(17)=2.21 p=0.04) but not on slow RT trials (Figure 6a; t

(17)=.03, p=0.98).

Next we sought to determine whether pre-evidence motion energy predicted the magnitude of

pre-evidence CPP build-up. To this end we separated trials into two bins according to the slope of

the pre-evidence dot motion integral (shallow vs. steep). This enabled us to to isolate trials where

the cumulative motion energy during the foreperiod strongly and consistently favoured one choice

Figure 5. Domain-general (CPP) and effector-selective (Mu/Beta 10–30 Hz). Decision signals separated by

foreperiod (FP) in the random dot motion discrimination task. (A) Topography of the ERP signal measured prior to

response (�150 ms to �50 ms) showing a positive going centroparietal component maximal over Pz. (B) Stimulus-

aligned CPP separated by foreperiod duration, plotted relative to the onset of the dot motion stimulus. Vertical

line markers at 800/1200/1600 ms indicate the times of coherent motion onset across the three levels of foreperiod

duration. (C) Response-aligned CPP separated according to foreperiod duration. The vertical line marker at 0 ms

denotes the time of response. (D) CPP amplitude measured at coherent motion onset (�50 ms to 50 ms) and E) at

response (�150 ms to �50 ms) plotted as a function of RT separately for each foreperiod. (F) Pre-evidence CPP

build-up rate (�250 ms to 50 ms) and G) pre-response CPP build-up rate (�500 ms to �200 ms), plotted as a

function of RT separately for each foreperiod. (H) Topography of lateralised Mu/Beta band (10–30 Hz) activity

measured prior to response (�150 ms to �50 ms) calculated separately for each hemisphere by subtracting

ipsilateral from contralateral hand responses (LH = left hand; RH = right hand). (I) Stimulus-aligned contralateral

and ipsilateral Mu/Beta waveforms separated by foreperiod duration, plotted relative to the onset of the dot

motion stimulus. Vertical line markers at 800/1200/1600 ms denote the times of coherent motion onset across the

three level of foreperiod duration. Insert: stimulus-aligned Mu/Beta lateralisation (contralateral-ipsilateral) traces.

(J) Response-aligned contralateral and ipsilateral Mu/Beta waveforms, separated by foreperiod duration with a

vertical line marker at 0 ms denoting the time of response. Insert: response-aligned Mu/Beta lateralisation

(contralateral-ipsilateral) traces. (K) Mu/beta lateralisation at coherent motion onset (�50 to 50 ms) and L) response

(�150 ms to �50 ms), plotted as a function of RT separately for each foreperiod. (M) Pre-evidence Mu/Beta

lateralisation slope (�250 ms to 50 ms) and N) pre-response Mu/Beta lateralisation slope (�500 ms to �200 ms)

plotted as a function of RT separately for each foreperiod.

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. Bilateral occipital erp aligned to coherent motion.

Devine et al. eLife 2019;8:e48526. DOI: https://doi.org/10.7554/eLife.48526 12 of 29

Research article Neuroscience

https://doi.org/10.7554/eLife.48526


or another by chance alone (Figure 6b). For each subset of trials we measured the slope of the pre-

evidence CPP over a broad window (600 ms-1600ms) and the amplitude of the CPP in a 100 ms win-

dow centred on the time of coherent motion onset (1600 ms). We found that there was significant

pre-evidence build-up of the CPP on trials where the cumulative motion energy consistently fav-

oured a particular choice (Figure 6c; one-sample t-tests: Amplitude: t(17)=3.21 p=0.005; Slope: t

(17)=3.25, p=0.005) but not on those where the dot motion weakly and/or inconsistently favoured a

specific choice (Figure 6c; Amplitude vs 0: t(17)=1.37, p=0.19; Slope vs 0: t(17)=1.59, p=0.13).

Paired samples t-tests comparing this pre-evidence CPP build-up between the two conditions (shal-

low vs steep pre-evidence motion integral) were significant (Amplitude: t(17)=2.41 p=0.03) or close-

to-significant (Slope: t(17)=1.92, p=0.07) suggesting that the build-up of the CPP did reflect cumula-

tive motion energy during the foreperiod.

Subtle sensory evidence onsets do not elicit early target selection
responses
As in experiment 1, we were interested in establishing the extent to which target selection mecha-

nisms played a role in decision formation in the context of discriminating a subtle change in a sen-

sory stimulus. Here, we observed a small, N2-like deflection in the time window 200–300 ms relative

to coherent motion onset over the bilateral occipital regions (Figure 5—figure supplement 1a–b).

Figure 6. Relationship between pre-evidence cumulative dot motion energy, choice and pre-evidence cpp build-

up (1600ms foreperiod trials only). (A) Average cumulative dot motion integral (measured between 100–1600 ms)

separated for fast (RT <500 ms) and slow (RT >500 ms) responses. (B) Single trial cumulative dot motion integral

traces separated according to the slope of the pre-evidence dot motion integral (100–1600 ms). (C) Grand average

stimulus-aligned CPP separated according to the slope of the the pre-evidence dot motion integral.
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However, relative to baseline, the magnitude of this component was not statistically significant for

any of the foreperiods (all p>0.5 for t-tests against 0). Again, this suggests that low-level target-

selection processes are not reliably elicited when coherent motion is weak.

Decision onset timing is modulated by recent temporal structure
Thus far our data suggest that foreperiod effects on choice performance on these tasks can be

attributed, in large part, to the premature onset of evidence accumulation occurring in this task.

Next, we sought to examine the degree to which evidence accumulation onsets varied systematically

as a function of trial history. Prior research in humans (Jazayeri and Shadlen, 2010) and in monkeys

(Jazayeri and Shadlen, 2015) suggests that we exploit previous experiences and statistical knowl-

edge in order to overcome uncertainty when estimating time or anticipating events. To further

explore this idea we conducted additional analyses of the data from experiment 1, hypothesising

that, if decision onset timing is indeed affected by prior knowledge of temporal structure, then

recent experiences may be particularly influential. For instance, in the temporal attention literature,

the widely-documented sequential foreperiod effect suggests that the speed with which perceptual

decisions are made is affected by previous trial timings (Capizzi et al., 2013; Los and Heslenfeld,

2005; Mento, 2013; Mento, 2017; Van der Lubbe et al., 2004), though this phenomenon has not

explicitly been linked or investigated with respect to the timing of evidence accumulation onset.

Here, we separated trials according to the foreperiod on the current trial (foreperiodn) and the fore-

period on the immediately preceding trial (foreperiodn-1). We found that behavioural performance

on foreperiodn was modulated significantly by foreperiodn-1, such that responses were faster when

foreperiodn-1 was shorter (Figure 7a; F(2, 40)=140.17, p=2.49�10�19) and this effect was more pro-

nounced when foreperiodn was long (foreperiodn x foreperiodn-1 interaction: F(4, 80)=7.37,

p=4.17�10�5). Moreover, foreperiodn-1 also affected accuracy (F(2, 40)=5.23, p=0.01), but this effect

was dependent on foreperiodn (foreperiodn x foreperiodn-1 interaction: F(4, 80)=14.90,

p=3.85�10�9). The trends shown in Figure 7b indicate that on short or long foreperiodn trials, fore-

period repetition led to a gain in accuracy whereas a change in foreperiod duration from one trial to

the next was associated with a cost to accuracy. Furthermore, in line with the above effects, we

found that the rate of missed responses on short foreperiodn trials was reduced if short foreperiods

occurred consecutively (Figure 7c; F(2, 40)=36.51, p=9.52�10�10) while the rate of premature

responses on long foreperiodn trials was reduced when long foreperiods occurred consecutively

(Figure 7d; F(2, 40)=8.12, p=0.001).

Our analyses further show that the effects of foreperiodn-1 on behaviour can be attributed, at

least in part, to trial-by-trial modulation of evidence accumulation onset timing. As illustrated in

Figure 8a, the CPP reached a higher amplitude at the time of the contrast change when foreper-

iodn-1 was shorter (F(2, 36)=4.38, p=0.02). The absence of any effect of foreperiodn-1 on pre-evi-

dence CPP slope (F(2, 36)=0.54, p=0.59) suggests that the pre-evidence amplitude differences arose

from differences in the onset, rather than the rate, of premature evidence accumulation. Together

Figure 7. Behavioural performance as a function of foreperiodn-1 and foreperiodn. Mean accuracy (A) and mean RT

(B) as a function of foreperiodn-1 and foreperiodn. (C) Missed response rate on short foreperiod rials as a function

of foreperiodn-1was long. (D) Premature response rate on long foreperiod trials as a function of foreperiodn-1.
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these findings indicate that decision onset timing is modulated by recent experience of temporal

structure in the sensory environment.

Discussion
In this study we examined the effects of temporal uncertainty on evidence accumulation onset tim-

ing. Convergent behavioural and neurophysiological data reveal that when evidence onsets are diffi-

cult to discern, participants initiate the accumulation of sensory information endogenously, before

the actual evidence appears.

Recent work has highlighted that when sensory evidence onsets are unpredictable but relatively

salient, early target selection signals are involved in triggering evidence accumulation onset

(Loughnane et al., 2016; see also Purcell et al., 2010; Purcell et al., 2012; Schall et al., 2011).

Figure 8. CPP as a function of foreperiodn and foreperiodn-1. (A) Stimulus-aligned and (B) Response-aligned CPP

waveforms separated according to foreperiodn (Top Panel: 800 ms; Middle Panel 1200 ms; Bottom Panel 1600ms)

and foreperiodn-1. Shaded grey bars correspond to the pre-evidence (A) and pre-response (B) measurement

windows. Solid black vertical lines mark the time of evidence onset (A) and response (B).
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Here, our titration procedure ensured that the onset of the sensory changes were very weak and, by

consequence, sensory driven target selection signals were not reliably observed in our data, forcing

participants to rely on alternative strategies. Importantly, and in line with the observations in

Teichert et al. (2016), our data indicate that participants adapted the onset timing of accumulation

strategically, using their knowledge and recent experience of the underlying temporal structure of

the task. For instance, the CPP data suggest that subjects in this study timed the onset of evidence

accumulation to approximately coincide with the earliest possible time point at which evidence could

be presented to them (800 ms). Rather than optimising overall performance on shorter foreperiod

trials (which had a notably high rate of missed responses and earned the lowest number of points),

this strategy instead led to a peak in performance on intermediate foreperiod trials (which had nota-

bly high levels of accuracy and low levels of both missed and premature responses thus earning a

higher number of points). One speculative explanation for this is that subjects may have adopted a

Bayesian approach, ‘regression to the mean’, in estimating the response deadline, (Jazayeri and

Shadlen, 2010; Jazayeri and Shadlen, 2015). Given that the foreperiod durations used in this

experiment were equally probable, this strategy would cause subjects to bias their timing estimates

of the impending deadline towards the trial duration on intermediate foreperiod trials. This is an

interesting avenue for further investigation and could be examined by repeating this study, drawing

the foreperiod duration from various asymmetrical distributions. More generally, the above high-

lights that several features of the present paradigm, including subtlety of evidence onsets, time pres-

sure and temporal uncertainty were key drivers of the observed premature evidence accumulation.

An important challenge for future work will therefore be to establish the degree to which the pres-

ent findings generalise to other paradigms and to precisely delineate the task parameters that

encourage/discourage pre-evidence accumulation.

Although the overall temporal structure of the task clearly affected evidence accumulation, our

data indicate that subjects did not simply time the onset of evidence accumulation to a fixed point

on all trials. Here we show that the timing of evidence accumulation onset is, at least in part, cali-

brated based on the duration of the foreperiod on recent trials, with shorter foreperiods leading to

earlier accumulation onset on subsequent trials and correspondingly faster RTs. Moreover, trial-by-

trial adjustments in accumulation onset timing were also consequential for accuracy. When the same

foreperiod duration was, by chance, repeated from one trial to the next, decision onset timing was

more aligned to the physical sensory change than when the foreperiods were mismatched, and this

incurred a corresponding benefit for accuracy. In turn, when consecutive foreperiods were highly

mismatched (i.e. short followed by long or vice-versa), there was greater misalignment of sensory

evidence onset relative to the physical sensory change and, correspondingly, greater decrements in

accuracy were incurred. According to the normative theories, intertrial dependencies such as this

may reflect the inherent tendency for the brain to monitor and exploit local statistical patterns in the

environment in order to reduce uncertainty (Jones et al., 2013; Wilder et al., 2013; Wilder et al.,

2010; Yu and Cohen, 2008). Thus, these trial-by-trial adjustments in accumulation onset timing may

reflect continuous updating of temporal expectations that inform accumulation onset timing.

With regard to the precise nature of the evidence accumulated during the foreperiod on later

onset trials, our data show that this, at least partly, reflects the accumulation of sensory noise. In

experiment two, we were able to show that early CPP build-up was driven by random fluctuations in

motion energy, which, on some trials, cumulatively favoured one choice or another. However, we do

not exclude the possibility that the CPP may be subject to other influences. For instance, many stud-

ies have shown that individuals exhibit a variety of idiosyncratic choice-history biases that manifest as

trial-by-trial adjustments in the starting point of evidence accumulation (Bode et al., 2012;

de Lange et al., 2013; Yu and Cohen, 2008; Zhang et al., 2014) or biases in the weighting of sen-

sory evidence (Braun et al., 2018; Kloosterman et al., 2018; Talluri et al., 2018; Urai et al., 2019).

It remains to be established whether such biases may be directly represented in the CPP. Neverthe-

less, our findings add to and complement the ever-growing body of research into serial dependency

in perceptual decision making and speak directly to the question of how temporal uncertainty

affected decision onset timing.

Our results also have the potential to shed light on the mechanisms underpinning a well-known

phenomenon in the temporal attention literature, known as the sequential foreperiod effect. This

effect, which is another example of serial dependency, is characterised by the modulation of RT by

previous trial foreperiod in the context of target detection tasks with variable foreperiods
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(Capizzi et al., 2013; Capizzi et al., 2012; Capizzi et al., 2015; Los et al., 2017; Los and Van Den

Heuvel, 2001; Steinborn and Langner, 2012; Vallesi et al., 2009; Vallesi et al., 2007). Our results

replicate the sequential foreperiod effect using a task in which respondents performed a difficult

perceptual discrimination task where the foreperiod varied pseudorandomly from trial to trial. In this

context at least, the sequential foreperiod effect, the underlying mechanisms of which have not yet

been fully explained, can be attributed to the adjustment in evidence accumulation onset timing.

Interestingly, in the broader literature on temporal orienting, data from psychophysical and compu-

tational modelling studies have implicated decision onset timing in temporal orienting more gener-

ally (Bausenhart et al., 2010; Jepma et al., 2012; Rolke, 2008; Rolke and Hofmann, 2007;

Seibold et al., 2011). Our findings provide the first neurophysiological evidence in support of this

idea.

Finally, our study also highlights how neural decision signals can be leveraged to gain insights

into the timing of accumulation onset that are otherwise very difficult to discern through behaviour.

Previous studies investigating decision onset timing have relied on indirect behavioural measures

such as fast error rate, shifts in the leading edge of response time distributions, and estimates of

non-decision time derived from sequential sampling models (Teichert et al., 2016). The use of non-

decision time is problematic because the timing of evidence accumulation is just one of a number of

factors, alongside afferent (e.g. sensory encoding, neural transmission) and efferent (e.g. motor exe-

cution) decision-related processes, that contribute to this parameter. Our data highlight that it is

possible to infer the timing of accumulation onset directly from the temporal dynamics of the CPP.

In summary, this study has shed light on the important role of accumulation onset timing in per-

ceptual decision-making and has yielded two key insights in this regard. Firstly, we have shown that

in the absence of foreknowledge about the precise timing of a subtle goal relevant sensory change,

observers are unable to accurately time the onset of sensory evidence accumulation with respect to

that event, resulting in instances where accumulation commences too early, leading to premature

responses and fast errors, as well as instances where accumulation is delayed, leading to missed

responses. Secondly, we have demonstrated that accumulation onset timing is not governed solely

by sensory driven mechanisms but instead can be controlled by top-down processes. To this end,

we appear to rely on and continuously update our average representation of the temporal structure

of a given task.

Materials and methods

Subjects
Experiment 1: contrast discrimination task
Twenty-three subjects aged 19–30 (12 males, 11 females) were recruited to take part in a two-alter-

native, forced choice, contrast discrimination task as part of a study on perceptual learning taking

place over the course of 6 separate experimental sessions. This pre-planned sample size is consistent

with previous electrophysiological studies conducted within our group (e.g. Murphy et al., 2015;

O’Connell et al., 2012; Kelly and O’Connell, 2015; Steinemann et al., 2018; Twomey et al.,

2015) and elsewhere (e.g. Diaz et al., 2017; McGovern et al., 2012; McGovern et al., 2012). All

subjects were right-handed, had normal or corrected-to-normal vision and no history of personal or

familial neurological or psychiatric illness. Subjects were requested to abstain from alcohol consump-

tion and to maintain regular patterns of sleeping for the duration of the study so as to minimise

potential confounds between sessions. One subject was excluded after reporting retrospectively

that they had failed to comply with this prerequisite. One further subject dropped out after the sec-

ond session and their data were excluded. Data from the final experimental session were excluded

for one additional subject due to an error in setting the presentation monitor refresh rate on that

day. This resulted in a final sample size of 21 (10 male, 11 female; Age: M = 22.41, SD = 2.96). For

the purpose of electrophysiological analyses two further subjects were excluded, due to excessive

blink and/or EEG artefacts (>40% trial loss), but their data were retained for behavioural analyses.

Prior to taking part, subjects were informed that they would receive a e10 reimbursement per

testing session with the possibility of earning a performance bonus of up to e20 upon completing

the study. In order to incentivise subjects, they were misled to believe that the exact value of their

bonus was dependent on how many points (see design and procedure) they accumulated over the
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course of the study. In fact, all subjects who completed the study were awarded the maximum addi-

tional bonus of e20 (total payment = e80) after being debriefed about the nature of the study and

rationale for the deception. Written, informed consent was obtained from all subjects and all proce-

dures were approved by the Trinity College Dublin ethics committee and conducted in accordance

with the Declaration of Helsinki.

Experiment 2: dot motion discrimination task
Nineteen subjects aged 18–37 (M = 25.74, SD = 5.92; 10 females, nine males) were recruited to take

part in a dot motion discrimination task comprising a single session of data collection. This pre-

planned sample size is consistent with previous electrophysiological studies conducted within our

group (e.g. Murphy et al., 2015; O’Connell et al., 2012; Kelly and O’Connell, 2015;

Steinemann et al., 2018; Twomey et al., 2015). All subjects were right-handed, with normal or cor-

rected-to-normal vision and had no history of personal or familial neurological or psychiatric illness.

In the case of one subject, a file containing the data necessary for carrying out analyses of dot

motion energy (see below) was missing. Their data were retained for all behavioural and electrophys-

iological analyses with the exception of those involving dot motion energy data.

Subjects were informed that they would earn e15 for taking part in the study with the possibility

of earned an additional performance bonus of up to e10. In order to incentivise subjects, they were

misled to believe that the exact value of the bonus was dependent on how many points they

obtained over the course of the study. In fact all subjects were awarded the maximum bonus for

completing the study after being debriefed about the nature of the study and rationale for the

deception. Written, informed consent was obtained from all subjects and all procedures were

approved by the Trinity College Dublin ethics committee and conducted in accordance with the

Declaration of Helsinki.

Experiment 1: two-alternative forced-choice contrast discrimination
task
Subjects performed a difficult two-alternative contrast discrimination task which was programmed in

Matlab (Mathworks, Natick, MA, USA), using the Psychtoolbox-2 (http://psychtoolbox.org/) package.

The task code is available at (https://github.com/CiaraDevine/Temporal_Uncertainty_DevineCA_

2019; copy archived at https://github.com/elifesciences-publications/Temporal_Uncertainty_Devi-

neCA_2019). (Devine, 2019b). The task consisted of discrete trials, in which they were required to

discriminate the direction (left or right) of a target (tilted grating stimulus) based on a change in the

relative contrast between two overlaid grating stimuli (see Figure 1a). The experiment consisted of

10 blocks, each containing 50 trials and was conducted in a dark, sound-attenuated room with sub-

jects seated in front of a 51 cm cathode ray tube (CRT) monitor (refresh rate: 100 Hz, 1024 � 768

resolution) at a distance of approximately 57 cm. Stimuli used in this task were created using Psy-

chtoolbox and the experiment was presented using Matlab. The stimuli consisted of two overlaid

grating patterns (spatial frequency = 1 cycle per degree) presented in a circular aperture (inner

radius = 11 outer radius = 6˚) against a dark grey background (luminance: 65.2 cd/m2). Each grating

stimulus was tilted by 45˚ relative to the vertical midline (left tilt = �45˚, right tilt = +45˚). The gra-

tings were ‘frequency tagged’ in order to allow independent measurement of sensory evidence in

favour of both possible choices, with the left-tilted grating flickering at 20 Hz and the right-tilted

grating flickering at 25 Hz. On each trial the gratings were phase-reversed and these phase-reversals

were pseudorandomly counterbalanced across trials.

Subjects commenced each trial by simultaneously clicking the left and right mouse button. A cen-

tral fixation dot was presented, followed 200 ms later by the presentation of the overlaid grating

stimuli at 50% contrast. The stimuli were held constant for the duration of an initial foreperiod,

which, as subjects were informed, varied pseudorandomly from trial to trial between 800 ms, 1200

ms and 1600 ms. After the foreperiod, the gratings underwent opposite changes in contrast (the

magnitude of which were determined individually using a staircase procedure - see Staircase Proce-

dure below) whereby the target stepped up in contrast while the non-target stepped down in con-

trast by a corresponding amount. The gratings remained at the new contrast level for 2000 ms and

subjects were required to indicate the direction of the target stimulus by clicking the corresponding
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left or right mouse button with their left or right thumb. Feedback was presented at the end of each

trial for 1000 ms and at the end of each block (see Feedback and Points below).

Staircase procedure
The change in contrast of the grating stimuli was determined separately for each subject during the

introductory phase of the study, which took place on the first of the six-day study. During this intro-

duction phase, subjects were initially trained to perform the task under relatively easy conditions

(large changes in contrast). Once subjects performed the task under easy conditions at close to

100% accuracy, the magnitude of the contrast change was then adjusted downwards gradually over

the course of 6–8 short blocks (20 trials each) until subjects were performing within the range of 65–

70% accuracy. The average change in contrast resulting from this titration procedure was 5.5%

(SD = 1.35%, range: 2–7%).

Feedback and points
At the end of each trial (500 ms post stimulus offset), feedback was presented on screen in text for-

mat, for 1000 ms. This feedback indicated whether the subject responded correctly (‘Correct’), incor-

rectly (‘Error’), prematurely (responded before or within 150 ms of the contrast change; ‘Clicked too

Soon’), or failed to respond within the deadline (‘Too Late’). At the end of each block, feedback was

presented on screen informing subjects of their mean accuracy and response time during the block.

This feedback remained on screen until either the subject or experimenter exited the screen. With

this feedback, subjects were also given a score for each block reflecting their cumulative points

earned during the block. Points were awarded on a trial by trial basis according to the accuracy and

speed with which subjects responded. Every correct response was awarded 40 points plus a speed

bonus, while incorrect, missed or premature responses were awarded 0 points. The maximum speed

bonus was 40 points and this amount diminished linearly from 40 to 0 across the range of possible

response times (150–2000 ms). At the end of each block a bar graph was presented to subjects

depicting their score for each completed block of the task.

Experiment 2: random dot motion discrimination task
Subjects performed a difficult, discrete-trial version of the random dot motion discrimination task

(Figure 4a), which was programmed in Matlab (Mathworks, Natick, MA, USA), using the Psychtool-

box-2 (http://psychtoolbox.org/) package. The task code is available at (https://github.com/CiaraDe-

vine/Temporal_Uncertainty_DevineCA_2019) (Devine, 2019b). Subjects were required to judge the

direction (left or right) of motion based on a cloud of moving dots. The experiment consisted of 8

blocks, each containing 66 trials and was conducted in a dark, sound-attenuated room with subjects

seated in front of a 51 cm CRT monitor (refresh rate: 100 Hz, 1024 � 768 resolution) at a distance of

approximately 57 cm. The stimuli used in this task, random dot kinematograms (RDK), were created

using Psychtoolbox and the experiment was presented using Matlab. The RDKs consisted of a patch

of 100 moving white dots (diameter = 4 pixels) presented within a circular aperture (outer radius = 4º)

against a black background. From frame to frame, the dots were displaced throughout the circular

aperture creating a perception of motion.

At the onset of each trial, a central fixation dot was presented, followed 400 ms later by the onset

of the dot motion stimulus. Initially, the dots were displaced within the aperture at random (0%

coherence) giving rise to the perception of random, incoherent motion. The displacement of the

dots remained at 0% coherence for the duration of a foreperiod, which as subjects were informed,

varied pseudorandomly from trial-to-trial between 800 ms, 1200 ms and 1600 ms. After this foreper-

iod a portion of the dots began to move coherently in the same direction (either leftward or right-

ward). This coherent motion was produced by displacing a portion of the dots on each frame,

chosen at random, in a common direction relative to their position on the previous frame. All other

dots on a given frame were displaced randomly to a new location within the aperture. The percent-

age of coherently moving dots was determined separately for each subject in the study during a

pre-experimental introduction phase (see ‘Staircase Procedure’ below). The duration of coherent

motion was 2000 ms and subjects were required to indicate its direction by clicking the correspond-

ing left or right mouse button with their left or right thumb. As in experiment one feedback was
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presented at the end of each trial for 1000 ms and at the end of each block (see Feedback and

Points above).

Staircase procedure
The percentage of coherently moving dots was determined separately for each subject during an

introductory phase prior to commencing the experiment. During this phase, subjects were initially

trained to perform the task under relatively easy conditions (high coherent motion). Once subjects

were proficient at performing the task under easy conditions (were close to 100% accuracy), the diffi-

culty of the task was adjusted using a 2-down 1-up staircase procedure over the course of an 80-trial

block that titrated accuracy to 65–70% for each subject individually. Coherence levels ranged from

3–12% (M = 7.42%, SD = 2.61%).

Motion energy filtering
RDKs are suited to studying the dynamics of sensory evidence accumulation because the random

displacement of dots from one trial to the next gives rise to quantifiable variability in sensory evi-

dence within a given trial around the nominal, pre-determined, motion coherence level. In order to

estimate the momentary sensory evidence favouring a particular choice we applied dot motion

energy filtering (Adelson and Bergen, 1985) to the random dot motion stimuli during the pre-evi-

dence foreperiod, using the implementation provided by Urai and Wimmer (2016); see also

Urai et al. (2017). This yielded momentary motion energy estimates with positive values reflecting

residual rightward motion energy and negative values reflecting residual leftward motion energy.

These estimates provided a fine-grained estimate of the momentary sensory evidence favouring the

alternative decision outcomes.

Behavioural analysis
Across both experiments the data were segmented according to foreperiod duration (800/1200/

1600 ms). In experiment 1, the data were collapsed across experimental sessions. Response accuracy

was defined as the percentage of trials where participants correctly reported the direction of the tar-

get. Response time was calculated in milliseconds (ms) relative to the time of the sensory change

(i.e. the contrast change or onset of coherent motion). Missed responses were defined as those in

which no response was made within the two-second response deadline (marked by the disappear-

ance of the stimulus from the screen). Premature responses were defined as those made prior to or

within 150 ms of the onset of sensory evidence (i.e. the contrast change or onset of coherent

motion). Points earned per trial were defined as the average number of points earned per trial

including trials where no points were awarded due to missed, erroneous or premature responses.

Each of these behavioural measures was analysed as a function of foreperiod duration using separate

one-way repeated measures analyses of variance (ANOVA) followed by pairwise comparisons

(paired-samples t-tests). The alpha level following Bonferroni corrections for each set of pairwise

comparisons was. 017 (.05/3). Accuracy was further examined as a function of response time by com-

puting condition accuracy functions. To this end the data were broken down into equally spaced

bins based on RT (eight bins in experiment 1 and 6 bins in experiment 2) and analysed using a two-

way repeated measures ANOVAs.

In all of the analyses conducted here, prior investigation was carried out to determine whether

the data were suitable for parametric analysis. Firstly, the data were screened for any major viola-

tions of normality. In the case of repeated measures ANOVAs, Mauchley’s test of sphericity was also

carried out to assess the assumption of equal variances of the differences across all combined levels

of a single factor. In all instances where the assumption of sphericity was violated, greenhouse-

geisser corrections were applied to the degrees of freedom and p-values reported.

The relationship between pre-evidence cumulative motion energy and
choice
In light of evidence suggesting that the accumulation process may have commenced before the

onset of the goal relevant sensory change, we sought to establish, in experiment 2, whether there

was a relationship between random fluctuations in the sensory stimulus during the pre-evidence

foreperiod and choice. Specifically, we examined whether fast choices on long foreperiod trials could
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be attributed to dot motion energy favouring the chosen response by chance. To this end we

expressed momentary motion energy values in terms of whether they favoured the chosen or

unchosen response for a given trial. Positive values were attributed to motion energy values favour-

ing the chosen response and negative values were assigned to those favouring the unchosen

response. We then divided trials into fast (RT <500 ms) and slow (RT >500 ms) responses and calcu-

lated the integral of motion energy during the foreperiod by computing the cumulative sum of the

momentary motion energy values expressed with respect to the chosen responses. The cut-off of

500 ms between fast and slow responses was chosen in order to capture a sufficiently large subset

of trials in which accuracy was very low, as evident in Figure 4d. In the case of responses made after

the coherent motion onset, the integral was calculated between 100–1600 ms. For responses made

prior to the onset of coherent motion, the integral was calculated between 100 ms and the time of

the response. The integral at 1600ms and the slope of the pre-evidence integral (measured as the

slope of a line fit to the pre-evidence motion integral) for fast and slow responses was compared

against 0 using single sample t-tests. Whereas the absolute value of the integral at 1600 provides a

measure of how much evidence cumulatively favoured the chosen response, the slope of the integral

is sensitive to the extent to which sensory evidence consistently favoured the chosen response.

EEG acquisition and preprocessing (experiments 1 and 2)
The following procedures for acquiring and preprocessing EEG data apply to data from experiment

1 and experiment 2. Continuous EEG data were acquired using an ActiveTwo system (BioSemi, The

Netherlands) from 128 scalp electrodes and digitized at 512 Hz. Vertical eye movements were

recorded using two vertical electrooculogram (EOG) electrodes placed above and below the left

eye. Data were analysed using custom scripts (available at https://github.com/CiaraDevine/Tempo-

ral_Uncertainty_DevineCA_2019) in MATLAB (Mathworks, Natick, MA) and the EEGLAB toolbox

(Devine, 2019b; Delorme and Makeig, 2004). The full datasets for experiment 1 and experiment

two can be found at https://doi.org/10.5061/dryad.b2rbnzs8r (Devine, 2019a). Continuous EEG

data were low-pass filtered below 35 Hz, high-pass filtered above. 05 Hz and detrended. EEG data

were then re-referenced offline to the average reference. EEG data were segmented into stimulus-

and response-aligned epochs. Stimulus-aligned epochs were extracted from stimulus onset to stimu-

lus offset, which yielded different length windows for each foreperiod condition: 800 ms (Epoch: 0–

2,800 ms), 1200 ms (Epoch: 0–3,200 ms) or 1600 ms (Epoch: 0–3,600 ms). Response-aligned epochs

were measured from –1000 ms pre-response to 600 ms post response. The purpose of extending

the epoch 600 ms post-response was to allow four full fast fourier transform (FFT) windows to be cal-

culated post-response (see Time Frequency Decomposition below). All epochs were baseline-cor-

rected relative to the interval of 500–550 ms post stimulus onset. This baseline window was chosen,

with the aid of visual inspection of the grand-average event-related potential (ERP) waveform, to fall

before the onset of the CPP but after the conclusion of evoked potentials elicited by the appearance

of the stimulus on the screen and the mouse click performed by subjects in order to initiate each

trial.

Trials were rejected if the bipolar vertical EOG signal (upper minus lower) exceeded an absolute

value of 200 mV or if any scalp channel exceeded 100 mV at any time during the stimulus-aligned

epoch. To avoid excessive trial loss, channels were interpolated if their individual artefact count

exceeded 10% of the total number of trials for a given session. To avoid excessive channel interpola-

tion, a maximum of 10% of the total number of channels were permitted to be interpolated for any

given subject’s data in a given session. Subjects were excluded from electrophysiological analyses

entirely if, following these steps, more than 40% of trials were lost due to blinks and/or EEG arte-

facts. In order to mitigate the effects of volume conduction across the scalp, single-trial epochs

underwent current source density (CSD) transformation (Kayser and Tenke, 2006), a procedure that

helps to minimise spatial overlap between functionally distinct EEG components (Kelly and O’Con-

nell, 2013), an issue that may confound our interpretation of key signals such as the CPP

(Philiastides et al., 2014).

Stimulus- and response-aligned epochs were then decomposed into time frequency representa-

tions using the Short Time Fourier Transform (STFT) procedure. Each epoch was divided up into a

series of overlapping 400 ms time segments taken at 50 ms intervals across the epoch. The FFT was

computed for each 400 ms segment. For the purpose of data analysis and plotting, each 400 ms
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segment was identified by its median time point. The resulting time-frequency representations had a

frequency resolution of 2.5 Hz and as such allowed for the direct measurement of SSVEPs at 20 Hz

and 25 Hz, which corresponded to the flicker frequencies used in experiment one for the left- and

right-tilted gratings respectively. Each 400 ms window captured precisely 8 and 10 cycles of the 20

and 25 Hz SSVEPs respectively, thereby minimising spectral leakage. FFT power measurements were

converted into amplitude measurements by dividing by half the length of the measurement window

in samples.

Analysis of electrophysiological signals
The effect of foreperiod duration on sensory evidence representation
Sensory evidence representation was examined by tracing the time course of the SSVEPs elicited by

the left- and right-tilted stimuli flickering at 20 Hz and 25 Hz respectively. The SSVEPs were normal-

ised with respect to the average activity in the immediately adjacent frequencies by computing sig-

nal to noise ratios (SNR). In order to obtain a direct measurement of the sensory evidence upon

which observers based their decisions (i.e. the relative contrast of the overlaid gratings) we then

computed the difference SSVEP (d-SSVEP) by subtracting the non-target SSVEP from the target

SSVEP. Based on visual inspection of the sample grand-average topography of the d-SSVEP (calcu-

lated at approximately 200 ms prior to response) we identified a broad cluster of electrodes over

the occipital cortex (centred around Oz) at which the d-SSVEP was maximal (Figure 2a). At the sin-

gle-subject level we then measured the SSVEPs by averaging data from the four electrodes within

this cluster, at which the subject grand-average d-SSVEP was maximal. Single trial data were

rejected from subsequent analyses if the d-SSVEP prior to response exceeded + /- 3 standard devia-

tions from the within subject mean.

To determine whether foreperiod duration had any effect on sensory evidence representation the

SSVEPs were examined as a function of foreperiod duration in the following windows: i) 500 ms post

evidence onset (the earliest time-point at which the SSVEP SNR has already reached a plateau) and

ii) 200 ms prior to response (The time-point closest to response at which there would be little or no

effect of post-response attentional disengagement). Trials were excluded from this analysis if sub-

jects responded quicker than 500 ms in order to ensure that response-aligned SSVEP measurements

did not include time windows prior to the contrast change and that post evidence measurements

overlapped minimally with time points post response. This analysis was carried out using two-way

repeated measures ANOVAs (factor 1: foreperiod duration; factor 2: stimulus). Effects of foreperiod

duration on the d-SSVEP were inferred from the interaction between foreperiod duration and stimu-

lus factors. We predicted that the target and non-target SSVEPs should undergo antithetical changes

in SNR after the contrast change giving rise to a main effect of stimulus.

The effect of foreperiod duration on pre-evidence decision formation
Domain-general decision formation was examined by measuring the dynamics of the CPP. Based on

visual inspection of the sample grand-average topography of the pre-response CPP (response

aligned window: �150 ms to �50 ms) we identified a broad cluster of electrodes over the centropar-

ietal cortex (centred around Pz) at which the CPP was maximal (Figure 3a; 6a). For each subject, the

CPP was measured by averaging data from the four electrodes within this cluster, at which the sub-

ject grand-average was maximal. Effector selective decision formation was examined by measuring

desynchronisation in the Mu/Beta frequency band (10–30 Hz) over the contralateral and ipsilateral

response hemispheres (20 Hz and 25 Hz were excluded in order to avoid mixing motor and sensory

activity). In order to measure its excursion and to minimise the effects of general changes in mu/beta

amplitudes across testing sessions or between trials, Mu/Beta was baseline-corrected relative to 550

ms post stimulus onset. This window was chosen with the aid of visual inspection of the grand aver-

age waveforms to ensure that the motor activity relating to the mouse button click at the beginning

of each trial in experiment one was fully resolved. The Mu/Beta lateralisation index was computed

by subtracting ipsilateral from contralateral Mu/Beta. Based on inspecting the grand average topog-

raphy of pre response Mu/Beta lateralisation (response aligned window: �150 to �50 ms), a cluster

of electrodes was identified in each hemisphere over premotor regions of the scalp (C3 left hemi-

sphere; C4 right hemisphere; Figure 3h; 6 hr) that exhibited the largest lateralisation index. For

each subject Mu/Beta was measured by averaging data from the four electrodes within this cluster,
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at which the subject grand-average was maximal. Single trial CPP and Mu/Beta data were rejected

from subsequent analyses if the values estimated prior to response exceeded + /- 3 standard devia-

tions from the within-subject mean.

Inspection of grand average CPP and lateralised Mu/Beta waveforms indicated that there was

substantial build-up of both signals during the foreperiod on longer foreperiod trials suggesting that

decision formation may have commenced prematurely on those trials. To investigate this phenome-

non we initially pooled data from correct, incorrect, missed and premature response trials and sepa-

rated the data according to foreperiod duration. We examined the amount of pre-evidence build-up

in each signal by calculating the average amplitude of each signal within a 100 ms window centred

on the time of the sensory change. This window was selected so as to capture the full extent of the

pre-evidence build-up while avoiding overlap with activity that could feasibly be driven by the sen-

sory change. We also measured the rate of build-up during the foreperiod as the slope of a line fit

to the waveforms between �250 ms and 50 ms relative to the sensory change. This window was

selected to ensure that it did not reach back before the onset of the CPP (which would result in

underestimation of the slope) and, in the case of short FP trials, to ensure that there was no overlap

with visual-evoked potentials driven by the stimulus onset (500 ms prior to evidence onset). Never-

theless, after repeating the analyses using wider time windows for the pre-evidence slope measure-

ment �550 to 50 ms and �950 to 50 ms windows), we found that the key trends presented in

Figure 3f were unchanged. In order to determine whether there was significant pre-evidence deci-

sion related activity, the slope and amplitude of CPP and Mu/Beta lateralisation at each level of fore-

period duration were compared against 0 using one-sample t-tests. We repeated this analysis for

long foreperiod trials using only data from experimental session 1. Next, we divided the data into

equally sized bins based on RT (six bins in experiment 1; three bins in experiment 2) and examined

the relationship between RT and pre-evidence decision related activity (amplitude and slope as

defined above) using two-way repeated measures ANOVAs including foreperiod duration and RT

bin as factors.

The effect of foreperiod duration on pre-response decision related activity
Decision formation dynamics were further investigated relative to response. We measured the ampli-

tude of the CPP and magnitude of Mu/Beta desynchronisation and lateralisation prior to response in

the window �150 ms to �50 ms. This window was selected in light of the assumption that there is a

time lag between decision commitment and response execution. Here we centred the measurement

window on �100 ms as this coincides with the onset timing of the sharp pre-response deflection in

the motor readiness potential (Steinemann et al., 2018). Contralateral and ipsilateral Mu/Beta were

examined separately so as to evaluate preparation of both the chosen and unchosen responses. The

build-up rate of the CPP was measured by calculating the slope of a line fit to the waveform in the

window �500 ms to �200 ms relative to response. The build-up rate of Mu/Beta lateralisation was

examined by measuring the slope of a line fit to the lateralisation indices contained within the win-

dow �500 ms to �200 ms relative to response. The pre-response slope measurement windows were

chosen so as to ensure that the estimates of build-up rate were determined during the pre-commit-

ment time period and to avoid the possibility that the slope would be underestimated as a result of

an excessively long time window that extended to pre accumulation onset. In particular there was a

very strong likelihood that by using a wider pre-response slope measurement window on longer

foreperiod trials that the slope estimate would be based on pre-evidence accumulation as opposed

to post evidence accumulation. Again, we did not find any change in the key trends (Figure 3g)

reported on short er foreperiod trials as a result of using a wider pre-response slope measurement

window (e.g. �900 ms to �200 ms and �1200 ms to �200 ms). As before, the data were separated

according to foreperiod duration and RT and analysed using two-way repeated measures ANOVAs.

Examining the relationship between motion energy and premature
sensory evidence accumulation (experiment 2)
In experiment two we sought to establish a relationship between cumulative motion energy during

the foreperiod and pre-evidence CPP build-up. To this end, focusing exclusively on long foreperiod

(1600 ms) trials, we separated trials into two equally sized bins according to the slope of the dot

motion integral during the foreperiod. This yielded a subset of trials in which the cumulative motion
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energy during the foreperiod strongly and consistently favoured either leftward or rightward motion

by change and a subset of trials where the cumulative motion energy fluctuated closer to 0, favour-

ing neither direction consistently. Single sample t-tests were first carried out, comparing the pre-evi-

dence CPP amplitude and slope against 0, in order to determine whether there was any significant

build-up of the CPP during the foreperiod on steep or shallow integral trials. The amplitude of the

CPP was again measured in a 100 ms window centred on coherent motion onset while the slope was

measured in a broad window of 600 ms to 1600 ms. This window was again selected so as to avoid

any overlap with early visual evoked potentials. By focusing this analysis on 1600 ms foreperiod trials

we were able to estimate the pre-evidence CPP slope over a longer period of time. To distinguish

between the CPP on steep and shallow pre-evidence integral trials, additional paired samples t-tests

were carried out comparing the amplitude and slope of the CPP between shallow and steep integral

trials.

Examining the effect of previous trial foreperiod on accumulation onset
timing
In order to examine the sequential effect of foreperiod on evidence accumulation, the single trial

data from experiment were subsequently further subdivided according to the duration of the fore-

period on the previous trial (foreperiodn-1) and the duration of the foreperiod on the current trial

(foreperiodn). At the behavioural level accuracy and response times were examined using two-way

repeated measures ANOVAs including foreperiodn-1 and foreperiodn as separate independent fac-

tors. Missed response rate and premature response rate were examined using one-way repeated

measures ANOVAs including only foreperiodn-1 as an independent factor. The exclusion of foreper-

iodn as a factor in these analyses was necessary because missed responses were made almost exclu-

sively on short foreperiodn trials while premature responses were made almost exclusively on long

foreperiodn-1 trials. At the neural level, we also further analysed the CPP as a function of foreper-

iodn-1 in order to determine whether the amount or rate of build-up, in either the pre-evidence onset

or pre-response windows, was modulated by the duration of the previous trial foreperiod.

Examining target selection signals under temporal uncertainty
The target selection process was examined by measuring the bilateral N2 which is thought to play a

role in triggering the onset of evidence accumulation (Loughnane et al., 2016). Based on visual

inspection of the sample grand-average topography of the ERP in the window 200 ms to 300 ms

post sensory change we identified a broad cluster of electrodes over the bilateral occipital cortex at

which negative going activity was maximal. For each subject, the N2 was measured by averaging

data from three electrodes centred on P7 and 3 electrodes centred on P8 at which the negativity

was greatest. To establish whether target selection mechanisms were reliably elicited by the sensory

change in this task we compared the amplitude of the N2, measured in the window 200 ms to 300

ms post sensory change, against 0 using separate single sample t-tests for each level of foreperiod.

Additional information

Funding

Funder Grant reference number Author

Irish Research Council Postgraduate Fellowship Ciara A Devine
Redmond G O’Connell

H2020 European Research
Council

Starting Grant 63829 Redmond G O’Connell

National Science Foundation BCS-1358955 Simon P Kelly
Redmond G O’Connell

The funders had no role in study design, data collection and interpretation, or the

decision to submit the work for publication.

Devine et al. eLife 2019;8:e48526. DOI: https://doi.org/10.7554/eLife.48526 24 of 29

Research article Neuroscience

https://doi.org/10.7554/eLife.48526


Author contributions

Ciara A Devine, Conceptualization, Software, Formal analysis, Funding acquisition, Investigation,

Visualization, Methodology, Project administration; Christine Gaffney, Investigation, Project adminis-

tration; Gerard M Loughnane, Formal analysis; Simon P Kelly, Conceptualization, Software, Method-

ology; Redmond G O’Connell, Conceptualization, Resources, Software, Supervision, Funding

acquisition, Methodology

Author ORCIDs

Ciara A Devine https://orcid.org/0000-0001-7522-1172

Gerard M Loughnane http://orcid.org/0000-0003-1961-5294

Simon P Kelly http://orcid.org/0000-0001-9983-3595

Redmond G O’Connell https://orcid.org/0000-0001-6949-2793

Ethics

Human subjects: Written, informed consent was obtained from all subjects prior to taking part in this

study and all procedures were approved by the Trinity College Dublin ethics committee

(SPREC112014-01) and conducted in accordance with the Declaration of Helsinki.

Decision letter and Author response

Decision letter https://doi.org/10.7554/eLife.48526.sa1

Author response https://doi.org/10.7554/eLife.48526.sa2

Additional files
Supplementary files
. Transparent reporting form

Data availability

Data is available on dryad at https://doi.org/10.5061/dryad.b2rbnzs8r and Github https://github.

com/CiaraDevine/Temporal_Uncertainty_DevineCA_2019 (copy archived at https://github.com/eli-

fesciences-publications/Temporal_Uncertainty_DevineCA_2019).

The following dataset was generated:

Author(s) Year Dataset title Dataset URL
Database and
Identifier

Devine CA 2019 The Role of Premature Evidence
Accumulation in Making Difficult
Perceptual Decisions under
Temporal Uncertainty

https://doi.org/10.5061/
dryad.b2rbnzs8r

Dryad Digital
Repository, 10.5061/
dryad.b2rbnzs8r

References
Adelson EH, Bergen JR. 1985. Spatiotemporal energy models for the perception of motion. Journal of the
Optical Society of America A 2:284–299. DOI: https://doi.org/10.1364/JOSAA.2.000284

Afacan-Seref K, Steinemann NA, Blangero A, Kelly SP. 2018. Dynamic interplay of value and sensory information
in High-Speed decision making. Current Biology 28:795–802. DOI: https://doi.org/10.1016/j.cub.2018.01.071,
PMID: 29456147

Bartley SH. 1938. Subjective brightness in relation to flash rate and the light-dark ratio. Journal of Experimental
Psychology 23:313–319. DOI: https://doi.org/10.1037/h0054488

Bartley SH. 1951. Brightness enhancement in relation to target intensity. The Journal of Psychology 32:57–62.
DOI: https://doi.org/10.1080/00223980.1951.9916083

Bausenhart KM, Rolke B, Seibold VC, Ulrich R. 2010. Temporal preparation influences the dynamics of
information processing: evidence for early onset of information accumulation. Vision Research 50:1025–1034.
DOI: https://doi.org/10.1016/j.visres.2010.03.011, PMID: 20338190

Bode S, Sewell DK, Lilburn S, Forte JD, Smith PL, Stahl J. 2012. Predicting perceptual decision biases from early
brain activity. Journal of Neuroscience 32:12488–12498. DOI: https://doi.org/10.1523/JNEUROSCI.1708-12.
2012, PMID: 22956839
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