

Securing Credentials from SQL Injection

Attack Using Encryption and Hashing

MSc Internship

Cyber Security

Farhaan Kaleem

x17169003

School of Computing

National College of Ireland

Supervisor: Mr Imran Khan

National College of Ireland

MSc Project Submission Sheet

School of Computing

Student Name:

Mr. Farhaan Kaleem

Student ID:

x17169003

Programme:

MSc. In Cyber Security

Year:

2018-2019

Module:

Academic Internship

Supervisor:

Mr. Imran Khan

Submission Due

Date:

12/08/2019

Project Title:

Securing Credentials from SQL Injection Attack Using Encryption

and Hashing

Word Count:

6,036 Words Page Count: 17 Pages

I hereby certify that the information contained in this (my submission) is information

pertaining to research I conducted for this project. All information other than my own

contribution will be fully referenced and listed in the relevant bibliography section at the

rear of the project.

ALL internet material must be referenced in the bibliography section. Students are

required to use the Referencing Standard specified in the report template. To use other

author's written or electronic work is illegal (plagiarism) and may result in disciplinary

action.

Signature:

……

Date:

10th August 2019

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple

copies)

□

Attach a Moodle submission receipt of the online project

submission, to each project (including multiple copies).

□

You must ensure that you retain a HARD COPY of the project, both

for your own reference and in case a project is lost or mislaid. It is not

sufficient to keep a copy on computer.

□

Assignments that are submitted to the Programme Coordinator Office must be placed

into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

1

Securing Credentials from SQL Injection Attack

Using Encryption and Hashing

Farhaan Kaleem

x17169003

Abstract

In our daily life, we use web applications for most of the purposes like banking, food

ordering and online shopping. Most of the web applications hold the information like our

username and password, using which the card details and other such sensitive

information can be acquired. According to OWASP, today most of the web applications

are vulnerable to SQL Injection Attack. SQL Injection attack can show the sensitive data

like passwords on the screen that can be used by other unauthorised users. These

passwords are usually hashed, but from the hash we can identify the algorithm used and

hence break it. This paper aims the full stack web application developers, who use SQL

database for storing the credentials. This paper proposes a system in which the user

credentials are not only hashed, but also encrypted. Also the system filters the input, so

that no malicious code can be inserted into the database to prevent SQL Injection Attack.

The system uses the Argon2 hashing algorithm that was the winner of Password Hashing

competition held in July 2015.

1 Introduction

We use web applications for most of the things today, wherein we give our personal

information to the websites. Hence it becomes necessary for the developer to protect the data

from the hackers. OWASP (Open Web Application Security Project) 2017 (―Top 10-2017

Top 10 - OWASP,‖ n.d.) ranks SQL Injection as the number one vulnerability in the

Websites. This means that most of the websites available today are vulnerable to SQL

Injection. SQL Injection is possible, if the websites build the SQL queries from the user

provided input. Hence, in order to get all the information stored in the database, the hacker

manipulates the user input to build malicious queries. (Sajjadi and Tajalli Pour, 2013)

describes the different threats that can arise due to the alteration of SQL queries.

Hackers use SQL Injection to attack the database and gain all the sensitive information. This

sensitive information can contain the user‘s password, credit card details and more such

information that if fallen into wrong hands can cause huge impacts. Recently, there was an

SQL Injection attack on Capital One Financial Corp. that impacted 106M people (―Capital

One Data Theft Impacts 106M People — Krebs on Security,‖ n.d.). The passwords from the

databases are used to study the pattern that the people use to make the passwords. Then these

patterns are used to make the dictionary and the tools like John the Ripper uses the same

2

technique to break the passwords (Jake, 2017). In order to protect the passwords, we

generally store the passwords in hashed format.

The hashed passwords can be reverse hashed using the Rainbow Table attack. Rainbow table

is the pre-computed table that is used to reverse the hashes of the passwords (―Rainbow

table,‖ 2019). (Kumar et al., 2013) describes that how the Rainbow Table can be used to

crack the passwords. It also states that using the rainbow table, the password can be cracked

in less amount of time as compared to the Brute Force attack. Hence, we can see that it is

possible to crack the password from the hash. Hash itself says us that which algorithm is used

to hash the password.

Prefix 1 $sha-1$ $sha-5$ $sha-6$ 2 $scrypt$ $argon2$

Hashing

Algorithm

MD5 SHA-1 SHA-256 SHA-512 Bcrypt Scrypt Argon2

Table 1: Prefix of Hashing Algorithms

The hashing algorithm used in this paper is Argon2 hashing algorithm. Argon2 is the newest

hashing algorithm and the winner of the Password Hashing Competition 2015 (Hodgkiss,

2018). It is very memory intense and hence avoids password cracking by GPU and ASIC

which are the fastest password cracking techniques used today (Hodgkiss, 2018). Argon2 has

two versions: Argon2d and Argon2i. Argon2i is recommended for hashing.

The focus of this paper is to secure the hashed password by using AES encryption algorithm.

Also the paper proposes a website that uses SQL database at the backend. The website

imposes restrictions on the users like length of the password, including letters, numbers and

special characters in the password. Also it does input filtering to avoid SQL Injection attack.

The password given during registration is hashed using Argon2 algorithm. This hash is then

encrypted using AES algorithm and stored in the database. This ensures that even if SQL

Injection attack takes place, the password hash is highly secured so that no sensitive

information is revealed.

2 Related Work

Subsection 2.1 describes the different vulnerabilities present in SQL, leading to SQL

Injection attack. Subsection 2.2 gives us the knowledge about the various techniques and

methods that can be used to do the analysis of the password patterns. Password patterns can

be obtained from the hashes of the passwords. From the password patterns, it is easy to crack

the password. Cracking of password needs a large amount of time, but with the advancement

in technology and the different techniques used, this time is reduced to a large extent. These

techniques are discussed in subsection 2.3. Subsection 2.4 shows us the different techniques

used for securing the user credentials.

3

2.1 SQL Injection

SQL Injection Attack or SQLIA ranks number 1 according to the OWASP top 10 (―Top 10-

2017 Top 10 - OWASP,‖ n.d.), which means that most of the websites available today are

vulnerable to SQLIA. SQLIA can be used to display the whole database on the screen, which

may include the sensitive data of the users including bank details. According to (Kindy and

Pathan, 2011), if one is able to perform SQL Injection on the web application, it is equivalent

to have access to whole database of the application. Hence, we can see that it is very

important to protect the web application from SQLIA; else all the data will be open to the

hackers. To prevent SQLIA, it becomes necessary to know that how SQLIA takes place.

Below table shows the different types of SQLI attacks described by (Kindy and Pathan,

2011).

SLIA Technique Explanation

Tautologies Queries, which executed always gives output

as true.

Error Messages The errors thrown by the database are studied

to understand the database used and its

underlying query structure to break it.

Nested Queries One query inside another query to perform

multiple actions with a single query.

Union Concatenation Keyword ‗UNION‘ can be used to combine

the queries and get the data from the multiple

tables in the database.

Table 2: Types of SQL Injection Attack

(Johari and Sharma, 2012) describes the various prevention techniques that can be used to

prevent the SQLIA. However, it also says that almost all of the techniques have their own

drawbacks such as:

 Frameworks used are very complex

 Runtime overhead on the processors

 Irregular or incomplete implementation

 Need of huge amount of manual work

Also it says that the first tier of defence is web application itself and hence it is the

responsibility of the developers to use the good coding techniques.

2.2 Study of Password Patterns

(Tatlı, 2015) describes the various issues that the database and the passwords stored in them

are currently facing. The paper also states the common mistakes that the developers do while

coding. These mistakes includes saving the password in plain text format or hashed format.

Once the hashes are in the hands of the hackers, they use different techniques to obtain the

original password from the hash. These techniques include Brute force attack, dictionary

4

attack or rainbow table attack. The author himself has worked on cracking the passwords

from their hash values using the Brute force attack. He was able to successfully reduce the

amount of time required to break the password by using the commonly used passwords.

Hence from the paper we can see that pattern based brute force attack can easily crack the

passwords.

RockYou database was used for the analysis of the password. The analysis was done both

using tools and manually to identify the pattern, which was then fed to the password

generator. The password generator generated many passwords depending on the pattern

received. This password dictionary was used to attack on fifteen different datasets and it

successfully cracked the hashed passwords of the database. Hence we can see that the

passwords which were assumed to be secure can be cracked easily today. Hence keeping the

hashes of the passwords in the database is no longer safe.

2.3 Optimized Cracking of Hashed Passwords

The parallel processors have given the great speed to the computers. (Hongwei Wu et al.,

2011) experiments the hash reversal of MD5 algorithm using a multi parallel architecture

known as CUDA. CUDA basically includes three components: driver, the runtime library and

the library that is used for the calculations. Using CUDA architecture, it is possible to

execute large amounts of threads together. The code written for the CUDA consists of two

basic modules. One module was used to traverse the input and the other was used to calculate

the corresponding MD5 hash. MD5 can be cracked in 64 steps but using CUDA, it was

possible only in 49 steps. The same experiment when done using CPU is 16 times slower.

The paper concludes that the similar method can be used on the other famous hashing

algorithm like the SHA family.

The similar experiment of reversing the hash was performed and is discussed by (Murakami

et al., 2010). ―John the Ripper‖ the famous password cracking tool was modified in this

experiment to use the CUDA architecture. In this experiment the dictionary was used and the

number of threads was equal to the number of words in the dictionary. The cracking time was

then compared with the dual core processor computer and was observed that CUDA took

only 0.03% of the original time. Thus we can see that the famous hashing algorithms can be

broken very easily now within no time due to the advancement in the hardware.

(Blocki et al., 2018a) compares the data breaches that took place in the giant companies like

Dropbox, LastPass, Yahoo and Ashley Madison. These giant companies used the latest

hashing algorithms like Bcrypt and PBKDF2-SHA256 algorithms. This paper challenges the

security provided by these hashing algorithms. Also, it suggests that the use of the traditional

key stretching algorithms like Bcrypt and PBKDF2-SHA256 should be avoided and the

memory hard hashing functions like Scrypt or Argon2 should be used.

(Biryukov et al., 2016) compares the two famous memory hard hashing functions, i.e. Scrypt

and Argon2. It says that the Scrypt algorithm calls many sub-procedures in a stack. It calls

5

SMix. SMix then calls ROMix, which calls BlockMix. BlockMix calls Salsa. The use of

these subprocedures is not motivated. Also as they are called in stack, it impacts the time and

space cost. Because of this stack structure the analysis of Scrypt becomes very difficult. The

paper speaks about the common hashing problems that were highlighted by the Password

Hashing Competition. It shows that how Argon2 overcomes these common problems. Hence

from the study, we can conclude that, Argon2 is the safest algorithm available in market

today.

2.4 Security of User Credentials

The hashed values are not secured to be stored in the database. Hence (George, n.d.) suggests

storing the hashed passwords in the image using the technique of steganography.

Steganography is the technique of hiding the on-going communication by hiding the

information inside other information (Morkel et al., n.d.). The paper is classified into two

phases: registration and login. In registration phase, the credentials in plain text are accepted

from the user and stored in database except the hash. The password is then hashed and

converted into a binary form. Convert the image into the binary format and hide the binary

hashed password in the binary image. Then this image is stored in the secure location with

the filename as email of the user. In login phase described by (George, n.d.), the credentials

in the plain form are accepted by the user and the image is retrieved from the file. This image

is then converted into binary form and the hidden binary hash is extracted from the image.

This binary hash is then converted into the hash value and compared with the plain text

password entered by the user. Hence we can see that this paper secures the hashes properly

but it does not try to prevent the SQL injection attack. Also, the conversion of image into

binary and then back to original and storing the files with the usernames will increase the

space and time cost.

The similar approach of hiding the credentials is proposed by (Luo et al., 2019) with the use

of negative password. This paper is also classified into two phases: registration phase and

authentication phase. In registration phase, the user credentials are transmitted in the plain

text form using secure channel from client to server. On server side the password is hashed

and then converted into the negative password. The negative password is then encrypted and

is stored in the database along with the username. In the login phase, the username and

password is accepted from the client side and send to the server side. Depending upon the

username, the corresponding negative password is obtained from the database and then

decrypted with the key which is the hash of the plain password. Then the negative password

is obtained. The password obtained from the user is hashed and compared to the negative

password. If it matches, access is granted else denied. Here we can optimise this process

further to achieve the same results by reducing the computation and hence the time required

in this process.

The procedure used in (D‘silva et al., 2017) during the registration phase, is by directly

placing the credentials in the query. This query is then hashed using SHA1 algorithm and

stored in the hash digest. During login phase, the user credentials are put in the query again

6

and the whole query is hashed using SHA1 algorithm. These hashes are then compared and

the access is granted if the hashes match. The drawback in this paper is that it uses the very

weak hashing algorithm which can be cracked easily. This procedure can be used for

preventing the SQL injection attack. But as the hashing algorithm used is weak, it can be

easily compromised and then user credentials along with the used SQL query will be visible

in the database in the plain text format. Hence it needs additional security by improving the

algorithm.

3 Research Methodology

(Kindy and Pathan, 2011) and (Johari and Sharma, 2012) describes the need for preventing

the SQLI attack. (Tatlı, 2015) explains how the hashes can be compromised easily and hence

we should not store the hashes in the database. (Hongwei Wu et al., 2011) and (Murakami et

al., 2010) explains how the advancement in hardware technology has reduced the time

required to break the password. Hence we should use the improved hashing algorithms and

also the hashes should not be stored in the database. (Blocki et al., 2018b) and (Biryukov et

al., 2016) discusses the different hashing algorithms and suggests using the Argon2 hashing

algorithm for hashing the passwords as it is the winner of Password Hashing Competition.

Hence, in this project Argon2 is used to hash the user password and is taken care that it is not

stored into the database.

(George, n.d.) shows us that how different techniques can be used for securing the

credentials. The author in this paper has used the technique of steganography which means

hiding the user credentials in the image and then storing the image in the file with the

username of the user. However this process is time costly as we need to convert the image in

the binary format and then convert the password in the binary image and then store it in the

image. Also it is space costly, as we store the image corresponding to every user present in

the database.

Hence, to overcome this drawback, (Luo et al., 2019) proposes the technique of calculating

the negative password and encrypting it using AES algorithm. Still the process of calculating

negative password and encrypting it seems to be a burden on the processor.

Hence from the above study, we realize that we should implement a method to secure the

credentials by using secure hashing algorithm and encrypting that hash and storing it into the

database. Hence, hashes are not stored in the database. Also there is no use of image

steganography and hence time and space cost will be reduced. Also we are not performing

extra operations like calculating the negative password. Hence this method of hashing the

password with Argon2 algorithm and using AES encryption further is more optimised.

3.1 Argon2 Algorithm

Argon2 is the key derivation function. It was declared as the winner of the Password Hashing

Competition held in July 2015 (Hodgkiss, 2018). (Wetzels, n.d.) highlights the advantages of

7

using Argon2. It shows that Argon2 has the common hash properties that are Collision

Resistance, Pre-image Resistance and second pre-image resistance.

Argon2 also secures the hashes from lookup table attacks. In Argon2, similar messages

produce different nonce. This means in order to crack the password, it is necessary to predict

all the lookup tables for all the possible nonce values. The length of the nonce is 16 bytes.

This means to crack the password, 2128 lookup tables need to be pre-computed and stored.

The size of each lookup table is at least in several gigabytes. Hence it highly becomes

resistant to lookup table attack. Argon2 provides us the defence against the optimised

cracking of passwords because of its CPU and Memory Hardness nature.

Argon2 has the following features (Biryukov et al., 2016):

 Performance

 Scalability

 Parallelism

 GPU unfriendly

 Trade-off resilience

Due to the above features of Argon2, it becomes the ideal candidate to be used in our

application. (―argon2-cffi.pdf,‖ n.d.) descries that Argon2 generates the salt automatically

and hence it hashes the same string with different salts generated automatically producing

different output hashes. Also, it says that the verifier of the hash function is strong enough to

verify if the given plain password is equivalent to the hash. This avoids the reason to store the

salt in database.

3.2 AES Algorithm

AES or Advanced Encryption System is the symmetric key algorithm. Symmetric key means

same key is used for both encryption and decryption of the message (―What is Advanced

Encryption Standard (AES)?,‖ n.d.). It is a block cipher that takes the input block of 128 bits.

It has different sizes of keys: 128 bit, 192 bits and 256 bits. The size of the key is chosen

depending on the security of the application and the cost of space and time. Depending upon

the size of the key, the algorithm is classified into three types: AES-128, AES-192 and AES-

256.

8

Figure 1: AES Architecture

One round consists of substitution, transposition and mixing (―What is Advanced Encryption

Standard (AES)?,‖ n.d.). Depending upon the size of the key the number of rounds is used.

For example, if the key size is 128 bit, the number of rounds is 10, while the number of

rounds increases to 12 and 14 for 192 and 256 bits respectively (―What is Advanced

Encryption Standard (AES)?,‖ n.d.). In the system proposed, AES algorithm is used for

encryption, because it is fast and secured (Mohurle and Panchbhai, 2016).

Also as said by (D‘silva et al., 2017), we realise the need of preventing the SQL Injection

attack itself. (―SQL Injection Prevention · OWASP Cheat Sheet Series,‖ n.d.) gives us the

techniques that can be used for preventing SQL Injection attack which includes: using

prepared statement, input validation, using stored procedure, avoiding user input and using

least privilege method. These techniques are included in the implementation and hence the

SQL Injection attack itself is avoided.

In this paper, a basic website is implemented. The evaluation is done by doing the SQL

Injection attack on the website. Also, the response time of the website is calculated and

discussed further in details in the evaluation section.

4 Design Specification

This paper proposes a method, in which the web application is designed. This web

application aims to be secured from the SQL Injection attack. Also, it tries to secure the

passwords of the users by hashing it using the Argon2 hashing algorithm and then encrypting

it using the AES encryption algorithm. The proposed model is classified into two stages:

registration and authentication.

9

Figure 2: Flowchart of the Proposed Algorithm

4.1 Registration Phase

1. In registration phase, the credentials of the users are taken through the registration

phase.

2. Input by the user in each field is validated

3. Entered password by the user is hashed using Argon2 algorithm

4. Encrypt the hashed password using AES algorithm and the key used is obtained from

the secured file

5. Store the encrypted password in the database

4.2 Authentication Phase

1. In authentication phase, the user credential are taken through the login page

2. Input by the user in each field is validated

3. Depending upon the username entered, the corresponding encrypted password is

fetched from the database.

4. Decrypt the password to obtain the hash using the same key from the secured file

10

5. Compare the obtained hash with the entered password using Argon2 verify function

6. If verification successful, access is granted, else access denied.

5 Implementation

This paper proposes the method, which is demonstrated by implementing a simple website

for online pizza delivery. It has the table in the database that does not need to store the salt,

because salt is generated and verified automatically by Argon2 algorithm as said in paper

(―argon2-cffi.pdf,‖ n.d., p. 2). Table only stores the hashed and encrypted password itself.

Table can be seen below:

Figure 3: Design of Table in the Database

5.1 Registration Phase

The website has the registration page, using which the user can get registered to the website.

This page verifies all the user input and by default the registration button is disabled. It also

verifies the pattern given in the password.

Figure 4: Registration Page Verifying User Input

If the user is already present, the registration button is disabled. If all the fields are proper, the

registration button is enabled so that the user can register.

11

Figure 5: Registration Page with Proper Entries

On successful registration, the user is asked to login again.

Figure 6: Web page after Successful Registration

5.2 Authentication Phase

The website has the login page, using which the user can enter the username and the

password. This page verifies the user input. If the user input is valid only then the login

button is enabled and the user will be able to perform the login operation, else the button is

not enabled.

Figure 7: Invalid Input is inserted in Login Page

12

If the username entered is valid and does not exist, or if the password is not valid, it shows

the error message as ―Username and/or Password is Incorrect‖.

Figure 8: When Wrong Password is Entered

On 3 unsuccessful login attempts, the user gets locked for 5 minutes and the following

message is displayed ―User Suspended. Try again after sometime!!!‖. Depending upon the

role assigned, the user gets the different homepage after logging in. Once the user is logged

out, he cannot get in again by pressing the back button as the session is killed.

6 Evaluation

The website serves mainly two purposes. These purposes include the prevention of SQL

Injection attack and the care is taken that in worst case, if in future the dataset gets

compromised, the credentials of the user is safe. As we do a lot of tasks, it is also necessary to

measure the response time of the application. In sub-section 6.1, the SQL Injection attack is

done using OWASP ZAP tool. In sub-section 6.2, the SQL Injection attack is done manually.

The response time is calculated in sub-section 6.3.

6.1 SQL Injection Attack using OWASP ZAP tool/ Case Study 1

Here, the tool named OWASP ZAP was used to attack to the website. This tool checks for all

the OWASP top ten vulnerabilities. If any vulnerability is found it shows that with high risk.

On attacking the website, there was no SQL Injection vulnerability found in the web

application. Below, we can see the summary of the report of the attack done on the website.

Figure 9: Summary of Attack Report

6.2 SQL Injection Attack Manually / Case Study 2

The password is inserted which will always result true. The password entered was ―Any_02‘

or ‗x‘=‘x‖. As this will always result in tautology, it should be used for SQL Injection attack.

But it fails with the following output in the screen.

13

Figure 10: Failure of SQL Injection

The reason for this failure in SQL Injection attack, is the use of prepared statement.

6.3 Calculating Response Time using Apache Jmeter / Case Study 3

The response time or the throughput of the web application is tested. Here 2 threads, which

correspond to 2 users are hitting the server simultaneously to achieve the response time of the

server. It gives the throughput of 2.4/sec, which is normal.

Figure 11: Result of JMeter

6.4 Comparison between Approaches to Secure User Credentials

Title of the Paper Approach Advantages Drawbacks

Securing password

hashes from SQL

injection

attacks using Image

Steganography

After hashing of the

password, it is not

stored in the database

and is hidden in the

image

Hash is not stored in

the database and hence

even if SQL Injection

attack takes place, user

credentials are safe.

Even if the attacker

gets the image, he will

not recognise that the

hash is hidden in it, as

the hash is hidden in

the image using

steganography.

The space cost is

more, as it has to

store a separate

image for each user

on the server. Also,

time cost is more,

as the operations

are to be carried on

the image.

Authentication by

Encrypted Negative

Password

The password is

hashed and the

negative password is

encrypted and kept in

the database.

Hash of the password

itself is not stored in

the database.

If SQL injection takes

place, the password of

the user is never stored

in the database.

Involves huge

calculation as the

negative password

is calculated and

then encrypted.

No attempt to

prevent the SQL

injection attack.

Proposed Paper The password is

hashed and then

encrypted. This

encrypted password is

The hash is never

stored in the database.

There is no extra need

to calculate the

Key is placed in

the file. So if the

key is

compromised the

14

then stored into the

database.

negative password,

hash itself is encrypted

and kept in the

database. Attempt is

made to prevent the

SQL Injection attack

itself.

whole security of

the database will

be compromised.

Table 3: Comparison Between Approaches

6.5 Limitations of Proposed Approach

In the proposed approach, the key is kept in the file. If the file comes in the wrong hands, it is

very easy for the hacker to decrypt the password and then study the hash of the password and

crack it. Still it needs to access the database to reach the encrypted password. This is highly

impossible as the care is taken to prevent the SQL Injection attack.

The second limitation is that the paper focuses only on one of the SQL Injection attack. The

other vulnerabilities of the OWASP top 10 are not considered in this paper. Hence even if the

proposed method is implemented, there are chances of the compromise web application due

to the other vulnerabilities present in it.

6.6 Discussion

A series of tests are performed here to test if the aim of the research was achieved. The aim of

the research was to secure the user credentials form the SQL Injection Attack. For achieving

this, the first test that was executed was the SQL Injection attack using OWASP ZAP tool.

This test analysed the whole website to check if it included any vulnerabilities. It was not

limited to only SQL Injection attack. In the result displayed above, we can see that there were

total 4 vulnerabilities, out of which none was SQL Injection vulnerability. There was one

medium level issue, which is X-Frame options header is not set. This is the limitation and this

can be avoided, as our research was mainly focusing on SQL Injection attack. The thing to

note in this experiment is that SQL Injection attack was not possible using the tool.

The second test case involves the SQL Injection attack that is done manually. Here the query

is used, that will always result as true. Hence it was the Tautology type of SQL Injection

attack. Care was taken to insert such a password that it does not break the rules of standard

password. The standard password must contain at-least one number, at-least one small case

letter, at-least one capital letter, the size of the password should be minimum 8 characters and

maximum 20 characters. We see in the result that the error is thrown. The reason for this is

the use of Prepared Statement and then binding the input with it.

The third test case is such that as we perform the operations like encryption and hashing

algorithm. We see that the throughput looks good from the figure above. Brute force attack

should not be possible if the throughput is too good. Hence we have used the slow hashing

algorithm i.e. Argon2. Overall the evaluation is good only the need is to make the app more

secure by putting the X-Frame Options header.

15

7 Conclusion and Future Work

Hence the aim of this research was to secure the credentials of the user stored in the database.

We saw that the SQL Injection vulnerability ranks number 1 in OWASP top 10. Hence we

did research in the field of securing the credentials in the database and found that storing the

hash in the table is no longer secured. Hence in this research, the hash was not stored in the

table. Also the additional security is required as the hash alone was not able to secure the

password. Hence we did the AES encryption and stored hashed and encrypted password in

the table. Moreover attempt was made to prevent the SQL Injection attack itself and was

successful. This can be concluded from the experiments conducted to attack the database

with the SQL Injection.

In future this paper can be extended to implement the security for preventing the application

from the XSS attack. XSS attack stands for cross site scripting which injects the malicious

code in the server. Using input validation technique this can be extended to prevent the XSS

attack on the server.

References

argon2-cffi.pdf, n.d.

Biryukov, A., Dinu, D., Khovratovich, D., 2016. Argon2: New Generation of Memory-Hard

Functions for Password Hashing and Other Applications, in: 2016 IEEE European

Symposium on Security and Privacy (EuroS P). Presented at the 2016 IEEE European

Symposium on Security and Privacy (EuroS P), pp. 292–302.

https://doi.org/10.1109/EuroSP.2016.31

Blocki, J., Harsha, B., Zhou, S., 2018a. On the Economics of Offline Password Cracking, in:

2018 IEEE Symposium on Security and Privacy (SP). Presented at the 2018 IEEE

Symposium on Security and Privacy (SP), pp. 853–871.

https://doi.org/10.1109/SP.2018.00009

Blocki, J., Harsha, B., Zhou, S., 2018b. On the Economics of Offline Password Cracking, in:

2018 IEEE Symposium on Security and Privacy (SP). Presented at the 2018 IEEE

Symposium on Security and Privacy (SP), pp. 853–871.

https://doi.org/10.1109/SP.2018.00009

Capital One Data Theft Impacts 106M People — Krebs on Security, n.d. URL

https://krebsonsecurity.com/2019/07/capital-one-data-theft-impacts-106m-people/

(accessed 8.9.19).

D‘silva, K., Vanajakshi, J., Manjunath, K.N., Prabhu, S., 2017. An effective method for

preventing SQL injection attack and session hijacking, in: 2017 2nd IEEE

International Conference on Recent Trends in Electronics, Information

Communication Technology (RTEICT). Presented at the 2017 2nd IEEE International

Conference on Recent Trends in Electronics, Information Communication

Technology (RTEICT), pp. 697–701. https://doi.org/10.1109/RTEICT.2017.8256687

George, T.R., n.d. Securing password hashes from SQL injection attacks using Image

Steganography 16.

Hodgkiss, D., 2018. The Most Secure Password Hashing Algorithms. Damian Hodgkiss.

URL https://damianhodgkiss.com/articles/most-secure-password-hashing-algorithms/

(accessed 8.9.19).

Hongwei Wu, Xiangnan Liu, Weibin Tang, 2011. A fast GPU-based implementation for

MD5 hash reverse, in: Security and Identification 2011 IEEE International

Conference on Anti-Counterfeiting. Presented at the Security and Identification 2011

16

IEEE International Conference on Anti-Counterfeiting, pp. 13–16.

https://doi.org/10.1109/ASID.2011.5967405

Jake, 2017. Cracking everything with John the Ripper [WWW Document]. Medium. URL

https://bytesoverbombs.io/cracking-everything-with-john-the-ripper-d434f0f6dc1c

(accessed 8.9.19).

Johari, R., Sharma, P., 2012. A Survey on Web Application Vulnerabilities (SQLIA, XSS)

Exploitation and Security Engine for SQL Injection, in: 2012 International

Conference on Communication Systems and Network Technologies. Presented at the

2012 International Conference on Communication Systems and Network

Technologies, pp. 453–458. https://doi.org/10.1109/CSNT.2012.104

Kindy, D.A., Pathan, A.K., 2011. A survey on SQL injection: Vulnerabilities, attacks, and

prevention techniques, in: 2011 IEEE 15th International Symposium on Consumer

Electronics (ISCE). Presented at the 2011 IEEE 15th International Symposium on

Consumer Electronics (ISCE), pp. 468–471.

https://doi.org/10.1109/ISCE.2011.5973873

Kumar, H., Kumar, S., Joseph, R., Kumar, D., Singh, S.K.S., Kumar, P., Kumar, H., 2013.

Rainbow table to crack password using MD5 hashing algorithm, in: 2013 IEEE

Conference on Information Communication Technologies. Presented at the 2013

IEEE Conference on Information Communication Technologies, pp. 433–439.

https://doi.org/10.1109/CICT.2013.6558135

Luo, W., Hu, Y., Jiang, H., Wang, J., 2019. Authentication by Encrypted Negative Password.

IEEE Transactions on Information Forensics and Security 14, 114–128.

https://doi.org/10.1109/TIFS.2018.2844854

Mohurle, M., Panchbhai, V.V., 2016. Review on realization of AES encryption and

decryption with power and area optimization, in: 2016 IEEE 1st International

Conference on Power Electronics, Intelligent Control and Energy Systems

(ICPEICES). Presented at the 2016 IEEE 1st International Conference on Power

Electronics, Intelligent Control and Energy Systems (ICPEICES), pp. 1–3.

https://doi.org/10.1109/ICPEICES.2016.7853276

Morkel, T., Eloff, J.H.P., Olivier, M.S., n.d. AN OVERVIEW OF IMAGE

STEGANOGRAPHY 12.

Murakami, T., Kasahara, R., Saito, T., 2010. An implementation and its evaluation of

password cracking tool parallelized on GPGPU, in: 2010 10th International

Symposium on Communications and Information Technologies. Presented at the 2010

10th International Symposium on Communications and Information Technologies, pp.

534–538. https://doi.org/10.1109/ISCIT.2010.5665047

Rainbow table, 2019. . Wikipedia.

Sajjadi, S.M.S., Tajalli Pour, B., 2013. Study of SQL Injection Attacks and Countermeasures.

International Journal of Computer and Communication Engineering 539–542.

https://doi.org/10.7763/IJCCE.2013.V2.244

SQL Injection Prevention · OWASP Cheat Sheet Series [WWW Document], n.d. URL

https://cheatsheetseries.owasp.org/cheatsheets/SQL_Injection_Prevention_Cheat_She

et.html (accessed 8.10.19).

Tatlı, E.İ., 2015. Cracking More Password Hashes With Patterns. IEEE Transactions on

Information Forensics and Security 10, 1656–1665.

https://doi.org/10.1109/TIFS.2015.2422259

Top 10-2017 Top 10 - OWASP [WWW Document], n.d. URL

https://www.owasp.org/index.php/Top_10-2017_Top_10 (accessed 8.9.19).

Wetzels, J., n.d. The Password Hashing Competition and Argon2 17.

17

What is Advanced Encryption Standard (AES)? - Definition from WhatIs.com [WWW

Document], n.d. . SearchSecurity. URL

https://searchsecurity.techtarget.com/definition/Advanced-Encryption-Standard

(accessed 8.10.19).

