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Abstract

Software testing is a crucial part of every software project to ensure that the ap-
plications delivered to the end-users are defect-free and reliable. Mining of software
repositories can uncover useful software metrics which can aid in the early detec-
tion of bugs through software fault prediction. This information can be utilized by
software project managers to handle resource allocation and optimize the testing
process effectively. This paper proposes a novel super learner classification tech-
nique for predicting bug-prone modules in the software. The base learners for the
classifier comprises of Support Vector Machine (SVM), Decision Tree, Logistic Re-
gression (LR), and the meta learner used is Extreme Gradient Boosting (XGBoost).
The experiment is carried out on publicly available datasets from PROMISE repos-
itory and Eclipse bug prediction dataset. The results show that by combining the
predictions of multiple base learners, the presented Super learner provides a robust
and generalized performance compared to the individual classifiers for predicting
bugs in software.

Keywords– Software fault prediction, defects, bugs, ensembles, machine learning, classific-
ation

1 Introduction

Software projects are generally implemented in stages adhering to the Software Development
Lifecycle (SDLC). One of the crucial parts of this lifecycle is Software Testing, which has its
methodologies known as the Software Testing Lifecycle (STLC). Software testing consumes a
significant portion of any software projects time and effort, taking up to 35-50% of the budget for
a software project (Malhotra; 2014; Kasurinen; 2010).More functionalities need to be added to a
software as it matures due to technological advancements or growing market competition. The
addition of these functionalities can further complicate the development process increases the
risk of defects (Chen, Fang and Shang; 2016; Menzies, Milton, Turhan, Cukic, Jiang and Bener;
2010). Furthermore, it is impossible to exhaustively test a software application with limited time
and resource constraints given the agile nature of development(Kim, Zimmermann, Whitehead
and Zeller; 2007). The annual report for 2018 by Tricentis, a global leader in software testing,
states that around 3.6 billion people were affected worldwide due to software bug related issues,
which resulted in $1.1 trillion financial losses (Tricentis; 2018). This further indicates that the
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cost to fix a bug missed in the initial stages grows multifold as the software is close to its
release. Thus it is necessary to detect and fix bugs as early as possible in the project lifecycle to
minimize potential risks (Malhotra; 2014; Kasurinen; 2010). A possible solution to this problem
is to concentrate the testing efforts on specific modules of the software that are more prone to
be buggy. (Ma, Zhou, Xu, Chen and Yang; 2015).

Mining of software archives and version control systems containing code files, execution logs
and bug information can provide valuable insights on the quality of software and further help
in setting best practices. The project managers can use this newfound information to allocate
resources and time more efficiently to better manage an agile project (Moustafa, ElNainay,
Makky and Abougabal; 2018; Khoshgoftaar and Gao; 2009). The study by D’Ambros, Lanza and
Robbes (2010); D’Ambros, Gall, Lanza and Pinzger (2008); Kagdi, Collard and Maletic (2007)
discusses various data mining techniques to extract information from version control systems
and software archives. Software fault prediction involves the ability to develop a predictive
model that identifies bug-prone modules in a software application based on various software
metrics and bug history. If implemented in long-term projects having sufficient historical data,
it can aid in efficiently managing the software development activities. This could further help
in optimizing resource utilization and reduce project expenditures (Rathore and Kumar; 2016;
Xing, Guo and Lyu; 2005).

The domain of software bug prediction has intrigued many researchers in the past.It is not
often necessary to predict the precise number of bugs in each module of a software application
as it found that around 20% of the modules in a software contains about 80% of the bugs Boehm
and California (2001). Thus the density of bugs is not evenly spread across the modules in a soft-
ware. A code reviewer on average reviews around 8-20 LOC/minute (Lines of code per minute)
and this effort needs to be spent individually for the entire team which can become highly
labor-intensive (Kelly, Sherif and Hops; 1992). Therefore the ability to predict specific modules
that are more prone to be buggy can further aid in prioritizing the efforts for code reviews,
inspections and detailed testing (Yousef; 2015). This lead to further studies exploring various
machine learning techniques like Fuzzy clustering using Radial Basis Function(Mahaweerawat,
Sophatsathit and Lursinsap; 2002), SPRINT and CART(Khoshgoftaar and Seliya; 2002), ANN
(Artificial Neural Networks) and Clustering Genetic Algorithm (Qi Wang, Bo Yu and Jie Zhu;
2004), Support Vector Machines (SVM) (Xing, Guo and Lyu; 2005) for classification in Software
Bug Prediction.

Like most real-world problems, the presence of bugs in a software is not uniform across mod-
ules. There is a high imbalance in the distribution of bugs across modules in a softwareBoehm
and California (2001). The number of faulty modules in a software application is considerably
less than the non-faulty modules. This imbalance is usually not taken into consideration while
developing a predictive model resulting in poor performance on unseen data (Öztürk; 2017).
Some studies suggest the use of undersampling and oversampling techniques to handle the im-
balance in data. Also, no individual classifier performs consistently across data from different
projects, and hence, no single model is superior to the other in this context. The problem of
software fault prediction is non-convex and since it is computationally expensive to find the
global minima using a single technique, the use of ensembles can provide a feasible solution.
Some of the studies by Wu, Wang, Peng, Shi and Lou (2011) and Laradji, Alshayeb and Ghouti
(2015) proposed the use of ensemble technique such as Bagging, Boosting, Voting and Average
Probability Ensemble for classifying bug-prone modules.

This raises the question: What techniques can be used to optimize the identification and
classification of bug-prone modules in a software?

This research presents a novel approach to build a robust and generalized model for software
defect prediction through feature selection techniques and handling of class imbalance in data us-
ing a Super Learner based ensemble with base learners such as Support Vector Machines(SVM),
Logistic Regression(LR), Decision Trees(DT) and state-of-the-art technique XGBoost (Extreme
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Gradient Boosting) as the meta-learner.
The report is further organized into the following sections: Section 2 provides information

about related studies and researches in the field of software fault prediction, Section 3 discusses
the methodology followed for conducting the research, Section 4 presents an overview of the
modelling and design flowchart, Section 5 presents the implementation of the Super Learner
model, Section 6 presents an evaluation of the developed model, Section 7 presents the conclu-
sion.

2 Literature Review

This section contains literature from different studies performed in software fault prediction do-
main. Several machine learning models and techniques implemented previously are discussed,
followed by the use of ensembles in classifying bug-prone modules. This follows with the intro-
duction to the extreme gradient boosting algorithm used as the meta-model in the proposed
Super Learner.

2.1 Support Vector Machines

The study by Xing, Guo and Lyu (2005) proposed the use of a novel approach based on
SVM(Support Vector Machines) for software bug classification. The experiment was performed
on the data mined from an application for Medical Imaging System using 11 software complex-
ity metrics. Principal Component Analysis was used for dimensionality reduction to reduce
the interrelated effect of various metrics. The study compared and contrasted two models
QDA(Quadratic discriminant analysis) and SVM with and without applying PCA. It was ob-
served that the model using SVM after applying the PCA for dimensionality reduction showed
an accuracy of around 89% and very low Type I error. However, the use of data pertaining to
a single project can be a threat to the generalized capability of the model.

A similar study by Elish and Elish (2008) proposes the use of SVM for software fault
classification and compares it against eight other statistical and machine learning models. For
this study, four NASA MDP(Metrics Data Program) datasets - CM1, PC1, KC1 and KC3 were
used from the PROMISE repository. The Correlation Based Feature selection technique was
used to select the best features for training the models. SVM was able to achieve an accuracy
in the range of 85-94% for the 4 projects. It was also able to achieve a 100% recall rate for
the CM1 dataset. Although the performance of SVM in terms of accuracy and f-score was a
bit below the Random Forest classifier, it was competitive. Also, a recall rate of 100% could
indicate overfitting of the model. Gondra (2008) compares the performance of ANNs(Artificial
Neural Networks) and SVM on a single project data from the NASA Metrics Data Program.
Sensitivity analysis is used to perform feature selection from the available 21 software metrics.
The findings of the study indicate that SVM performs significantly better than ANNs with a
correct classification rate of 87% as compared to 72% achieved by ANN. However, the study
does not consider other evaluation parameters and results are limited to a single project.

Sunghun, Whitehead Jr. and Yi (2008) proposes the use of SVMs for identifying bug-prone
modules in software. For the experiment, the software configuration management systems for
12 open source projects are mined to extract software metrics. The chi-square measure is used
to perform feature selection while accuracy, recall, precision and f-score are used as the eval-
uation parameters. The finding indicate that SVM classifier provides acceptable performance
for identifying bug-prone modules with the best accuracy of around 86% for the Apache pro-
ject and least being 65% for the project JEdit. However, there is no comparison made on the
performance of SVM to any other models for the same projects. Also, there is no discussion on
the handling of class imbalance in data.
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2.2 Logistic Regression

El Eman and Melo (2001) performed software fault prediction on a single version of a com-
mercial Java application using Logistic Regression. A subset of 10 features was selected that
are associated with the bug proneness and are not correlated to each other. The evaluation is
performed using J coefficient, AUC and ROC curve. The findings indicate that the developed
Logistic Regression model using design metrics provide acceptable performance in terms of
accuracy. However, the technique used to select the sub-features is not discussed in detail.

The experiment conducted by Denaro, Pezzè and Morasca (2003) implemented logistic re-
gression for software fault prediction on data collected from an antenna configuration system
and the projects Apache 1.3 and Apache 2.0. A combination of 9 orthogonal method-level
metrics is selected using Principal component analysis to build the model. For evaluating the
results of the study parameters such as R2, overall completeness, faulty module completeness
and faulty module correctness are used. It is observed that logistic regression along with cross-
validation provides good performance in terms of identifying bug-prone modules in a software.
Although the study has not compared the performance of Logistic Regression with any other
models, it does provide a strong indication of the generalization capability of the algorithm on
different projects.

The study by Olague et al. (2007) proposes the use of Logistic Regression to classify defect
prone modules in software. For this data from several versions of Mozilla Rhino project is used
which has a large number of object-oriented metrics. The evaluation of the model was based
on accuracy on a different subset of features. The study concludes that the performance of the
model provides acceptable accuracy in the range of 70-86% for different versions of the software.
However, the study does not discuss any feature selection techniques and evaluates the model
performance solely on accuracy. An experimental study by Cruz and Ochimizu (2009) further
explored the use of Logistic Regression in software fault prediction. The data from Mylyn
project of Eclipse, an e-commerce system (ECS) and a banking system (BNS) is used for the
analysis with metrics such as CBO, RFC and WMC. The use of simple log transformations is
done to compare complexity metrics among different projects. For evaluating the performance of
the model, statistical tests of significance and goodness of fit are used. However, the study could
have used more robust evaluation parameters such as AUC, accuracy and recall to establish the
credibility of the results.

2.3 Decision Trees

For software fault prediction, Khoshgoftaar and Seliya (2003) proposed the use of SPRINT
decision tree algorithm, which is an extension of the CART(Classification and Regression Tree)
technique. The study makes use of software metrics from four historical releases of a large
telecommunication system. A combination of 24 product metrics and 4 execution metrics, i.e.,
a total of 28 software metrics are used to build the specified model. The performance of the
model was evaluated based on Type-I error, Type-II error and misclassification error. The
findings of the experiment indicate that trees built using SPRINT are more complex than the
tree using CART but provide better stability and robustness. However, the rationale behind
choosing the metrics is not explained. A study by Güne Koru and Liu (2007) to identify and
characterize bug-prone modules in a software proposed the use of tree-based models. The class-
level static metrics from KOffice and Mozilla projects are used for building the predictive model.
The experiment aimed at validating Pareto’s Law, which states that the majority of issues are
concentrated in a small proportion of modules. It was found that the tree-based models provided
acceptable performance in identifying bug-prone modules which can aid in efficiently managing
project resources. However, there is no discussion on evaluation parameters used for reaching
the stated findings.
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2.4 Ensembles

The popularity of ensemble techniques has increased in the domain of software bug prediction
due to its promising potential in improving the prediction capabilities of models (Rathore and
Kumar; 2017). Various studies were reviewed to understand the benefits and application of
ensemble machine learning techniques.

2.4.1 Homogeneous ensembles

The failure to identify fault-prone module can be more expensive than misclassifying non-faulty
modules in software defect prediction. A solution to this issue by Zheng (2010) proposes the use
of three cost-sensitive boosting algorithms using AdaBoost to boost the neural network. Here,
four datasets from NASA MDP program consisting of 21 software metrics have been used to train
the model. It was observed that the accuracy of the neural networks improved using the boosting
technique. The evaluation is performed using the parameters Type I, Type II and ECM(expected
cost of misclassification). However, Neural Networks, being a deep learning technique, requires
a large amount of data to be trained. This needs to be taken into consideration while building
a predictive model which may otherwise lead to a biased model.

To improve software fault classification Mauša, Grbac, Bogunović and Bašić (2015) exper-
imented with five releases from the Eclipse JDT project using Rotation Forest, an ensemble
of Decision trees. Dimensionality reduction was achieved using Principal Component Analysis
(PCA) technique. The resulting model was evaluated using accuracy, True Positive rate, False
Positive rate, F-measure, Kappa statistics and Area under receiving operating curve(AUC). It
was found that the Rotation forest provided better accuracy than the Random Forest and
Logistic Regression models. However, data from a single project was used to evaluate the
performance of the model.

2.4.2 Heterogeneous ensembles

The work by Khoshgoftaar and Seliya (2003) analyses the effects of ensemble methods over
traditional individual classifiers such as C4.5 and Decision trees for software fault prediction.
The ensemble methods such as bagging, boosting and logit-boost were used in this research and
were evaluated only based on misclassification rates for Type I and Type II error. The study
observed that the ensemble or combined models outperformed the base learners or individual
classifiers. It was also found that the boosting model consisting of different base learners worked
better than the bagging model. However, the evaluation of these models was based solely on a
single performance parameter.

Aljamaan and Elish (2009) ffurther experimented with measuring the performance of bag-
ging and boosting techniques compared to individual classifiers. The machine learning al-
gorithms used in this study are Multilayer perceptron, Radial Basis Function Network, Bayesian
Belief Network, SVM and Decision Trees. The model is built using nine class-level metrics from
project KC1 of NASA MDP Program. It was observed that the ensemble models using bagging
and boosting performed better than individual classifiers. However, classification accuracy is
the sole parameter used to evaluate the performance of the models. Also, the literature does
not discuss the use of any feature selection techniques for building the model. To tackle the
challenge of Software Bug prediction, Misirli, Bener and Turhan (2011) proposed an ensemble
using Näıve Bayes, Artificial Neural network(ANN), and Voting feature intervals. The models
were trained using data of seven projects from the PROMISE repository. A total of 11 features
were selected using the InfoGain feature selection method and the performance was evaluated
using probability of detection (pd), balance and precision. The findings indicate that the classi-
fication rate of the ensemble classifier was significantly higher than individual classifiers. Similar
to the previous literature, Twala (2011) developed an ensemble model using Apriori, Decision
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Tree, k-nearest neighbour, Neäıve Bayes and SVM to detect bugs in software. Requirement
and static code metrics of four projects from the NASA MDP program are used to develop the
fault prediction models. The variable misclassification cost is used to handle class imbalance
issue but has not been explained. The findings indicate that ensembles perform better than the
chosen single classifiers as can be seen in previous literatures. However, the proposed model
was evaluated solely based on the misclassification rate.

To further explore ensemble techniques in software fault prediction, Siers and Islam (2015)
developed a cost-sensitive classification and voting technique using Decision trees. The data of
6 projects from NASA MDP repository are used for building the model and features are selected
using GetGoodAttributes technique. SMOTE (Synthetic minority oversampling technique) is
used for handling the class-imbalance by generating synthetic values of faulty classes and is
one of the most prominently used techniques for effectively handling class imbalance. The time
required to calibrate the proposed ensemble model is less than the time taken by traditional
techniques that are used for such predictions. However, only precision and recall are used as
evaluation metrics for the model.

The work by Elish, Aljamaan and Ahmad (2015) also studies the use of heterogeneous en-
sembles over homogeneous ensembles. Base learners such as Support Vector Machines, Decision
Trees, Radial Bias function or RBF network and Multilayer Perceptron networks are used in
the study. The models were trained using ten-fold cross-validation with 11 class-level features
or software metrics. The data set used for this study is from the projects UIMS and QUES. The
results of this study were similar to the ones observed by Khoshgoftaar and Seliya (2003) and
reinstated the fact that heterogeneous ensembles perform better than homogeneous ensembles.

The work by Rathore and Kumar (2017) proposed the use of ensembles for predicting the
number of bugs in a software. It proposes to combine the base learners in an ensemble using
linear and non-linear combinations. The linear combination approach uses Linear Regression,
Genetic Programming and Multilayer perceptron as base learners with a linear regression rule
to combine the base learners. The non-linear combination uses Gradient Boosting Regression
(GBR) is used as a meta learner. This analysis was performed on projects from the PROMISE
repository and class imbalance was handled using SmoteR technique. Evaluation metrics such
as Average absolute error, Prediction at level l, Average relative error, Measure of completeness
are used. It is observed that the non-linear combination performs better than the linear com-
bination of ensembles in terms of accuracy. The current study proposes the use of XGBoost to
deal with the high computational cost of ensemble methods such as the one mentioned above.
This research also differs from the one above by performing a classification task rather than a
regression one i.e. it aims to classify the software bugs based on software metrics rather than
predicting how many bugs would occur. For this, a super learner model is proposed which will
be explained further in the study.

2.5 Introduction to Extreme Gradient Boosting (XGBoost)

Extreme Gradient Boosting(XGBoost) was introduced by (Chen and Ma; 2015) that is more
scalable and efficient in terms of performance and accuracy than its predecessor the Gradient
Boosting Machines(GBMs). XGBoost is also known as a regularized boosting model. This
algorithm is optimized by implementing novel approaches to handle missing data by using
techniques such as sparsity-awareness. In the case of weighted datasets, it applies an optimal
split for points using a distributed weighted Quantile Sketch algorithm. The computational
speed of the XGBoost algorithm is very high and it also makes optimal use of memory Dhaliwal
et al. (2018).

XGBoost comes with the following improvements over gradient boosting trees(Chen and
Ma; 2015):

• Regularization: It prevents overfitting by using Lasso(L1) and Ridge(L2) regression to
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make the model more generalized.

• Parallel processing: To increase the execution speed, XGBoost can make use of multiple
CPU cores for parallel processing.

• Tree pruning: Unlike the traditional GBM which does a greedy search, XGBoost performs
splits to the maximum depth then performs backward pruning of the tree to remove splits
which does not provide any positive gain.

• Built-in Cross validation: By allowing a cross-validation at each iteration, it becomes
easy to find the exact number of boosting iterations to fit the optimal model.

2.6 XGBoost used in different domains

For this research, the meta-model proposed for building the Super Learner is Extreme Gradi-
ent Boosting(XGBoost) since it is a state-of-the-art boosting algorithm not yet studied in the
domain of software fault prediction. The following literature discusses the use of XGBoost in
other domains similar to software fault prediction.

Ahmadi, Ulyanov, Semenov, Trofimov and Giacinto (2016) implemented a predictive model
using XGBoost to classify malware based on data from Microsoft. Here features are grouped
based on the varied behavior of malware. The proposed model was able to achieve high accuracy
of about 98%. A similar study by Zhang, Huang, Ma, Yang and Jiang (2016) proposes an
ensemble with XGBoost and ExtraTreeClassifier as the base learners. Here, XGBoost is also
used as the meta-model to classify malware threats as the existing techniques do not provide
acceptable accuracy and efficiency. Similar to software metrics used in software fault prediction,
this research aims to use multiple categories of static features to classify malware families.On
experimenting with data from Microsoft, the resulting model was able to achieve an accuracy
of around 99%. The results show promising capabilities of XGBoost in the classification of
fault-prone modules in a software. This literature further supports the idea of using XGBoost
as the meta-learner in the current work.

Dhaliwal, Nahid and Abbas (2018) implemented XGBoost to classify malicious packets in
network and build a relaible intrusion detection system. This involves deploying the XGBoost
on the network socket layer (NSL-KDD) dataset to evaluate its performance. The goal is to
understand data integrity, identify malicious packets in the network and discard them to ensure
the safety of the network. Hyperparameter tuning is performed to get the optimal values for
training the XGBoost model. The proposed model was able to achieve high recall rate, followed
by accuracy and precision of close to 98%.

A similar study by Chen, Jiang, Cheng, Gu, Liu and Peng (2018) explores the use of
XGBoost to identify the DDoS(Distributed Denial of service) in software-defined cloud-based
network. It is necessary that the developed model is quick to classify incoming DDoS as it can
paralyze the entire network. The proposed model is trained using the flow packet data from the
TCP dump. It is observed that the XGBoost model is able to achieve high accuracy and low
false-positive rates. Also, the model is more scalable and significantly faster than other existing
techniques.

3 Methodology

This study aims to develop a model that can be applied to software projects and can aid with
the early detection of bugs. The above literature review provides a clear idea of the existing
approaches used for software fault prediction. The Knowledge Discovery in Databases (KDD)
methodology is used for this research as proposed by Fayyad et al. (1996) and generally used
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in software fault prediction literature (Khoshgoftaar, Allen, Jones and Hudepohl; 1999; Mertik,
Lenic, Stiglic and Kokol; 2006; Gayathri and Sudha; 2014).

Figure 1: Stages in the KDD process

The 5 stages of the KDD approach is shown in Figure 1 1:

• The Selection stage involves selecting relevant dataset for analysis.

• The Pre-processing stage includes steps such as handling missing values, modifying column
names, creating new columns based on available data, encoding factor levels and refining
the data.

• The Feature selection stage involves techniques to choose only relevant features for build-
ing the model.

• In the Implementation stage, the proposed machine learning model is developed.

• Finally, the Evaluation stage consists of measuring the performance of the models based
on different metrics.

3.1 Data Selection

For this study, four different datasets are obtained from two sources - PROMISE2 and Eclipse3

bug prediction dataset. The PROMISE repository is used to obtain data for two projects,
i.e., ANT v1.7 and PROP v1.0. The other two datasets are obtained from Eclipse software
repository created by Zimmermann, Premraj and Zeller (2007). Each record in the dataset
represents a class file or module. The features in the datasets are software metrics which are
extracted from the version control systems, log files and bug history of the software.

The ANT v1.7 has 745 records and contains 22 features that are software metrics such
as wmc(weighted method count), dit(depth of inheritance tree), rfc(response for class), lcom
(lack of cohesion in methods),loc (line of code), cbo(Coupling between objects) and Number
of bugs etc. The project PROP v1.0 contains 18,472 records with 22 software metrics similar
to the Ant project. The project Eclipse v2.0 has 6,729 records and 202 software metrics such
as ACD(Number of anonymous type declarations), FOUT (Number of method calls (fan out)),
MLOC (Method lines of code), NBD (Nested block depth), PAR(Number of parameters), VG
(McCabe cyclomatic complexity), Number of bugs. The dataset for project Eclipse 3.0 contains
10,593 records and has features similar to Eclipse v2.0. The data from projects used in this
study along with the software metrics are summarised in Figure 2 below.

1https://www.lucidchart.com/
2https://github.com/klainfo/DefectData/tree/master/inst/extdata/terapromise/ck
3https://www.st.cs.uni-saarland.de/softevo/bug-data/eclipse/
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Project Bug
present

Bug not
present

Proportion
of buggy
modules

Total number of
modules

Eclipse v2.0 975 5754 14.4% 6729
Eclipse v3.0 1568 9025 14.8% 10593
Ant v1.7 579 166 22.2% 745
Prop v1 2738 15733 14.8% 18471

Table 1: Dataset summary

3.2 Preprocessing

The datasets available from the PROMISE and Eclipse software repository had complete cases
of all records; therefore, missing values did not have to be handled separately. However, other
pre-processing tasks were carried out on the dataset as below.

• The redundant columns are dropped as they do not significantly contribute to the overall
prediction. For example, the version column with value ’1’ for all the records.

• The records that have LOC(Line of code) feature as 0 is dropped, as a module or class
file without a single line of code cannot contain any bug.

• Since the study aims to develop a classifier to identify bug-prone modules, the dependent
variable Number of bugs is converted into factor and renamed as Has bugs? with two
levels: Yes - if the count of bugs is 1 or more and No - if the count of bugs is 0.

• Further, to fit the meta learner, XGBoost, dummies are created using one-hot encoding
technique through createDummyFeatures method of mlr package in R.

Figure 2: Details of the dataset and software metrics
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3.3 Feature Selection

The features used to build a predictive model largely influences its overall performance. Thus it
becomes necessary to carefully select features while training the model to create more general-
ized and simple models having low variance. Since the data from projects under consideration
have high dimensionality, it is imperative to choose features that do not suffer from multicol-
linearity (D’Ambros et al.; 2010). A filter-based feature selection technique, Correlation Based
feature selection (CFS) is used as it provides a subset of features that are highly correlated
with the dependent variable and have no correlations amongst them(Wang, Khoshgoftaar and
Napolitano; 2014; Malhotra, Bahl, Sehgal and Priya; 2017).

Post feature selection, since the data has high class imbalance, the technique SMOTE (Synthetic
Minority Oversampling Technique) is applied to the training set (Laradji, Alshayeb and Ghouti;
2015). SMOTE makes use of the k-nearest neighbor technique where the nearest neighbors of
a minority class are identified and synthetic values are generated using them, in this case, the
bug-prone modules. It is essential to handle the class imbalance as the machine learning al-
gorithms need to learn the characteristics of both bug-prone and non-buggy modules to classify
an unseen record correctly. If the instances of bug-prone modules are less, the model would be
biased in classifying the modules correctly and would identify a module as non-buggy majority
of the time. The Figure 3 shows the distribution of the buggy and non-buggy modules in the
original datasets and the bug distribution in the training set post applying SMOTE.

(a) Bug Distribution in the original dataset (b) Training set after applying SMOTE

Figure 3: Software Bug Distribution

3.4 Models

The proposed Super Learner (Polley and van der Laan; 2010) is an ensemble of two layers. The
base layer consists of three machine learning algorithms widely used in Software Fault Predic-
tion domain, namely: Logistic Regression(LR), Support Vector Machines(SVM) and Decision
Tree(DT). The meta-layer consists of the state-of-the-art algorithm Extreme Gradient Boost-
ing(XGBoost) to learn from the predictions made by the base learners and provide a more
robust, generalized and optimal model.

3.5 Metrics for evaluation

There is no established standard benchmark to evaluate the performance of a software bug
prediction model Arora et al. (2015). Hence, for assessing the results, similar metrics used in
the literature are recorded. The performance of each base learner is measured individually,
and then the performance of the super learner is measured. The following parameters are used
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for evaluation, namely: AUC, accuracy and recall. This study does not consider parameters
like F-score, Precision due to its unstable nature as Software fault prediction deals with highly
imbalanced classes Menzies et al. (2007); Malhotra (2015).

AUC-ROC curve: ROC stands for receiver operating characteristic and is a probability
curve, which graphically represents the performance of a binary classifier. AUC stands for Area
Under ROC curve and defines the capability of a model to distinguish between classes. The
higher the value of AUC, i.e., closer to 1, the better the model is at identifying the correct class
labels. In this case, higher the AUC, better is the model at identifying bug-prone modules from
the non-buggy modules. ROC provides a robust analysis of the classifier performance in the
presence of imbalanced class distributions (Kaur and Kaur; 2018). In a ROC curve, the TPR
(True positive rate) on the y-axis is plotted against the FPR (False positive rate) on the x-axis.
The terms used in ROC is defined below:

Accuracy : It is defined as the number of correct predictions made by a classifier over the
total number of predictions. It is represented as:

Recall : It is defined as the ability of a classifier to identify all instances of interest correctly.
In this case, accurately identifying all bug-prone modules. It is represented as:

4 Design Specification

This section shows a brief overview of the model design and system development followed in
this research.

4.1 Architectural Design

Figure 4 presents an overview of the proposed Super Learner for software fault classification. It
contains the following components:
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• Dataset: In this stage, datasets containing software metrics and bug history related to
the software application are collected.

• Prediction model: Consists of training and evaluating the Super Learner for classifying
bug-prone modules

• Super Learner based classifier: The developed model can then be used to classify bug-
prone modules in the new release of a software project.

Figure 4: Overview of system development flowchart

4.2 Components of the Super Learner

As seen in Figure 5, the Super Learner classifier consists of two layers - Base learners and
Meta learner. The rationale behind selecting these models is that previous literature as per
Section 3 shows that the chosen models have provided significant improvements in software bug
classification. Also, the performance of the base classifiers are diverse as per the initial visual
analysis of their results using box plots. A brief overview of the meta-learner is provided in
Section 2. The outline of base learners used in the classifier is discussed below.

4.2.1 Logistic Regression

Logistic Regression is used for classification tasks when the outcome of the response or target
variable is binary or dichotomous e.g., 0,1 or ”Yes”, ”No”. This model, checks for the probability
of occurrence of the response variables (Denaro et al.; 2003). Mathematically, the model is
represented using a sigmoid function as

f(x) = 1/(1 + e-x)

where f(x) = 1, x→∞,

f(x) = 0, x→ −∞

12



Figure 5: Super Learner based model for bug classification

Here, let x = θ0 + θ1x where θ0 and θ1 are the parameters of model estimation. In this
study, θ0 = 0 and θ1= 1 for the two classes and x is the number of bugs. If the number of bugs
is greater than 1, the class is assigned to it is 1 and 0 if less than 1.

4.2.2 Decision Trees

A Decision Tree model was used as a second base learner to train the data. Decision trees can
be used for both classification and regression analysis. In this study, classification is carried
out using decision tree models. A decision tree classifies data starting from a root node which
splits into ”Yes” and ”No” based on the condition (e.g., does this module have bugs? the result
of which is a binary response). This node is further split to find the most optimum split. The
Gini impurity is checked at each node to decide if a further split is required. For dataset T,
containing records from N classes, Gini(T) can be represented as,

Gini(T ) = 1−
N∑
i=1

p2i

where, pi is the corresponding frequency of class i in T. This method of splitting from a
root node to the base node is called growing trees. Since decision trees try to find optimum
splits based on Gini index, they tend to overfit. Therefore, trees need to be pruned, and
hyperparameters need to be tuned to avoid overfitting. Here, random search was used for
hyperparameter optimization followed by a grid search to further narrow down the search space.
However, other advantages of using decision trees are that they perform implicit feature selection
and are non-parametric. Therefore, they can handle all types of data i.e., both numerical and
categorical and does not make assumptions on the distribution of data. Non-linear relationships
between the variables do not affect the performance of decision trees.

4.2.3 Support Vector Machine

The third base learner used for this research is Support Vector Machines(SVM). SVM is used
for classification when the data is n-dimensional. It tries to find a hyperplane that separates
the classes instead of a linear combination of points when the data is highly dimensional.
Hyperplanes are decision boundaries and points are assigned classes based on what side of
the plane they are. A hyperplane is created by using support vectors. The support vectors
are along the boundary of the plane and the aim is to maximize the distance between these
support vectors and the separation plane. If the number of dimensions is 2, then the plane is a
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straight line that divides the two classes and a 3-dimensional plane if there are more than two
classes. SVMs are more robust and powerful than Logistic Regression models and are capable
of handling large dimensions of data. Some times data is not linearly separable in 2D space,
but when viewed from a higher or different dimension, it can appear to be linearly separable.
A kernel trick or approach can be used in such a case. SVM supports many different types of
kernels, namely: Gaussian, Polynomial, Sigmoid, etc. In this research, SVM with radial bias
kernel function is used. Mathematically, RBF kernel is represented as

K(xi,xj) = e-γ(xi − xj)
2

where γ is the tuning parameter. This parameter depends on the euclidean distance between
the support vectors chosen. If the value of γ is high, the value of the kernel will be very small
from the equation above. This will result in the boundary plane overfitting the data. Therefore,
the tuning parameter needs to be selected carefully.

5 Implementation

In this section, the implementation of the proposed Super Learner model for software bug
prediction is discussed in detail. This study is performed on RStudio using the language R as
it provides all the necessary packages and libraries to build and train the model. The collected
dataset for four different projects from PROMISE and Eclipse software bug repositories are pre-
processed and refined before building the models. All the necessary packages and library are
installed in RStudio to carry out this study. The package dplyr is used to perform pre-processing
of the data i.e., to filter out irrelevant records and features as discussed in the pre-processing
steps in Section 3. The package caret is predominantly used to train all the base learners,
namely: Support Vector Machine(SVM), Logistic Regression(LR) and Decision Trees(DT) as
it supports training on a wide range of machine learning algorithms.The caret package also
provides methods to tune the hyperparameters along with measuring the performance of the
classifiers. The function CreateDataPartition of caret package is also used to create random
stratified partitioning of the dataset into training, validation and testing in the ratio 60:20:20.
The library Biocomb is used to implement the correlation-based feature selection technique to
select relevant features from the training set to train the base models. A total of 10 features
were selected for the projects Ant v1.7 and Prop v1.0, and 22 features were selected for the
projects Eclipse v2.0 and v3.0.

Since there is a high class imbalance in the datasets, library DMwR is used to apply
SMOTE(Synthetic Minority Oversampling Technique) on the training sets to generate syn-
thetic data for minority classes, in this case bug-prone modules. The meta-model XGBoost for
the super learner is implemented using package mlr, which is similar to the package caret. The
advantage of using mlr is that it has customized options to tune hyperparameter for XGBoost.
Also, XGBoost performs well with sparse data, and so for the encoding of the input data to
XGBoost, the function createDummyFeatures from the MLR package is used.

The package ROCR is used to plot the ROC(Receiver Operating Characteristic) curve for
visually evaluating the performance of the models. Also, MS Excel is used to record the results
from the experiment. To further generalize the results, each experiment is conducted three
times, and the mean of the outcomes is considered as the final performance of the models.

To build the Super Learner, stacked generalization technique put forward by Breiman (1996)
is used as seen in Figure 5. The following steps are implemented:

1. The base models SVM, Logistic Regression and Decision tree are tuned and trained on
the training set.

2. Using the fitted base models, predictions are performed on the validation and test sets.
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3. The predictions made on the validation set by each base model is stacked along with the
actual value, which becomes the training set for the meta-model XGBoost.

4. Similarly, the predictions on the test set by each base model is stacked to form the testing
set for the meta-model.

5. The meta-model is then trained using the stacked data from Step 3.

6. Finally, the testing set created in Step 4 is used to perform the final prediction of the
Super Learner.

The performance of individual base-learners and the Super Learner is evaluated for each
project. A baseline model is first created without handling the class imbalance in the training
sets. Logistic Regression is implemented using the Caret package in R. The family is set to
binomial as the target or response variable is binary in nature. The Decision tree model is
also trained using the Caret package’s rpart method, and its performance is tuned using the
cp(Complexity) parameter. The final base learner, SVM, is implemented using the svmRadial
method of the Caret package. The training data is first scaled and centered using the method
preProc before fitting the model. The hyperparameter Sigma (σ) and c(cost of misclassification)
are tuned to improve the performance of the model further. For implementing the meta-model
XGBoost, MLR library is used. Since the predictions from the base learners are fed as input to
the XGBoost model, it is converted into sparse data using createDummyFeatures method. The
parameters min child weight, max depth, colsamplebytree, subsample, eta are tuned to get the
optimal model.

The proposed model also deals with the handling of class imbalance in software fault pre-
diction problem. For this, the technique SMOTE is applied using the DMwR package to the
training set. This creates synthetic values for buggy modules and improves the representation
of minority classes in the data. The above-mentioned steps are repeated after handling the
class imbalance in the training sets to build the new models. A 10-fold cross validation tech-
nique is also applied to reduce the risk of biasing or over fitting of the data. These predictions
are stacked and fed as input to the XGBoost model and the final predictions on the test set
are recorded. The iteration with the balanced set is also performed three times to generalize
the results. The results of the baseline and proposed model are then compared using different
evaluation metrics as discussed in the next section.

6 Evaluation

6.1 Performance of classifiers on unbalanced data

A baseline model for the individual classifiers and the Super learner is built using unbalanced
data. It can be observed from Table 2 that the performance of individual classifiers varies on
different projects. For project Eclipse v2.0, the SVM classifier outperforms Logistic Regression
and Decision Tree with an AUC score of 0.83 and an accuracy of 89%. Although, the recall
value for the Decision Tree classifier is 47% slightly better than SVM. Similarly, for project
Eclipse v3.0 and Prop v1.0, the performance of the SVM classifier is better with an AUC score
of 0.83 and 0.79, respectively. It can be seen that the recall value of Decision Tree was better
in both the projects with 35% and 26% respectively. The recall score of SVM for Prop v1.0 is
quite low, with a rate of 9%. For project Ant v1.7, the performance of Logistic Regression is
better than the other base learners with an AUC score of 0.75 and an accuracy of 81%.

The performance of the Super Learner for all the projects is in the range of 0.7 to 0.85 for
AUC and 80-90% in terms of accuracy. Thus the performance of the Super Learner is better or
at least competitive when compared to the individual classifiers except for the poor recall rate
of 7% for the project Prop v1.0.
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Project Models
Performance measures
AUC accuracy recall

Eclipse v2.0

Logistic Regression 0.78 88% 31%
SVM 0.83 89% 32%
Decision Tree 0.75 87% 47%
Super Learner 0.8 89% 34%

Eclipse v3.0

Logistic Regression 0.78 87% 24%
SVM 0.83 85% 23%
Decision Tree 0.76 87% 35%
Super Learner 0.75 85% 36%

Prop v1.0

Logistic Regression 0.67 84% 26%
SVM 0.79 85% 9%
Decision Tree 0.67 84% 26%
Super Learner 0.77 86% 7%

Ant v1.7

Logistic Regression 0.75 81% 37%
SVM 0.7 81% 40%
Decision Tree 0.69 79% 45%
Super Learner 0.73 81% 37%

Table 2: Evaluation of classifiers - Unbalanced data (Baseline)

6.2 Performance of classifiers on balanced data

Now, the same experiment is repeated on a balanced training set for all the projects to evaluate
the proposed model. Similar to the previous results it can be observed from Table 3 that the
performance of individual classifiers is different for each of the projects under consideration. For
the project Eclipse v2.0, the SVM classifier outperforms Logistic Regression and Decision Tree
with an AUC score of 0.69, accuracy of 81% and a recall rate of 70%. Similarly, for project
Eclipse v3.0 and Ant v1.7, the performance of the Logistic Regression classifier is better with an
AUC score of 0.68 and 0.71, respectively. Although it can be seen that the recall rate of SVM
is better for Eclipse v3.0 at 78%.For project Prop v1.0, the Decision Tree classifier performs the
best compared to other base classifiers, with an AUC score of 0.63, accuracy of 80% and recall
rate of 52%.

The AUC value of the Super Learner for all the projects is in the range of 0.7 to 0.75 better
than any of the individual base classifiers. The accuracy achieved by the Super Learner is also
the highest for all the projects with a range of 80-88%. The recall rate for the Super Learner is
competitive when compared to the individual base classifiers.

To visually evaluate the performance of the base learners and the combined Super Learner
model, the ROC curve is plotted as seen in Figure 6. The performance of a classifier is acceptable
if the curve is closer to the point(0,1) on the Y-axis. However, it can be difficult to differentiate
between the performance of multiple classifiers using ROC alone, hence the AUC score is
calculated to further interpret the same as can be seen in Table 2 and Table 3.

16



Project Models
Performance measures
AUC accuracy recall

Eclipse v2.0

Logistic Regression 0.68 82% 65%
SVM 0.69 81% 70%
Decision Tree 0.66 82% 69%
Super Learner 0.75 88% 62%

Eclipse v3.0

Logistic Regression 0.68 82% 53%
SVM 0.59 63% 78%
Decision Tree 0.65 81% 44%
Super Learner 0.73 86% 56%

Prop v1.0

Logistic Regression 0.58 77% 37%
SVM 0.62 77% 50%
Decision Tree 0.63 80% 52%
Super Learner 0.7 84% 42%

Ant v1.7

Logistic Regression 0.71 80% 59%
SVM 0.69 78% 58%
Decision Tree 0.69 78% 53%
Super Learner 0.67 81% 53%

Table 3: Evaluation of classifiers - Balanced data

(a) Logistic Regression (b) Support Vector Machine

(c) Decision Tree (d) Super Learner

Figure 6: ROC Curve of the Base Learners and Super Learners for Project Ant v1.7
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6.3 Discussion

On observing the results in Table 2 and Table 3 it can be concluded that there is a significant
improvement in the recall value of all classifiers after handling the class imbalance in the training
set. Thus it can be affirmed that resampling the minority class, i.e., the bug-prone modules
using SMOTE during the training phase can significantly improve the recall performance of the
classifiers.

It is also evident from Table 3 that the performance of the proposed Super Learner exceeds
that of the individual base learners. The AUC score and accuracy of the proposed Super Learner
using XGBoost is higher than the individual classifiers such as SVM, LR and DT. The recall
value for the Super Learner is better than DT and LR classifier for Eclipse v3.0. Similarly, the
recall value for the Super Learner is better than LR classifier for Prop v1.0 at 42%.

It can also be observed that the base classifiers provided varied predictions, and none of
them performed consistently across different projects. However, the proposed Super learner
classifier provided better predictions in terms of both AUC and accuracy and competitive recall
value compared to the base classifiers across the projects under consideration. The Figure 7
shows the comparison of individual classifiers and the proposed Super Learner for performance
parameters such as AUC, accuracy and recall.

(a) Eclipse v2.0 (b) Eclipse v3.0

(c) Prop v1.0 (d) Ant v1.7

Figure 7: Results: Performance comparison of the models across projects
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7 Conclusion

This research has presented the implementation of Super Learner based classifier for Software
Bug prediction using a combination of four different machine learning techniques such as Logistic
Regression, Support Vector Machines, Decision Tree and XGBoost. The experiments were
performed on four different project datasets.

The findings suggest the use of class imbalance techniques such as SMOTE significantly
improves the recall performance of the machine learning models. It is also observed that the
performance of individual base learners was not consistent across all the projects under consid-
eration. A single classifier may produce good predictions for one project and perform poorly
for the other. Therefore, using the presented Super Learner can help generalize the models so
that the performance is consistent across software projects as seen from the results in this re-
search. Thus the presented Super Learner combines the prediction capabilities of multiple base
learners and provides more robust and generalized performance for software bug prediction.
The presented approach is a valuable addition to the existing works in the domain of Software
bug prediction as it can be further adopted for different projects having similar metrics with
budget and time constraints, and where end-to-end testing is difficult.

7.1 Future Work

Although the current model provides a good fit and has promising scores for all evaluation
metrics, the Super Learner may need to be evaluated further for larger data sets. Currently,
the Super Learner consists of only two layers, therefore, in future more layers can be added to
further optimize the model. In addition, the presented model can also be analyzed for cross-
project fault prediction as it can be interesting to find its potential use for new projects when
no historical data is available. Also, different combinations for the base learners can be further
explored to improve the prediction capabilities.
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Öztürk, M. M. (2017). Which type of metrics are useful to deal with class imbalance in software
defect prediction?, Information and Software Technology 92: 17–29.

Polley, E. C. and van der Laan, M. J. (2010). Super Learner in Prediction, U.C. Berkeley
Division of Biostatistics Working Paper 266 pp. 1–19.

Qi Wang, Bo Yu and Jie Zhu (2004). Extract rules from software quality prediction model based
on neural network, 16th IEEE International Conference on Tools with Artificial Intelligence,
pp. 191–195.

Rathore, S. S. and Kumar, S. (2016). An empirical study of some software fault prediction
techniques for the number of faults prediction, Soft Computing 21(24): 7417–7434.

Rathore, S. S. and Kumar, S. (2017). Towards an ensemble based system for predicting the
number of software faults, Expert Systems with Applications 82: 357–382.

Siers, M. J. and Islam, M. Z. (2015). Software defect prediction using a cost sensitive de-
cision forest and voting, and a potential solution to the class imbalance problem, Information
Systems 51(May 2018): 62–71.

Sunghun, K., Whitehead Jr., E. J. and Yi, Z. (2008). Classifying software changes: clean or
buggy?, IEEE Transactions on Software Engineering 34(2): 181–196.

Tricentis (2018).
URL: https://www.tricentis.com/news/tricentis-software-fail-watch-finds-3-6-billion-people-
affected-and-1-7-trillion-revenue-lost-by-software-failures-last-year/

Twala, B. (2011). Predicting software faults in large space systems using machine learning
techniques, Defence Science Journal 61(4): 306–316.

Wang, H., Khoshgoftaar, T. M. and Napolitano, A. (2014). Stability of filter- and wrapper-
based software metric selection techniques, Proceedings of the 2014 IEEE 15th International
Conference on Information Reuse and Integration, IEEE IRI 2014 pp. 309–314.

Wu, W., Wang, G., Peng, Y., Shi, Y. and Lou, G. (2011). Ensemble of Software Defect Pre-
dictors: an Ahp-Based Evaluation Method, International Journal of Information Technology
& Decision Making 10(01): 187–206.

Xing, F., Guo, P. and Lyu, M. R. (2005). A novel method for early software quality predic-
tion based on support vector machine, Proceedings - International Symposium on Software
Reliability Engineering, ISSRE 2005: 213–222.

22



Yousef, A. H. (2015). Extracting software static defect models using data mining, Ain Shams
Engineering Journal 6(1): 133–144.

Zhang, Y., Huang, Q., Ma, X., Yang, Z. and Jiang, J. (2016). Using multi-features and en-
semble learning method for imbalanced Malware classification, Proceedings - 15th IEEE In-
ternational Conference on Trust, Security and Privacy in Computing and Communications,
10th IEEE International Conference on Big Data Science and Engineering and 14th IEEE
International Symposium on Parallel and Distributed Processing with Applications, IEEE
TrustCom/BigDataSE/ISPA 2016 pp. 965–973.

Zheng, J. (2010). Cost-sensitive boosting neural networks for software defect prediction, Expert
Systems with Applications 37(6): 4537–4543.

Zimmermann, T., Premraj, R. and Zeller, A. (2007). Predicting defects for eclipse, Proceedings
- ICSE 2007 Workshops: Third International Workshop on Predictor Models in Software
Engineering, PROMISE’07 .
dirtytalk

23


	Introduction
	Literature Review
	Support Vector Machines
	Logistic Regression
	Decision Trees
	Ensembles
	Homogeneous ensembles
	Heterogeneous ensembles

	Introduction to Extreme Gradient Boosting (XGBoost)
	XGBoost used in different domains

	Methodology
	Data Selection
	Preprocessing
	Feature Selection
	Models
	Metrics for evaluation

	Design Specification
	Architectural Design
	Components of the Super Learner
	Logistic Regression
	Decision Trees
	Support Vector Machine


	Implementation
	Evaluation
	Performance of classifiers on unbalanced data
	Performance of classifiers on balanced data
	Discussion

	Conclusion
	Future Work


