~

-"‘f’“
\ National
College

Ireland

Twitter Rumour Detection using Temporal
Property of Tweets

MSc Research Project
Data Analytics

Nikita Nitin Parab
Student ID: x17166136

School of Computing
National College of Ireland

Supervisor: Dr. Muhammad Igbal

National College of Ireland National

Project Submission Sheet Col]ege of
School of Computing Ireland
Student Name: Nikita Nitin Parab
Student ID: x17166136
Programme: Data Analytics
Year: 2019
Module: MSc Research Project
Supervisor: Dr. Muhammad Igbal
Submission Due Date: 12/08/2019
Project Title: Twitter Rumour Detection using Temporal Property of
Tweets
Word Count: 7416
Page Count:

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature:

Date: 10th August 2019

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). O
Attach a Moodle submission receipt of the online project submission, to | [
each project (including multiple copies).
You must ensure that you retain a HARD COPY of the project, both for | J
your own reference and in case a project is lost or mislaid. It is not sufficient to keep
a copy on computer.

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only
Signature:

Date:
Penalty Applied (if applicable):

Contents

1__Introduction| 1
[LT Domain Overviewl 1
(L2 Motivationl. 2
(1.3 Research Objectivel 3

2__Related Workl 3
2.1 Twitter Analysis| 3
2.2 Rumour Detection based on Feature of Commentsl 4
2.3 Rumour Detection based on Conversation Structurel 5
2.4 Rumour Detection based on Network Patterns 5
[2.5 Rumour Detection based on Temporal Properties| 6
2.6 Conclusionl. 6

[3 Methodology| 7
3.1 Data Selectionl. 8
[3.2 Pre-Processing| o 8
B3 Transformation] 9
[3.4 Data Mining | 9
3.5 Ewvaluation| 10

[4 Implementation| 11
4.1 Design Specification|. 11
4.2 Data Analysis| 12
4.3 Data Preparation| oo 12
4.4 Implementation| 13

5__Evaluation 15
[>.1 Improved Support Vector Machine| 15
(5.2 Evaluating Classifiers| 15

[5.2.1 Experiment 1: Support Vector Machine|. 15
[5.2.2 Experiment 2: Random Forest{. 15
[5.2.3 Experiment 3: Gaussian Naive Bayes| 16
[5.2.4 Experiment 4: Classification and Regression Trees| 16
[5.2.5 Experiment 5: K Nearest Means|. 17
[0.2.6 Experiment 6: Deep Learningl 17
6__Discussion| 18

[r__Conclusion and Future Workl 20

Twitter Rumour Detection using Temporal Property
of T'weets

Nikita Nitin Parab
x17166136

Abstract

There are mainly two type of rumours on social media, it can be disinformation
or misinformation. While disinformation is intentional and spread to divert people
from truth, misinformation is unintentional news which turns out to be false. Either
ways, it causes panic and needs to be identified as quickly as possible to avoid further
chaos. This research paper presents a method for detecting rumour in the first hour
the tweet was posted. The social media platform used for this project is twitter due
to its popularity. This research is implemented on 7 events which have different
propagation patterns. The feature used for this project is timestamp of the tweets
and its reactions. The models implemented include Gaussian Naive Bayes, Support
Vector Machine, Random Forest, Classification and Regression Trees, K Nearest
Neighbours and Deep Learning. All these models are implemented to study how
they perform for different propagation patterns. Overall, it can be seen that most
of the models work best with events that have well defined pattern and work poor if
the events have less samples or do not have defined patterns. The highest accuracy
recorded of 78% was for Charlie Hebdo event for both CART and SVM models.
The lowest accuracy of 19% was for Gurlitt event after implementing Deep Learning
Model.

1 Introduction

1.1 Domain Overview

Internet has gained popularity over the past few decades. New technologies were de-
veloped along with the advancement of internet. From just being a search engine and
sending work emails to calling and video chatting, internet has opened a whole new ho-
rizon of possibilities. It has also become an aid for those who wish to stay in touch
with each other with the help of social media applications and messengers. It has be-
come very easy to keep in touch with people who stay far away because of social media.
Calling someone millions of miles away is just a matter of minutes due to the advance-
ment in technology. Not only this, social media platforms like Twitter also let people
follow famous celebrities which keeps them updated about their well being. Now a days,
some people use twitter as means to raise flags against something or support some cause.
Famous people like celebrities, political parties etc. use this as a medium to promote
various causes. According to statista]l| the number of twitter users have been increasing
in a continuous trend over the past few yearly quarters.

"https://www.statista.com/statistics/282087/number-of-monthly-active-twitter-users/

https://www.statista.com/statistics/282087/number-of-monthly-active-twitter-users/

This social media platform also acts
like a informing people about the cur-
rent happenings around the world, es-

1,400

1,200

1,000

1313
1,218

1,008

1,318

pecially during big events. This events
attracts a lot of attention of all the
people. It is therefore very important
to know the credibility of the tweets.
Some people post false tweets without
realizing the repercussions caused by o
it. For example, a tweet about two
bomb explosions at the White House
and the President of U.S being injured
was shared by an official press account
on twitter in 2013 (Sicilia et al.;[2018). It later turned out to be a hoax as the account was
hacked. As this tweet was generated by a trustable source people posted and commented
on it without confirming its reality. It hence becomes very important to detect these
rumours as soon as possible and take necessary action against them. Madhav Kotteti
detected that rumours and non rumours have different propagation patterns.
This feature was used to distinguish between the both. This research paper presents an
advancement on this feature.

371

173 I

2010 2011

1,258 ‘

2016 2017

2015

895
641 |

2012 2013 2014 2018

Figure 1: Twitter Users

1.2 Motivation

This research project first extracts the temporal properties to analyze the propagation
patterns of both rumours and non-rumours for all the data available. The data used for
this project is a public dataset by PHEME dataset| (2016)).

Event : Charlie Hebdo Event: Ottawa Shooting Event: Sydney Siege
status ®0 @1 tatus @0 @1

40 8 20

tatus 90 @1

30 |

0 0
0 1000 2000 3000 1000 2000 3000 4000 0 1000 2000 3000 4000 o0

1000

2000 3000 4000

Event: Ferguson Event : Gurlitt Event: Putin Missing

status ®0 @1 status ®0 @1 status ®0 @1

0
3000 0

0 1000

2000 3000 4000 1000 2000

2000

3000 4000

Figure 2: Tweets propagation patterns

The graphs in figure [2| show the propagation of rumours and non-rumours. The x-axis
denotes the time interval. It is in second format as this research project considers the
tweets posted within an hour of the source tweet. The y-axis denotes the number of
interactions that take place at each second. As it can be seen for most of the events the
number of interaction taking place for rumours is less than the interactions taking place
for non-rumours. It is difficult to differentiate between rumours and non-rumours for

the event of Ottawa Shooting and Germanwings Crash. The events Putin Missing and
Gurlitt have very few tweets and hence the propagation patterns cannot be seen properly
like other events. This research project will focus on developing machine learning models
which will learn from these propagation patterns and will be able to detect rumours and
non-rumours within the first hour of the tweet.

1.3 Research Objective

It is important to detect the rumours at an early stage to avoid causing any chaos.
This research project aims at achieving the same. The use of only one feature which
is the temporal property of the tweets decreases the computational power and further
helps in detecting rumours more efficiently. The research question of this project is
How expeditiously can temporal property be used for detecting rumours on
twitter for events with different propagation patterns? The aim of this project
is as follows:

e Convert all data into time series format.
e Extract data that belongs to the first hour of tweet.

e Apply machine learning models which include Support Vector Machine (SVM),
Gaussian Naive Bayes (GNB), K Nearest Neighbour (KNN), Random Forest (RF),
Classification and Regression Trees (CART) and Deep Learning.

e Evaluate the models to perceive how they work for events with different kind of
propagation patterns.

The rest of the paper of this report is organized as follows, Section [2| discusses the contri-
bution of other researchers to this field. Methodology followed for this project is explained
in Section [3] Implementation stages are briefly discussed in Section [l The results are
evaluated in Section [f] followed by conclusion in Section [7]

2 Related Work

Rumour detection is a very important factor to be considered in this era. It is essential
to keep everything in balance and avoid unnecessary chaos. This section discusses the
various work done by researchers in this fields. Many researches have been conducted to
detect rumour using various properties of the tweets or blogs. The sub sections below
shed light on this researches.

2.1 Twitter Analysis

Twitter is one of the popular websites of social media. It has a lot of information for
many years. This information can be used to gain insights about various topics. This sec-
tion discuss some researches undertaken using data which is available from twitter. Data
available from twitter was used to analyze and organize traffic services by |(Ounsrimuang
and Nootyaskool (2019). The research aimed at classifying tweets to retrieve the status of
traffic, level of accident, type of accident and GPS location for taking appropriate action.
The project was based on the country of Thailand, hence only Thai tweets were con-
sidered. Tweets were collected from a page named FM91 Trafficpro which posted tweets
regarding the traffic conditions. This research project was successfully implemented and
could classify the tweets appropriately.

Another purpose where twitter was used is for detecting the credibility of tweets. This
was done by Hassan et al.| (2018]) who used supervised learning approaches for the same.
For example if someone is posting a tweet regarding an accident, what is the proof that the
content is credible, as anyone can post on twitter. This is why this research project was
important. The author has used source based and content based features for detecting
credibility as the single parameters and also together. This has caused to understand
the improvement by using both features together and also to understand which feature
is more reliable for detecting credibility. The five supervised learning classifiers used
included Naive Bayes, Logistic Regression, Random Forests, Support Vector Machines
and K-Nearest Neighbor. After implementing the project the author stated that Random
Forests performed the best compared to others.

Twitter is used as a platform for sharing thoughts, but some people take undue ad-
vantage of this platform. Online public shaming has been on the rise since the time social
media started existing. It has now become very important to detect such posts and mitig-
ate it. Basak et al.|(2019)) implemented a project that could detect, analyze and mitigate
such tweets. The tweets were divided into six types which included comparison, passing
judgment, sarcasm, whataboutery, religious and abusive. The author also observed a
pattern wherein the number of followers of the shamers increases much faster than the
non shamers. Overall the author was able to successfully implement the project. Another
con of using social media are the rumours. Rumours spread very quickly and these were
analyzed by |Hashimoto et al.| (2011). The author has developed a rumour analysis frame-
work for all social media platforms. This platform classifies the topic structures and the
time variations to detect rumours by visualizing them. The framework was successful in
detecting rumours and analyzing them.

2.2 Rumour Detection based on Feature of Comments

Users behavior was used to classify rumours and non-rumours by [Chen et al.| (2018), who
treated rumours as an anomaly. Efficient results were acquired due the use of Neural
Networks. A model was built using the user behaviour on recent microblogs. Comments
of users on a certain post called crowd wisdom was also taken into consideration for
this model, which helped in making it more efficient. Rumours were classified with the
help of Recurrent Neural Network. To improve the results, autoencoder was used for
the first time. Using unsupervised models removed the need of training it with labelled
data. Weibo microblog was used for this project which consisted of around 167,700
posts and 1,501,500 comments. All this methods resulted in high accuracy of 92.41%.
Xu et al.| (2018)) used a similar way for detecting rumours. The author used a Merged
Neural Network Model for an increase in accuracy. The original post and the re-tweets
were treated separately as they play different roles. Different models were built for both
features. One single merged model was then built using the two models for an attention
based neural network. Diffusion process was used to extract important re-tweets and
model was built based on these re-tweets and the original post. User information used
for this model included features like location, age, mutual followers, gender, number of
followers etc.

Another author to use microblogging website for detecting rumours is|Ma et al.| (2015).
The author however used temporal property along with feature changes over time to de-
tect rumours. The author built a Dynamic Series-Time Structure (DSTS) for the same.
DSTS was responsible for saving the spectrum fluctuations of social media. The models
used for this project included SVM, Decision Trees, Random Forest, Extended Random

Forest and SVM with DSTS. The proposed model worked better than the traditional
methods. SVM was also used by [Sicilia et al.| (2018)) for detecting rumours in the health
domain on twitter. The factors considered for doing it were personal interests, network
characteristics and influence potential. Prediction about a tweet being retweeted was also
achieved by the author. Along with SVM other models used for this project included
Multiclass Adaboost, Random Forest, Multi-layer Perceptron. Random forest performed
the best with around 90% accuracy. Unlike this project, 22 features were considered for
detecting rumours by Mahmoodabad et al| (2018]) on twitter. The project was imple-
mented for detecting Persian rumours. All 22 features were majorly divided into three
groups namely; the demographic features, the content features and the structural fea-
tures. Models used for this project included Multi Layer Perceptron, KNN, Decision
tree, Naive Bayes and Random Forest. Random Forest performed the best in all this
models.

2.3 Rumour Detection based on Conversation Structure

Conversation structure deals with how people interact with the tweet. This feature was
used by [Poddar et al| (2018) to predict the veracity of rumours on twitter with neural
networks. The two steps involved for achieving the end result involved detecting con-
versation tree of the tweet with its timestamp and structure, and predicting the veracity
of tweets using the extracted features. The labels used for veracity were support, deny,
query and comment. These labels helped in further tagging them if it was rumour by
true, false and unverified. Recurrent Neural Network was used for saving the conversa-
tion tree as it is efficient in dealing with sequential data. Text of the tweets was encoded
using Convolution Neural Networks. This made a two level attention model which out-
performed old models. The aggregate of prediction was used to analyze the veracity of
tweets. |[Akhtar et al. (2018)) further enhanced this project by predicting the veracity of
tweet with the aim of checking the authenticity of the post. Same labels were used for
this project too. However this project used a different dataset named SemEval-2017.

The machine learning models used for classification included Decision Tree, Naive
Bayes, SVM, Multi Layer Perceptron. Vanilla LSTM was later used over this to predict
the veracity of tweets. This project gave an accuracy of 78.61%. Conversational trees
give out a lot of information . This information was also used by Yavary and Sajedi
(2018) for detecting rumours. The dataset used was the same as previous project for
analyzing the conversation trees to detect rumours. The parameter used for detecting
rumour was the feedback a tweet received. A single layer feedforward neural network
named ELM was used for the deployment of this project. The project had an overall
good performance. Structural aspect of tweets was used by Tai et al. (2018)) to detect
rumours using Recurrent Neural Network (RNN). The author first classified the tweet
text according to the pattern and then used it to build a RNN model which generated
review. Semantic and Syntactic integration helped increase the quality of reviews in
social network. The data used for this collected tweets based on politics over the period
of 2012 to 2017. The author stated that the increase in training sample can improve the
accuracy much further.

2.4 Rumour Detection based on Network Patterns

European fox rabies SIR model was used to build a rumour spreading model by [Suyal-
atuDong et al.| (2018). The model combined the changes in the number of users and

population dynamics for spreading rumours. The main goal of the model was to study
the network for understanding the propagation of rumours. According to the author the
rumours lasted for a limited amount of time as it was assumed to not occur in an open
system. This project considered this possibility by taking into account the changing num-
ber of users. Other parameters which were considered included registration of new users,
inactive users, network growth for a month. The project was carried out on Facebook
data with 15 users and their friend list. The results showed that once a certain threshold
of environmental capacity is passed rumours spread or they do not. [Wang et al.| (2017)
also used network patterns for understanding the propagation of rumours. This enabled
the author to detect rumours at very early stages. Methodologies used for implementing
the project included Sliding Window and Window based Patterns.

Multiple datasets were used by the author such as KAIST which consisted of 109
trending topics from 2006 to 2009. Another data was collected related to the topic Zika
Virus. The model development phase had two steps which included identification of
tweets to model and cluster them accordingly; the second step was to verify the topics
with trusted sources. The tweets were tagged as alarm, normal or detected according
to the content. The author claimed that this method could identify rumours around 24
days and 38 hours prior to the peak window.

2.5 Rumour Detection based on Temporal Properties

The research project is based on the temporal property of tweets. This section will discuss
some researches of a similar fashion. Temporal property was used by Kwon et al.| (2017)
to classify rumours. But the author also took into account other factors which included
user and linguistic features of tweets. A comparison of all features was done on the basis
of which features could detect rumours the fastest and earliest. As per the analysis time-
stamp could successfully detect rumours in long term windows. Rumours were detected
in their initial phases with the use of user and linguistic features. Combining these two
observations, a new model was built which could identify rumours in short as well as
long term windows. This project followed a similar approach like SuyalatuDong et al.
(2018) who considered the change in users. The data used ranged for around 3 years which
consisted of data from the initial 3 days to 56 days of circulation. The parameters included
for rumour detection where the user information, linguistic characteristics, structural
properties and temporal property. Out of all these, the structural characteristic performed
the worst.

According to this author rumour cannot be detected in the initial phases with the
temporal property. However, Madhav Kotteti et al. (2019) detected rumours within the
first hour by using just the temporal property. The author divided the data into various
time intervals. These time interval data was fed into various models to create sub models.
A majority vote was taken to get the final result if the tweet is a rumour or not. The
data consisted of 5 events which had 6,000 tweets out of which, 1,972 were rumours. A
total of 8 models were implemented which included Gaussian Naive Bayes, SVM, MLP,
Decision Tree, KMeans, Birch, Random Forest and Logistic Regression. SVM gave the
worst performance while Gaussian Naive Bayes performed the best.

2.6 Conclusion

Data extracted from twitter can be used for many researches. Some of them mentioned are
implemented by |Ounsrimuang and Nootyaskool (2019), Hassan et al.| (2018]) and Basak

et al. (2019). This research is focused on rumour detection which was implemented by
Hashimoto et al.| (2011)) but using topic structure and time variations. Further Chen et al.
(2018)), Xu et al.[(2018), Ma et al.| (2015)) and [Sicilia et al. (2018)) used comments on twitter
and other microblogging websites to detect rumours. Some authors used comments along
with other features while some used just the comments for understanding how well it can
be used for detecting rumours. While this approaches gave very good results, multiple
features were used for implementing it.

In order to use less features and give better results some authors like Poddar et al.
(2018)), |Akhtar et al.| (2018)), Yavary and Sajedi (2018) and [Tai et al.| (2018) used conver-
sation structure also known as stances to identify rumours and non-rumours. Multiple
features of conversation structure of tweets were used to detect rumours. While these
approaches used less features than the previous researches, they still used multiple fea-
tures. Researchers like SuyalatuDong et al.| (2018) and Wang et al.| (2017)) used network
patterns to identify rumours. This feature gave very good results and was able to detect
rumours at very early stage, but the data used for this was hard to collect as it involved
the propagation of network patterns. Finally, temporal properties along with other prop-
erties were considered by Kwon et al.| (2017) and [SuyalatuDong et al.| (2018)) to detect
rumours. Using timestamps gave very good results. This was noted by Madhav Kotteti
et al. (2019) who used only the timestamps to detect rumours. The author divided the
timestamps into 5 time intervals. This created complexity in detecting rumours. This
research project uses timestamps without dividing them into any groups.

3 Methodology

Data Data
- Data Data N CN)
U Selection Preprocessil Transformation % ?élll Mining N Evaluation
-— — H —— oio I D, —) D 0
— B ik
Twitter Datasets PHEME Dataset ‘ Data in CSV | Event Data | Rumor Detection Metric Evaluation

Figure 3: KDD for rumour detection [

Data Mining is huge process which involves many steps right from data creation. To
simplify the process of data mining and knowledge gained with that many methodologies
have been developed. Some of them are Knowledge Discovery in Databases (KDD),
CRISP-DM and SEMMA. The most popular methodology is KDD. This project too
follows the KDD methodology.

KDD is a method of acquiring useful knowledge from data. It is a method for de-
veloping methods and techniques to make sense of the data by gaining insights from it.
It consists of 6 steps as shown in figure 3| which starts right from data collection or se-
lection to gaining insights or knowledge. These steps for this research project have been
discussed in the points below.

Zhttps://icon-library.net /icon

3.1 Data Selection

This is the most important step in any project as selecting wrong data can result in giving
unreliable results. It is important to check the credibility of data before using it. This
can be done by using data from credible resources.

This research project uses data by [Zubiaga et al.| (2016) which is available online as
a public dataset. The data consists of events some of which were likely to spark rumours
while some rumours were known a priori. Tweets which are known a priori are searched
using specific keywords. The dataset consists of 9 events out of which 5 events were
breaking news and likely to consist many rumours while the remaining 4 events were
collected as a priori.

The events Ferguson unrest, Ottawa shooting, Sydney siege, Charlie Hebdo shooting,
germanwings plane crash actually happened but sparked many rumours about it. Hence
it has a combination of rumours and non-rumours. The a priori events Prince Toronto,
Gurlitt collection, Putin Missing, Michael Essien contracted Ebola were partially true
while others were totally false. Hence this events have many rumours and very less or no
NON-rumours.

All tweets were collected using the streaming API and tracked at the same time.
These tweets were then annotated using an annotation tool by journalists (Zubiaga et al.;
2016). This makes the data legitimate as it has been annotated by a group of experience
journalists.

3.2 Pre-Processing

The base of the whole implementation phase in any project is formed by the pre-processing
stage. This step consists of cleaning, pre-processing and outlier removal etc. After down-
loading data it was extracted from tar extension using WinRAR software | After ex-
tracting the data, RStudidﬂ was used for understanding and pre-processing the data. The
data was converted from JSON to dataframe for further processing. The data consisted
of multiple files in JSON format which contained the whole information of a single tweet.
The information included the username, location, content of tweet, date, time etc. Out
of all these variables only the time variable was extracted.

After creating a dataframe of each event which consisted the timestamp of the source
tweet and reaction tweets, difference between the two was calculated using the following
formula:

D(Cmn) - Rmn - Smn

where,

— m represents the rumours while n represent non-rumours.
— R,,, is the time-stamp of reaction for the source tweet .S,,,.
— D(cmy) is the difference between source tweet and reaction tweet for a conversation

Cmn

This step was repeated for both rumours and non-rumours for each event.

3https://www.rarlab.com/
‘https://www.rstudio.com/products/rstudio/download/

https://www.rarlab.com/
https://www.rstudio.com/products/rstudio/download/

3.3 Transformation

The time stamps were in HH:MM:SS format and were converted to seconds. To un-
derstand the propagation of rumours and non-rumours it was important to know how
frequent were the tweets at any given time. To see this a frequency table was created
which counted the number of tweets an event had at any given point of time.

A new column was added which showed the status of the tweet time. It could be 0
or 1 where 0 denotes non-rumour while 1 denotes rumour. This helped in distinguishing
between the both. Before training the data for models the status column of each event
was converted to factor data type as it was a categorical dependent variable. Graphs
were made to analyze the propagation of rumours and non-rumours for each event. This
data was then trained using different models for classification.

3.4 Data Mining

This research project classifies tweets either as rumours or non-rumours. Hence clas-
sification algorithms are used for this research project. In total this research project
implements 6 classifiers which use different methods. The justification for using specific
models is given below.

e Gaussian Naive Bayes

Gaussian Naive Bayes is an extended version of the classic Naive Bayes. Naive
Bayes requires all variables to categorical. But the data used for this research
project contains numeric data. Hence, Gaussian Naive Bayes which considers the
data to be Gaussian. This classifier is also selected as Naive Bayes is a known as
one of the best classifier models. This classifier was also used by Madhav Kotteti
et al| (2019) who has done a similar project and acquired the best results with this
classifier. This classifier uses partial fit method which is useful in large datasets as
it considers chunks of data while training the classifier.

e Support Vector Machine

Support Vector Machine is a popular supervised learning algorithm used for clas-
sification of data. It is known to be highly accurate while using less computation
power. It works on the principle of hyperplane. This algorithm divides the by insert-
ing hyperplanes in N-dimensional space till the data is distinctly classified. There
are various kernels who have different functions for for classification. IMadhav Kot-
teti et al.| (2019) used 'rbf’ kernel and acquired negligible results. This was overcome
with the use of 'radial’ kernel. Using this kernel improved the results greatly. The
results are stated in Section (.1l

e Random Forest
Random Forest can be imagined as a combination trees working as an ensemble
model. This classifier builds many decision trees and takes majority vote to get
the final prediction. This works better than decision trees as in this the decision
trees work as group and overcome each others errors. In random forest each tree is
trained using different chunks using bagging of data as well as features. This makes
the trees uncorrelated to each other.

e (lassification and Regression Trees
Classification and Regression Trees (CART) can also be called decision tree. This
model builds a tree by splitting the training data. When new data is given to this

trained classifier, it traverses the previously formed tree to see which leaf does the
data land. CART is the modern name of decision tree. The deeper the tree the
complex are the rules of decision making. The main advantage of this classifier is
that both numerical and categorical data can be used for building this model.

e K Nearest Neighbour
K Nearest Neighbour or KNN is an algorithm that uses the principle of clustering.
It is a supervised learning algorithm that assumes that similar things are near to
each other. The distance between two points of data can be stated as the slope
between that two points. When a new data point is added to the model, it calculates
the distance between the points and the clusters. It classifies based on the distance
parameter. It is a simple non linear algorithm.

e Deep Learning
Deep learning algorithms use Neural Networks to learn about data and classify
them. A simple neural network has a connection with each weight that transforms
it and forms the input of neuron. This neuron has a bias term and an activation
function. This project consists of 2 layers and uses the sigmoid activation function.
This approach has never been used by any other research project. This is used to
see if neural networks work better than supervised learning models.

3.5 Evaluation

After training the models using the training data created, next step is to test them using
testing data. The classifiers predict the status of tweet if it is a rumour or not by using
the rules learned during training. But it is important to understand how well was the
classifier able to correctly classify data. The metrics below give the values in percentages
to show how many tweets was the model able to classify correctly.

Prediction
Rumour Non-Rumour
Actual Rumour True Positive(TP) | False Negative(FN)
Non-Rumour | False Positive(FP) | True Negative(TN)

e Accuracy
This metric is the most commonly used metric used for classification projects. It
can be defined as the ratio of predictions that were correct to the total number of
outcomes. The formula can stated as follows:

TP+TN
TP+TN+ FP+ FN

Accuracy =

e Precision
Using only accuracy as a metric for evaluate the performance can be misleading
sometimes. Hence, other metrics are also used, one of them is Precision. It can be
stated as the ratio of correctly predicted outcomes to the total predicted outcomes
detected by the classifier. The formula can be stated as follows:

TP

Precision = TP-|-—FP

10

e Recall
Another metric is Recall which is also known as the sensitivity of predictions. It can
be stated as the ratio of accurately predicted positive outcomes to all the outcomes
detected by the classifier. The formula be stated as follows:

TP

Recall = 55N

e F1 score
F'1 score is the weighted mean of Recall and Precision. This score takes both false
positives and false negatives into consideration. This score is useful when dealing
with an uneven class. The formula be stated as follows:

Recall X Precision

Fl1=2X
Recall + Precision

4 Implementation

This section discusses each step and decision taken right from selection of data to training
and testing the models. The implementation phase starts from selecting the right type
of data. The next step is to extract data and pre-processing the data to convert it into
time series data that can be used to train the classifiers. Last step involves evaluating
results to see which classifiers worked the best.

4.1 Design Specification

This section describes the architecture used for implementation of this project. It is
important to understand the flow of project before implementing as it helps in under-
standing the type of data required for classifiers. Architecture for this research project
has been shown in diagram [4, each element has been explained in section [3| The next
sections will discuss the implementation of this architecture in detail.

i ™
Gaussian Naive
Bayes
J
, - 4 ™
Extract Data in : Support Vector
JSON format " Machine
L o
i
4 » Random Forest
Cleaning and Nl i)
converting to time - ~
Dol »| Classification and > Exalintion
Regression Trees
A
¥ g ™
K Nearest
Train classifiers > Neighbour h 4
by : ‘ Result Analysis l
> Deep Learning

Figure 4: Architecture for rumour detection

11

4.2 Data Analysis

The data used for this project is called the PHEME dataset and is available online by
PHEME dataset| (2016)). The description of dataset is given in section 3.1} The following
table [1] shows the distribution of rumours and non-rumours in the original dataset.

Event Rumours Non-Rumours | Total Count
Charlic Hebdo 158 (22.0%) | 1,621 (78.0%) 2,079
Ebola 14 (100%) 0 (0%) 14
Ferguson 284 (24.8%) 859 (75.2%) 1,143
Germanwings Crash | 238 (50.7%) 231 (49.3%) 469
Gurlitt 61 (44.2%) 77 (55.8%) 138
Ottawa Shooting 470 (52.8%) 420 (47.2%) 890
Prince Toronto 229 (98.2%) 4 (0.2%) 233
Putin Missing 126 (52.9%) 112 (47.0%) 238
Sydney Siege 522 (42.8%) 699 (57.2%) 1,221
Total 2,402 (37.4%) | 4,023 (62.6%) 6,425

Table 1: PHEME Dataset

As it can be seen from the table, the events Ebola and Prince Toronto have a very
imbalanced distribution of samples. This is the reason that events are not considered for
this project. Using these events may cause unreliable results as they may influence the
models and give a wrong classification result. To avoid this from happening the data used
for this project does not include the highlighted events in table [IL The data of events
used for this project is given below in table [2|

Event Rumours Non-Rumours | Total Count
Charlie Hebdo 158 (22.0%) | 1,621 (78.0%) 2,079
Ferguson 284 (24.8%) 859 (75.2%) 1,143
Germanwings Crash | 238 (50.7%) 231 (49.3%) 469
Gurlitt 61 (44.2%) 77 (55.8%) 138
Ottawa Shooting 470 (52.8%) 420 (47.2%) 890
Putin Missing 126 (52.9%) 112 (47.0%) 233
Sydney Siege 522 (42.8%) 699 (57.2%) 1,221
Total 2,159 (34.9%) | 4,019 (65.1%) 6,178

Table 2: Data used for project

The data used is visualized in figure [2| As seen from the table, the events Charlie
Hebdo, Ferguson, Gurlitt and Sydney Siege have more non-rumours than rumours while
remaining events have more rumours than non-rumours. Also, events Gurlitt and Putin
Missing have less number of tweets in total compared to other events. This variation in
data will help identify appropriate classifiers that work with each type of data. Overall
there are 4,019 non-rumours and 2,159 rumours in the whole dataset of 6,178 tweets for
7 events. The next section will discuss further processing of data.

4.3 Data Preparation

The project is implemented using RStudio. Various libraries are used for the implementa-
tion and pre-processing of this research project. The data has a collection of tweets which

12

is organized in the following format. Each event consists of two folders, namely rumours
and non-rumours. Each of these folders have multiple folders. Each folder belongs to one
twitter conversation. One folder of twitter conversation consists of two folders, named
source tweet and reactions. The source tweet folder has one JSON file which contains
the source tweet and its details. The reaction folder has many JSON files with reactions
for the source tweet mentioned in the last point. To be able to use this data it was
important prepare it in a format appropriate for classifiers. This section will describe the
pre-processing of data. The following are the steps:

1. Directory address of source tweets were stored in a list.

2. The following steps were iterated throughout the length of list (n) created in Step
1:

i A dataframe was created for storing the timestamp of the n'" source tweet.

ii A new dataframe was created to store timestamps of all reactions for the nt"
source tweet. There were some tweets with no reactions, these tweets were not
considered.

iii Both dataframes are combined by keeping the source tweet as the first data-
frame.

iv To extract just the time from the whole timestamp, each timestamp is separ-
ated to finest granularity.

v Date and time columns are created by combining appropriate columns created
in last step. Datatype of time column is changes to time format for further
calculations.

3. A new list which do not have any null values is created.

4. To calculate the time interval between the source and reaction tweets, a for loop
is used. This loop calculates the difference between the first and i*" reaction row,
while recursively saving the result in a dataframe.

5. All dataframes are stored in a list after converting them to time datatype.
6. The whole list is combined as a single dataframe.

7. Finally a new column is added names status which contains 0 for non-rumours and
1 for rumours.

The whole process mentioned above is done for both rumours and non-rumours. Re-
actions which were posted within an hour of source tweet are considered for this research
project. The final dataframe contains data for both rumours and non-rumours. A table
is created which has the frequency of reaction tweet posted for each unit of time. This is
then converted to seconds by subtracting the time with 00:00:00 and keeping the unit as
seconds. This is then stored as a CSV file for using it in machine learning models.

4.4 Implementation

After pre-processing the data, the final CSV for each event consist the number of rows
mentioned in table [3] Each CSV had the unit of time in seconds, frequency of rumour or
non-rumour and status which stated if the frequency is for rumour or non-rumour.

13

Evenf: Count Event Training | Testing
Charlie Hebdo 6,806 Charliec Hebdo 20,924 | 6,806
Ferguson ' ‘ 5,978 Ferguson 21,752 5,978
Gem'lanwmgs Shooting | 3,184 Germanwings Shooting | 24,546 3,184
Gurlitt | 62 Gurlitt 27,668 | 62
Ott(fWVa Sh(?Otng 4,840 Ottawa Shooting 22,890 4,840
Putin M1§smg 633 Putin Missing 27,092 638
Sydney Siege 6,222 Sydney Siege 21,508 6,222
Total 27,730

Table 4: Training and Testing data
Table 3: Data Count

A total of 7 datasets were created from raw data. This data was used to create a 7-fold
cross validation technique. This means that for each case one event is used as testing
data while others were used for training. This method helps creating real-time scenarios
by detecting rumours in data which is completely unknown to the classifier. This will also
help in understanding the way model predicts rumours based on the various propagation
patterns. Table [4] shows the number of samples used for testing and training.

In all 6 models are implemented to detect rumours. The selection of each classifier is
given in section [3.4 Each classifier is implemented using RStudio. Most of the models
belong to the caret package. To improve performance of SVM model by Madhav Kotteti
et al|(2019), SVM model is implemented first with the same event dtaa. The author has
implemented this model using the rbf kernel which gave very poor performance. However,
with the use of radial kernel the model performed much better. Evaluation of this model
is mentioned in section [5.11

The next model used is Gaussian Naive Bayes. For this model x variable is created
which contains the independent variables of training set in the form of a matrix. The y
variable contains independent variables of testing set. This model belongs to a package
named Rfast. Variables passed include x variable created and the dependent variable.
The classifier learns from this data and uses it to predict the testing data. SVM is again
implemented, but with the inclusions of new datasets too. Radial kernel is used for the
same. Random Forest, KNN classifiers belongs to a package named caret. While imple-
menting KNN model, parameters were pre-processed using center and scale to normalize
them. Further, tuneLength was set to 7 which means the value of k is 7. All these models
are trained and tested.

The last model is implemented using Keras. This deep learning model x and y vari-
ables for both training and testing data. The x variable consists of all variable except
the dependent variables. The variables are scaled too. The y variable consists of the
dependent variable after converting it in a categorical type. A sequential model is first
initialised with dense layers using the famous 'relu’ activation fuction. Dropout layers
are also added to avoid overfitting the model. The last layer uses 'sigmoid’ activation
function. Next, model is compiled using adam optimizer and binary crossentropy as loss,
this is because this is a binary classification model. The model is then fit using epochs
and batch size. The model predicts the testing data after evaluating it. Epochs, batch
size, units passed to each layer are tuned to get the best results. The next section will
evaluated this models based on various metrics.

14

5 Evaluation

5.1 Improved Support Vector Machine

Event Accuracy | Precision | Recall | F1 Score
Charlie Hebdo | 0.78 0.87 0.66 0.75

Table 5: Improved SVM Results

In a previous research by Madhav Kotteti et al.| (2019)), the results achieved for SVM
classifier were very poor. In order to improve that result, this classifier is built using a
different kernel. The author acquired 0 precision, recall and F1 score using 'rbf’ kernel.
Using 'radial’ kernel gave results mentioned in table |5 which is much better than the
results achieved by Madhav Kotteti et al.| (2019).

5.2 Evaluating Classifiers

The propagation patterns of rumours and non-rumours are mentioned in figure [2| which
show that the events Charlie Hebdo, Sydney Siege and Ferguson have very distinct pat-
terns while Germanwings Crash and Ottawa Shooting have almost non distinguishable
patterns. Patterns for Gurlitt and Putin Missing are confusing as they had very few
number of samples. This section will discuss how each classifier works for each of these
cases.

5.2.1 Experiment 1: Support Vector Machine

Event Accuracy | Precision | Recall | F1 Score
Charlie Hebdo 0.78 0.86 0.67 0.75
Ferguson 0.66 0.63 0.79 0.70
Germanwings Shooting | 0.49 0.49 0.85 0.62
Gurlitt 0.45 0.47 0.9 0.62
Ottawa Shooting 0.46 0.47 0.61 0.53
Putin Missing 0.48 0.49 0.90 0.63
Sydney Siege 0.64 0.64 0.62 0.63

Table 6: Support Vector Machine (SVM) Results

SVM works on the principle of support vectors and hyperplanes. It is one of the
most popular algorithms used for classifying data. Table [6] displays the results of this
classifier. As it can be seen, SVM works best with data which has distinct patterns. The
metrics for events Charlie Hebdo, Ferguson and Sydney Siege are much better than other
events. Charlie Hebdo has the most distinct pattern, hence has the best metric. It has a
precision of 86% and recall of 67% with 75% F1 score and 78% accuracy. Less samples
and indistinct patterns resulted in very poor results.

5.2.2 Experiment 2: Random Forest

Performance of Random Forest classifier is given in table[7] The event that were classified
more accurately by this classifier were Charlie Hebdo, Ferguson and Sydney Siege with a
precision of above 55%. Even though Gurlitt and Putin Missing had less samples, random

15

Event Accuracy | Precision | Recall | F1 Score
Charlie Hebdo 0.65 0.67 0.60 0.64
Ferguson 0.58 0.57 0.65 0.61
Germanwings Shooting | 0.50 0.50 0.70 0.58
Gurlitt 0.52 0.51 0.65 0.57
Ottawa Shooting 0.48 0.48 0.62 0.54
Putin Missing 0.47 0.48 0.66 0.56
Sydney Siege 0.57 0.57 0.59 0.58

Table 7: Random Forest Results

forest performed quite good for that data as well. Overall, Random Forest performed
very good for events which had distinct propagation patterns than the ones which had
less samples or indistinct patterns. Overall, it can be said that random forest classifier
did not perform very good and could not classify rumours and non-rumours effectively
within an hour on the event.

5.2.3 Experiment 3: Gaussian Naive Bayes

Event Accuracy | Precision | Recall | F1 Score
Charlie Hebdo 0.62 0.57 0.94 0.71
Ferguson 0.60 0.55 0.94 0.70
Germanwings Shooting | 0.50 0.50 1.00 0.67
Gurlitt 0.50 0.50 1.00 0.67
Ottawa Shooting 0.48 0.49 0.92 0.64
Putin Missing 0.50 0.50 1.00 0.67
Sydney Siege 0.54 0.52 0.91 0.66

Table 8: Gaussian Naive Bayes Results

Gaussian Naive Bayes is said to perform good with small data samples (Madhav Kot-
teti et al.f 2019). However, it gave an accuracy of 50% and recall of 100% for events like
Gurlitt and Putin Missing which can be seen in table 8l This is because the classifier
considered all data samples as the positive outcome, which was Rumours in this case.
Hence, it classified 50% of the samples correctly. The same phenomenon also happened
with Germanwings Crash event. This classifier could however classify events more ac-
curately for all other propagation patterns. The model performed best in terms with a
recall, it is above 90% for all events. Ottawa Shooting had poorest performance among
all other events, which maybe due pattern which are almost similar for both rumours and
NON-rumours.

5.2.4 Experiment 4: Classification and Regression Trees

CART is a new name for decision tree classifier. Decision Trees are created by splitting
data into groups based on various features. While CART is just like random forest, the
results are quite different. It can be seen that CART performs better than random forest
in most cases. This algorithm was successfully able to classify rumours and non-rumours
with a precision of 78% for event of Charlie Hebdo which can be seen in table [0} However,
it performed poorly for other events. The classifier was not able to detect rumours and

16

Event Accuracy | Precision | Recall | F1 Score
Charlie Hebdo 0.78 0.78 0.77 0.77
Ferguson 0.64 0.60 0.86 0.71
Germanwings Shooting | 0.50 0.50 0.96 0.66
Gurlitt 0.50 0.50 1.00 0.67
Ottawa Shooting 0.46 0.48 0.76 0.58
Putin Missing 0.50 0.50 0.97 0.66
Sydney Siege 0.62 0.65 0.53 0.59

Table 9: Classification and Regression Trees (CART) Results

non-rumours for events with very less samples like Putin Missing and Gurlitt. The highest
accuracy of 78% was obtained for Charlie Hebdo with Precision, Recall and F1 score as
78%, T7% and 77% respectively.

5.2.5 Experiment 5: K Nearest Means

Event Accuracy | Precision | Recall | F1 Score
Charlie Hebdo 0.70 0.75 0.61 0.67
Ferguson 0.62 0.61 0.68 0.64
Germanwings Shooting | 0.49 0.50 0.81 0.61
Gurlitt 0.52 0.51 0.71 0.59
Ottawa Shooting 0.46 0.47 0.63 0.54
Putin Missing 0.48 0.49 0.76 0.60
Sydney Siege 0.61 0.60 0.61 0.61

Table 10: K Nearest Neighbours (KNN) Results

KNN works on the principle of clustering. The parameters were tuned for this al-
gorithm. The value of k was set to 7 before implementing this model. The model was the
most successful for Charlie Hebdo event with accuracy of 70% and worked the poorest
for Ottawa Shooting with accuracy of just 46% which can be seen in table Similar
result can be seen for Germanwings Shooting and Putin Missing who also have indistinct
patterns like Ottawa Shooting.

5.2.6 Experiment 6: Deep Learning

Event Accuracy | Precision | Recall | F1 Score
Charlie Hebdo 0.71 0.78 0.59 0.67
Ferguson 0.52 0.54 0.19 0.28
Germanwings Shooting | 0.46 0.46 0.41 0.43
Gurlitt 0.19 0.19 0.19 0.19
Ottawa Shooting 0.46 0.47 0.61 0.53
Putin Missing 0.41 0.40 0.38 0.39
Sydney Siege 0.62 0.59 0.74 0.66

Table 11: Deep Learning Results

17

Deep Learning uses neurons to learn about the samples provided and keeps learning
from mistakes. The metrics of this model are showed in table [[I] Epochs and batch
size have to be tuned to get good results for all events. The model worked best for
Charlie Hebdo with an accuracy of 71% while it gave poor accuracy of 19% for Gurlitt.
Deep learning model was implemented in an attempt to see if it learns from the different
propagation patterns and gives a better result than the other models implemented. But,
as it can be seen, it has a pretty average result overall.

6 Discussion

This section discuss the performances of different models according to different various
events. This will give an insight of which model performs best and worst according to
the propagation patterns of events. In the event of Charlie Hebdo, SVM and CART gave

Charlie Hebdo Ferguson
1 1
09
0.8

0.7 0.7

0.6 0.6

0.5 05

0.4 .4

03 03

0.2 0.2

0.1 01 I
0 0

SYM Gaussian KNN CART Random Deep Learning SVM KNN CART Random Deep Lea
Naive Bayes Forest N aive Bay Forest

1<)
IS

M Accuracy M Precision ® Recall F1 Score M Accuracy M Precision ¥ Recall F1 Score

Sydney Siege

0.6
0.5
0.4
0.3
0.2
0.1

0

SVM KNN CART R ndom Deep Learning
N aive Bay

Figure 5: Events with distinct propagation patterns

the highest accuracy of 78% which can be seen in diagram The highest recall rate
was 94% with Gaussian Naive Bayes and precision and F1 Score was 77% by CART.
Overall CART performed the best for this data. The lowest accuracy achieved was 62%
with Gaussian Naive Bayes. A similar propagation pattern was observed for the event
named Ferguson. For this event, the highest accuracy achieved was 66% by SVM. SVM
also had the highest precision of 63%, but, the highest recall rate of 94% was achieved
with Gaussian Naive Bayes. Sydney Siege had somewhat similar pattern and also had
the highest accuracy of 64% by SVM model. The event had the highest precision score
of 65% with CART model and highest recall of 91% by Gaussian Naive Bayes. Overall,
it can be said that Gaussian Naive Bayes was able to detect maximum rumours correctly
while SVM had the maximum accuracy.

18

Gurlitt Putin Missing

1
0.9
08
0.7
0.6

.5 05
.4 0.4
03 03
.2 02
0 0

SsVM KNN CART R ndom Deep Learning SVM KNN CART R ndom Deep Learning
N aive Bay N aive Bay

o o

o o

®Accuracy ® Precision Recall 1 Score ®Accuracy ® Precision ® Recall # F1Score

Figure 6: Events with less samples

Gurlitt had less number of samples which resulted in a very indistinct propagation
pattern. Out of all the models implemented in this project, KNN and Random Forest
performed the best with an accuracy of 52% as shown in diagram [6] KNN and Random
Forest also had the maximum precision of 51% but CART and Gaussian Naive Bayes had
the maximum Recall rate. This was because Gaussian Naive Bayes classified 50 percent
of data as positive class which is rumour and the other 50 percent as negative class which
is non-rumour. This resulted in a high recall rate. The event Putin Missing also had few
samples but they were more than Gurlitt. The highest accuracy of 50% was achieved
by Gaussian Naive Bayes and CART. Both these models also had a high precision score
of 50% but the recall of Gaussian Naive Bayes was higher than CART. Overall, it can
be said that CART and Gaussian Naive Bayes are good at detecting rumours when the
sample size is small.

Germanwings Shooting Ottawa Shooting
1 i
0.9 0.9
0.8 0.8
0.7 0.7
0.6 0.6
0.5 05
0.4 04
03 03
0.2 0.2
0.1 0.1
0 0
SVM Gaussian KNN CART Random Deep Learning SVM KNN CART Random Deep Learning

Naive Bayes Forest Forest

M Accuracy M Precision M Recall F1 Score M Accuracy M Precision ¥ Recall F1 Score
Figure 7: Events with indistinct propagation patterns

Indistinct patterns were a real challenge for the model as there was a very small
difference in the propagation patterns of rumours and non-rumours. One such event was
Germanwings Crash for which CART and Random Forest performed the best with an
accuracy of 50% which can be seen in diagram[7] While all these also had a precision score
of 50% along with KNN and Gaussian Naive Bayes, the recall rate of Gaussian Naive
Bayes was the highest with 100%. Another such event was Ottawa Shooting in which
Gaussian Naive Bayes and Random Forest performed the best among others with an
accuracy of 48%. The highest precision was given by Gaussian Naive Bayes and Random
Forest model which was 49%. Although, Gaussian Naive Bayes had the highest Recall
rate of 92%. Overall, it can be stated that Gaussian Naive Bayes performed better than

19

other in this cases.

Although deep learning model was used to see if it performs better than the other
models, it failed to do so. There are some instances where it performed almost equal to
the model with highest results, but most of the times it was not that good. This may be
due to the insufficient data used for training the model. Further, maximum computation
time was required by SVM followed by Random Forest. SVM took time but gave better
results in most cases. Overall, Gaussian Naive Bayes could predict the highest number
of rumours out of all the predicted values.

7 Conclusion and Future Work

Rumours are a huge problem and social media websites like twitter are helping them
rise. It is important to detect rumours to reduce chaos created by hoax tweets. This
research project is implemented with the aim of detecting rumours in the first hour it
was posted. The timestamps of tweets and their reactions are considered. There are 7
events which have different propagation patterns. Most of the models were better are
detecting rumours for events who had distinct propagation patterns. Some models like
CART and Gaussian Naive Bayes were also able to identify rumours for events with
indistinct propagation patterns. But, all classifiers performed poorly for events with less
number of patterns.

The models may perform better in future by training them with data that has more
events with less number of samples. This will train the models to understand the propaga-
tion patterns for events with less samples along with patterns for many samples. To
further improve the performance of models, they can be tuned even further and unsuper-
vised classifiers like LSTM can be implemented. This research project was implemented
with the aim of understanding the model performances for different type of propagation
pattern of rumours and non-rumours.

GitHub

The following is the GitHub link of the project repository:
https://github.com/Nikita-Parab/Master_Thesis

Acknowledgement

I would like to thank my supervisor, Dr. Muhammad Igbal, for guiding me throughout
the project. He has helped me by answering my queries and guiding me whenever I
was stuck. I would like to thank my family who have been always very supportive and
understanding. Last but not the least, my friends who have always been of help at any
hour of the day and also encouraged me throughout the module.

References

Akhtar, M. S., Ekbal, A., Narayan, S. and Singh, V. (2018). No, that never happened!!
investigating rumors on twitter, IEEE Intelligent Systems 33(5): 8-15.

20

https://github.com/Nikita-Parab/Master_Thesis

Basak, R., Sural, S., Ganguly, N. and Ghosh, S. K. (2019). Online public shaming on
twitter: Detection, analysis, and mitigation, IEFE Transactions on Computational
Social Systems 6(2): 208-220.

Chen, W., Zhang, Y., Yeo, C. K., Lau, C. T. and Lee, B. S. (2018). Unsupervised rumor
detection based on users behaviors using neural networks, Pattern Recognition Letters
105: 226 — 233. Machine Learning and Applications in Artificial Intelligence.

Hashimoto, T., Kuboyama, T. and Shirota, Y. (2011). Rumor analysis framework in
social media, TENCON 2011 - 2011 IEEE Region 10 Conference, pp. 133-137.

Hassan, N. Y., Gomaa, W. H., Khoriba, G. A. and Haggag, M. H. (2018). Supervised
learning approach for twitter credibility detection, 2018 15th International Conference
on Computer Engineering and Systems (ICCES), pp. 196-201.

Kwon, S., Cha, M. and Jung, K. (2017). Rumor detection over varying time windows.,
PLoS ONE 12(1): 1 - 19.

Ma, J., Gao, W., Wei, Z., Lu, Y. and Wong, K.-F. (2015). Detect rumors using time series
of social context information on microblogging websites, Proceedings of the 24th ACM
International on Conference on Information and Knowledge Management, CIKM ’15,
ACM, New York, NY, USA, pp. 1751-1754.

URL: http://doi.acm.org/10.1145/2806416.2806607

Madhav Kotteti, C. M., Dong, X. and Qian, L. (2019). Multiple time-series data analysis
for rumor detection on social media, pp. 4413-4419.

Mahmoodabad, S. D., Farzi, S. and Bakhtiarvand, D. B. (2018). Persian rumor detection
on twitter, 2018 9th International Symposium on Telecommunications (IST), pp. 597—
602.

Ounsrimuang, P. and Nootyaskool, S. (2019). Classifying vehicle traffic messages from
twitter to organize traffic services, 2019 IEEFE 6th International Conference on Indus-
trial Engineering and Applications (ICIEA), pp. 705-708.

PHEME dataset (2016). PHEME rumour scheme dataset: journalism use case.
URL: https: // figshare. com/ articles/PHEME_ rumour_ scheme_ dataset_
Journalism_use_ case/ 2068650

Poddar, L., Hsu, W., Lee, M. L. and Subramaniyam, S. (2018). Predicting stances in
twitter conversations for detecting veracity of rumors: A neural approach, 2018 IEEFE
30th International Conference on Tools with Artificial Intelligence (ICTAI), pp. 65-72.

Sicilia, R., Giudice, S. L., Pei, Y., Pechenizkiy, M. and Soda, P. (2018). Twitter rumour
detection in the health domain, Ezpert Systems with Applications 110: 33 — 40.

SuyalatuDong, Feng-HuaFan and Yong-ChangHuang (2018). Studies on the population
dynamics of a rumor-spreading model in online social networks, Physica A: Statistical
Mechanics and its Applications 492: 10 — 20.

Tai, Y., He, H., Zhang, W. and Jia, Y. (2018). Automatic generation of review content
in specific domain of social network based on rnn, 2018 IEEE Third International
Conference on Data Science in Cyberspace (DSC), pp. 601-608.

21

https://figshare.com/articles/PHEME_rumour_scheme_dataset_journalism_use_case/2068650
https://figshare.com/articles/PHEME_rumour_scheme_dataset_journalism_use_case/2068650

Wang, S., Moise, 1., Helbing, D. and Terano, T. (2017). Early signals of trending rumor
event in streaming social media, 2: 654-659.

Xu, N., Chen, G. and Mao, W. (2018). Early signals of trending rumor event in streaming
social media, pp. 1-7.

Yavary, A. and Sajedi, H. (2018). Rumor detection on twitter using extracted patterns
from conversational tree, 2018 jth International Conference on Web Research (ICWR),
pp. 78-85.

Zubiaga, A., Liakata, M., Procter, R., Wong Sak Hoi, G. and Tolmie, P. (2016). Analysing
how people orient to and spread rumours in social media by looking at conversational
threads, PLOS ONE 11(3): 1-29.

URL: https://doi.org/10.1371/journal.pone.0150989

22

	Introduction
	Domain Overview
	Motivation
	Research Objective

	Related Work
	Twitter Analysis
	Rumour Detection based on Feature of Comments
	Rumour Detection based on Conversation Structure
	Rumour Detection based on Network Patterns
	Rumour Detection based on Temporal Properties
	Conclusion

	Methodology
	Data Selection
	Pre-Processing
	Transformation
	Data Mining
	Evaluation

	Implementation
	Design Specification
	Data Analysis
	Data Preparation
	Implementation

	Evaluation
	Improved Support Vector Machine
	Evaluating Classifiers
	Experiment 1: Support Vector Machine
	Experiment 2: Random Forest
	Experiment 3: Gaussian Naive Bayes
	Experiment 4: Classification and Regression Trees
	Experiment 5: K Nearest Means
	Experiment 6: Deep Learning

	Discussion
	Conclusion and Future Work

