
Artificial Neural Networks: A Comparative
Analysis for the Purposes of Text

Classification

MSc Research Project

Data Analytics

Glenn Connell
Student ID: x14441832

School of Computing

National College of Ireland

Supervisor: Anu Sahni

www.ncirl.ie



National College of Ireland
Project Submission Sheet

School of Computing

Student Name: Glenn Connell

Student ID: x14441832

Programme: Data Analytics

Year: 2019

Module: MSc Research Project

Supervisor: Anu Sahni

Submission Due Date: 13/8/2019

Project Title: Artificial Neural Networks: A Comparative Analysis for the
Purposes of Text Classification

Word Count: 5362

Page Count: 17

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature:

Date: 9th August 2019

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). �
Attach a Moodle submission receipt of the online project submission, to
each project (including multiple copies).

�

You must ensure that you retain a HARD COPY of the project, both for
your own reference and in case a project is lost or mislaid. It is not sufficient to keep
a copy on computer.

�

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):



Artificial Neural Networks: A Comparative Analysis
for the Purposes of Text Classification

Glenn Connell
x14441832

Abstract

Natural Language Processing (NLP) is an area of great interest within both aca-
demia and industry, that has, with the advent of Web 2.0, quietly been gathering
an even larger following. One of the key components of many NLP applications,
text classification, may be considered one of the largest sub-fields within NLP.
Traditional text classifiers tended to be restricted in effectiveness due to their re-
liance upon human-designed features such as dictionaries. Machine learning has
since risen to prominence over traditional methods. Within this paper a compar-
ative analysis has been performed comparing two algorithms, Recurrent Neural
Networks (RNN) and Convolutional Neural Networks (CNN), finding CNN to be
the superior approach.

1 Introduction

Natural Language Processing (NLP) is an area subject to much research within both
academia and the industry. NLP refers to an area of computer science that deals with the
study of how computers deal with human language, the eponymous ”natural” language.
This particularly refers to the creation of computer programs capable of processing and
performing analysis on large quantities of NLP data. There are several key areas of
interest within the field of NLP such as natural language generation, speech recognition
and text classification.

Text classification, the focus of this paper, refers to the process of classifying text data
for categorization into a more organized format, better suited for use in further tasks.
For the purposes of this project, and indeed in general, unstructured text is the target of
text classification. This is owed to the abundance of sources for unstructured text such
as social media and emails. The potential value of unstructured text is obfuscated by
its often indecipherable format, however, with a suitable application of text classification
valuable insight may be gleaned from the text data. Text classification has risen to
prominence in recent times with the advent of Web 2.0 and the subsequent boom of
social media platforms Pang et al. (2008). This alongside the dramatic advancements
in computational power and ever-increasing storage options, has enabled organizations
to fully leverage unstructured text data, for analysis. Several common examples of text
classification use cases include topic detection, sentiment analysis, spam detection and
language detection.

The process of text classification is undertaken by a text classifier. A common avenue
for implementation of text classifiers is machine learning, particularly supervised machine

1



learning. Text classification, as the data fed into the model contains labels in order to
facilitate the training of the model, is strictly considered a supervised machine learning
task. While a large variety of machine learning algorithms exist that are suited to the
task of text classification, for the purposes of this paper two approaches will be the focus.
Convolutional Neural Networks (CNN) and Recurrent Neural Networks (RNN). They
are two distinct variations of Artificial Neural Networks (ANN) and will be utilized to
construct two different predictive models to facilitate the comparative analysis for the
purposes of this paper.

CNNs are an offshoot of ANNs inspired by the biological functions of the body. They
emulate the structure of the visual cortex within humans and aim to digest input in the
same manner in which the brain processes imagery. CNNs, while related to ANNs, differ in
2 major ways. The defining manner in which they differ is the inclusion of a convolutional
layer. This layer is responsible for convolving the input data into a feature map, utilizing
a kernel. CNN implementations employ an alternating rotation of convolutional layers
and pooling layers. Pooling layers are necessary to reduce dimensionality within the
feature map and allows for the reduction of overfitting. Within Figure 1 an example of a
CNN architecture is detailed.

Figure 1: An Example of Convolutional Architecture Hidaka and Kurita (2017)

RNNs diverge from the structure of ANNs by removing the concept of feed-forward
from the formula. RNNs, specifically Long Short-Term Memory (LS-TM) Hochreiter and
Schmidhuber (1997) implementations, introduce the concept of recall into the architec-
ture. Rather than being restricted to a data flow that can only pass from the input
layer through the hidden layers and then out the output layer, RNNs may choose to pass
the data back to the hidden layer rather than to pass it forward to the output layer.
This can allow for the RNN architecture to overcome the limitations of typical ANNs,
as rather than reach an underwhelming result the RNN can repeat transformations to
reach a more desirable conclusion. An advancement of the LS-TM architecture is the
bidirectional RNN. Rather than only being able to access past data, this architecture can
also access future data to reach the desired conclusion. An example of RNN architecture
is detailed in Figure 2.

Early research conducted upon both CNN and RNN, that helped define the architec-
tures, initially determined that both approaches were rather limited in scope. However,
owing to advances in computation, recent research has revealed the true versatility each
architecture. While this research spans a wide variety of topics, even text classification,
true comparative analyses between both CNN and RNN methodologies are rare. As such,
the findings of this research may be a boon to those uncertain as to which architecture
may be the best fit for their selected task.

To combat the lack of comparative analyses in the field of text classification, within
this paper a new comparative analysis is conducted. This analysis focuses upon the viab-
ility of both the CNN and RNN architectures for the task of text classification, utilizing

2



Figure 2: An Example of Recurrent Architecture Anand et al. (2016)

recent techniques in order to provide an environment in which experiment replication
may easily take place. Two individual models have been created for the purposes of the
analysis. The first created model utilizes a variation of a CNN architecture. The second
model utilizes a RNN architecture. Each model has been constructed with Keras 1, in
order to maintain a standard interface from which the text classification experiments
may be easily reproduced. This approach is constrained by the typical advantages and
disadvantages associated with neural networks. While they provide better performance
on average compared to traditional classifiers, they are technically more complex and
normally require hyperparamter tuning. One of the goals of this research is to avoid
extensive hyperparameter tuning in an attempt to keep the research accessible.

The contributions of this paper are two-fold: The primary contribution is the two
implemented text classifiers and the results achieved by each. While CNN and RNN text
classifiers are not a new concept, comparative analyses based upon the effectiveness of the
approaches are rare within the literature. The ancillary contribution of the paper is to
provide an accessible, convenient environment from which further comparative research
may be undertaken quickly and effectively. The solution discussed within this paper aims
to be a platform from which business decisions may be made rather than a platform from
which a business solution may be derived.

The remainder of this paper details the process of implementation for each text clas-
sifier, contained within section 5. The results received by the models may be observed
within section 6. The methodologies and architecture utilized in order to obtain said
results may be found in sections 3 & 4 respectively. Also included within the paper is a
brief overview of related work within the field, found in section 2.

2 Related Work

In order to begin progress towards addressing the proposed research question, observation
must first be made of the existing work within the relevant fields. Initial research centered
around the field of text classification and the methodologies utilized commonly within
the field.

1https://keras.io/

3

https://keras.io/


2.1 Text Classification

The work of Ikonomakis et al. (2005) offers an in-depth introduction to the concept of
text classification. Included within, is a comprehensive overview of the processes involved
in prepping data for text classification, with empirical evidence reinforcing the concepts
presented. However, this work shows its age in the complete lack of acknowledgement of
the abilities of neural networks for tasks within the field. The work also fails to make any
mention of validation techniques. Joulin et al. (2016) once again provides deep insight
into the workings of text classifiers and presents methods to increase the speed of model
training and testing. In order to do this however, the use of linear classifiers is advocated
which in turn comes at the cost of the models generalization capabilities. The research
presented by Forman (2003) analyzes and presents a breakdown of several performance
metrics and their relevance in text classification tasks. This research provides excellent
basis for model evaluation, however, several key metrics are omitted. Inductive transfer,
as presented by Mikolov, Sutskever, Chen, Corrado and Dean (2013) and further explored
in Howard and Ruder (2018), presents a strong case for the adoption of this concept,
however, it may be considered outside the purview of the research conducted within this
paper as it tends to receive greater results with convolutional architectures, potentially
skewing results.

2.2 Convolutional Neural Networks

Inspired by the early work of (Hubel and Wiesel (1962);Hubel and Wiesel (1968);Hubel
and Wiesel (1977)) research conducted by Fukushima (1980) introduced what may be
considered as the initial CNN architecture. The architecture described within the paper
is quite different from what is considered a modern CNN architecture. The key limiting
factor of this architecture is the absence of the back-propagation algorithm LeCun et al.
(1989). The introduction of this algorithm paved the way for the increased complexity
and effectiveness of modern CNN implementations as it allows for potent loss control.
Recent efforts within the field of text classification have been enhanced with the advent of
pre-trained word embeddings such as the approach presented by Pennington et al. (2014).
Socher et al. (2013) and Collobert et al. (2011) achieved excellent results in various fields
of NLP research utilizing this technique.

The research produced by Kim (2014) further reinforces the use of pre-trained word
embeddings. The implemented CNN architecture, with little hyperparameter tuning,
achieves results comparable to that of the state of the art. An in-depth comparison
of CNN versus traditional Bag of Words and its variations is presented in Zhang et al.
(2015). Once again the CNN architecture performed admirably while outperforming Bag
of Words.

2.3 Recurrent Neural Networks

Similar to the origin of the CNN architecture, the initial mention of RNN architecture de-
tails an implementation lacking key features associated modern RNN implementations.
Two papers (Pearlmutter (1989);Cleeremans et al. (1989)), outline what may be con-
sidered the foundation of modern RNN architecture. However, they fail to address to
issue of vanishing gradients which can be devastating to the effectiveness of a model. LS-
TM as introduced by Hochreiter and Schmidhuber (1997) resolves the vanishing gradient
problem by introducing the concept of recall into the RNN architecture. This allows

4



for more layers to be added to the solution, increasing model flexibility. While LS-TM
addresses the vanishing gradient problem, exploding gradients may still present a prob-
lem for certain implementations. Gated Recurrent Units (GRU) as introduced by Chung
et al. (2014), have been shown to achieve results similar to LS-TM on certain datasets.
This has been challenged recently, however, as comparisons performed within a paper
Weiss et al. (2018), have shown GRU to be outperformed by LS-TM in almost every
case. Bidirectional LS-TM implementations have achieved state of the art results in a
variety of NLP fields Graves and Jaitly (2014) Fan et al. (2014) Graves et al. (2013),
generating renewed interest for its use in text classification.

In summary, while recent research has deemed RNN and CNN approaches to be
capable of achieving state of the art results, very little research has been conducted
comparing the abilities of each architecture against the other. Lee and Dernoncourt
(2016) and Yin et al. (2017) encompass the gamut of available literature comparing the
abilities of CNN and RNN for NLP tasks. Each paper provides excellent assessment of
the abilities of each architecture, however, neither paper is particularly focused upon text
classification. Lee and Dernoncourt (2016) fail to make use of the popular pre-trained
word embeddings, proven to increase the performance of models in classification tasks.
Yin et al. (2017) provides a broad overview of the abilities of RNN and CNN on various
NLP tasks, refraining from focusing on any one task. As such there is a dearth of available
literature comparing the abilities of the architectures for text classification, reinforcing
the validity of the proposed research question. In addition, of the myriad papers reviewed
for this research only 2 provided an open source solution, highlighting a lack of focus on
accessibility.

3 Methodology

To contextualize the process that was undertaken for this paper, the pipeline for text
classification must first be observed. Text classifiers typically consist of five key compon-
ents. The first three components consist of the training data, a feature vector and the
labels. The training data refers to the text data that is supplied for analysis, typically
some form of unstructured data. The feature vector is a descriptor of the training data
stored within a vector. The labels are a collection of predefined classes that the model
aims to predict. These three components are centered around the dataset and as such
are specific to the task at hand. An example you may consider is gaining insight into
user sentiment based upon text data gathered from a social media platform with labels
detailing particular levels of sentiment: positive, negative and neutral.

The final two components of a text classifier pertain to the machine learning aspects of
the classifier, the predictive model and the machine learning algorithm used to construct
the model. These final two components may be considered the core facets of the research
conducted within this paper, as the results achieved by the analysis hinge on the selected
models and their implementation. As mentioned within Section 1, the selected architec-
tures for this analysis are a CNN architecture and a RNN architecture. The procedure
undertaken for the purpose of this comparative analysis is detailed below.

3.1 Data

As text classification encompasses a wide variety of tasks, multiple datasets are needed
in order to facilitate accurate research. To this end, two sets of data pertaining to

5



two popular text classification tasks have been selected. The first dataset selected for
research is the BBC Articles Categorized dataset. This is a further cleaned variant of
the data made available by Greene and Cunningham (2006). This data was gathered
utilizing Google’s BigQuery web service and is now available at 2. The data consists of
of two columns: category and text, where text is a collection of articles and their titles
concatenated, while category contains the ”genre” in which the article belongs. The
data consists of 2126 articles and their respective category, the distribution of which is
displayed in Table 1.

Table 1: BBC Articles Category Distribution

Category Count
Sport 511
Business 510
Politics 417
Tech 401
Entertainment 386

The second dataset selected for the purposes of this paper is the Spam Text Message
classification dataset. This data was collected by the user ”Team AI” from the popular
data science website Kaggle, available at 3.This data has been engineered in order to
resemble a traditional Spam filtering problem. The data consists of two columns: Type
and Message. Type refers to whether the message is categorized as Spam or Ham, while
Message refers to a collection of text messages. The dataset consists of 5157 text messages
with each being labeled either Spam or Ham. The distribution of these labels may be
observed in Table 2

Table 2: Spam and Ham Distribution

Category Percentage
Spam 13
Ham 87

While each dataset has been cleaned prior to its use within these experiments, there
has been no quality control upon the contents of the columns. To rectify any potential
issues that may arise from this, within each architecture implementation several steps have
been taken to ensure that the datasets meet a certain standard. This includes performing
checks for URLs and other unwanted or illegal characters, that would otherwise undermine
the efficiency of the the text classifiers.

3.2 Environment

The environment utilized for the purposes of the research conducted in this paper was
consistent across all facets of the research, in order to facilitate the reproduction of results.
All experiments were conducted utilizing the python 3.4 distribution in conjunction with
both Anaconda and Jupyter notebooks. Anaconda was instrumental in creating and

2https://storage.googleapis.com/dataset-uploader/bbc/bbc-text.csv
3https://www.kaggle.com/team-ai/spam-text-message-classification/metadata

6



maintaining the Python environment and the packages utilized over the course of the
experiments. This ease of use was key in enabling the accessible nature of the developed
solution, as the modular nature of Python and Keras allowed for intuitive implementation
of the two architectures. Jupyter uniquely enables the breakdown of the implemented
solution into individual sections for increased accessibility. The cell based infrastructure
of Jupyter enhances the ability of future users of the solution to modify it to their own
ends.

Global Vectors (GloVe) Pennington et al. (2014), has recently been adapted as one of
the premier pre-trained word embeddings, alongside Word2Vec Mikolov, Chen, Corrado
and Dean (2013). Pre-trained word embbedings utilize an external corpus in order to effi-
ciently represent semantic information that may not be present within the data currently
being fed to the model. This can lead to tremendous increases in training speed and
accuracy of the model. Pre-trained word embeddings grow exceptionally more influential
as the dataset grows smaller in size, however, it has been shown to still outperform tradi-
tional embedding layers even upon larger datasets 4. As pre-trained word embeddings are
so readily available to researchers, GloVe will be utilized within the implemented solution
in an attempt to minimize training time costs.

Aside from the software environment another key factor in allowing for the repro-
duction of results is the specifications of the machine in which the experiments were
undertaken. In order maintain accurate results for the comparative analysis, each experi-
ment was undertaken upon the same machine. The machine in question runs on a x64 bit
Windows 10 installation. The CPU of the machine is a Intel(R) Core(TM) i7-6700HQ
CPU @ 2.60GHz with 12GB of RAM. The graphical processor in use on the machine
during experimentation was the Intel(R) HD Graphics 530.

3.3 Process

The research conducted by Yin et al. (2017) was instrumental in defining the research
methodology conducted within this paper. The key components to be obtained via exper-
imentation is the time taken per epoch, the loss and accuracy figures for both training and
validation of the various models. The solution developed for the purposes of this paper
has been designed to aid in the decision process, specifically decisions regarding which
neural network to utilize. It can be seen as a companion to Cross-Industry Standard
Process for Data Mining (CRISP-DM), as it is designed as a proving ground for various
architectures to aid in assisting the data understanding and business understanding steps
of the CRISP-DM methodology. An in-depth overview of the steps taken to implement
the models can be observed within Section 5.

4 Design Specification

4.1 CNN Architecture

CNN architectures, similar to many machine learning algorithms, are generally comprised
of the same components. What truly effects the capabilities and performance of a CNN
implementation is the manner in which it is constructed. Drawing inspiration from both

4https://towardsdatascience.com/pre-trained-word-embeddings-or-embedding-layer-a-dilemma-
8406959fd76c

7



Zhang et al. (2015) and 5, a text classifier was constructed for the purposes of this pro-
ject. Rather than operating on a letter by letter basis or even a single word basis, the
architecture of CNNs allows for the observation of expressions such as ”I like”. This can
be achieved by utilizing the activation function in concert with the convolutional layer.
The output of each kernel may then be concatenated in order to allow the CNN to detect
expressions no matter their position within a sentence. The CNN constructed for this
paper makes use of alternating layers, initially between convolutional and max pooling
layers, finishing with a single flattening layer and two dense layers. Each convolutional
layer makes use of the popular ReLU activation function whereas the dense layer utilizes
the softmax activation function. The softmax function is utilized in this manner as it pro-
duces a probability rather than a simple number, making it ideal for classification tasks.
The full architecture alongside the inputs and outputs of each layer may be observed
within Figure 3.

4.2 RNN Architecture

In comparison to the CNN architecture shown in Figure 3, the RNN architecture as
shown in Figure 4 may look rather simplistic. However, the core concepts behind the RNN
implementation are complex. The key feature of RNNs that makes them so versatile is the
concept of persistence. Rather than observe each task as an object with no accompanying
information, the chain-like structure of RNNs allows for information to be passed from
node-to-node. Basic RNNs utilize this to great effect, however, in cases where context
is crucial, such as text classification, the problem of long-term dependencies arises. To
combat this issue LS-TM Hochreiter and Schmidhuber (1997) variants of RNNs may be
used. LS-TMs solve the issue of long-term dependencies by streamlining the manner in
which information is passed from node-to-node. By utilizing a new variant of node, known
as ”gates”, LS-TMs allow information to be passed from node-to-node with only minimal
interaction with the loops running within the nodes. The gates restrict the interactions
between nodes and the information stream, allowing for only key information to be passed
therefore increasing the efficiency of the network.

The implemented solution draws inspiration from both Li et al. (2015) and 6, in order
to achieve the best possible results without in-depth optimization of the network. With
the inclusion of a bidirectional layer the network gains access to both past and future
information. This provides a tremendous advantage when context is key, as is the case for
the experiments within this paper. Once again the softmax activation function is utilized
in order to produce a digestible output.

4.3 Keras Framework

The Keras deep learning framework was utilized extensively in order to implement the
models produced for this paper. The Keras framework offers an intuitive approach to API
implementation that, when utilized with detailed documentation, reduces the cognitive
load placed upon the developer. This is a fey factor to consider for the proposed solution,
as ideally future users of the solution will implement models of their own design. Thus it
is critical that future users be able to quickly digest and comprehend the framework in
order to scale-up their solutions in a reasonable time-frame.

5http://www.wildml.com/2015/11/understanding-convolutional-neural-networks-for-nlp/
6https://github.com/keras-team/keras/blob/master/examples/imdb bidirectional lstm.py

8



Figure 3: The CNN Architecture Utilized

9



Figure 4: The RNN Architecture Utilized

Keras further aids in this goal with its module-based infrastructure. New models
may be swiftly constructed by selecting the desired modules. This feature also enables
extensive modification to existing architectures. Keras is also provides a high degree of
versatility due to inherent support of multiple backend engines. This allows for models to
be developed on one platform and tested on various other platforms. For reference, the
models implemented in this paper where created utilizing the Theano 7 backend, however
they may be transferred to an implementation utilizing TensorFlow, CNTK or even a
MXNet backend.

5 Implementation

The final implementation of of the proposed solution is composed of six individual files.
The files consist of the two dataset files and 4 individual Jupyter notebooks. Each
Jupyter notebook corresponds to an implemented model, two CNN models and two RNN
models, one of each type for each dataset. As each model follows the 2 corresponding
architectures, CNN and RNN, the implementation of a single CNN and a single RNN
will be discussed.

The first step in each implementation in the importing of the requisite packages and
Keras modules. As the datasets are stored within CSV files, they must be imported
into the Python environment. To do this the pandas package was imported and utilized.
In order to facilitate streamlined handling of the large amount of numerical data the
NumPy package was imported. As a text classifier is the ultimate goal, character strings
are likely needed for inputs. To address this the pickle package is utilized. For cases
in which the data is scraped from the web or perhaps is text data containing HTML,
the package Beautiful Soup is imported. As Keras is modular in nature, each of the
required modules may be imported as necessary. For performing preprocessing upon the
datasets, the Tokenizer and pad sequences modules are required. The construction of
the models themselves comes down to the layers needed within the model, as each layer
may be imported as a corresponding module. For the CNN implementation the Embed-
ding, Dense, Input, Flatten, Conv1D, MaxPooling1D, Dropout and Model modules are
required. For the RNN implementation the Embedding, Dense, Input, LSTM, GRU, Bi-

7http://deeplearning.net/software/theano/

10



directional and Model modules are required. The final Keras import is ModelCheckpoint,
this is helpful for observing results of a model between epochs for simplified comparison.
For visualization purposes the versatile matplotlib.pyplot package has been utilized.

Once the package imports have been handled the next steps are importing the data and
then transforming the data for use within the models. A function is defined for cleaning
the data of some unwanted characters and the data is imported into a data.frame object.
Once this is done the data may be passed through Beautiful Soup in order to remove any
residual HTML and select undesirable characters. Tokenization is the next step in the
process of preparing the data for modeling. This refers to the task of breaking-down the
sentence structure of the text data into a form more manageable for the neural networks.
The Tokenizer module in Keras is utilized for this purpose. The tokenized data is then
passed into a sequence which is then in-turn utilized to form the validation split upon the
data, a key technique for training and testing machine learning models. The final step
before implementing the model is embedding. Embedding is the process of transforming
the 2D tensor input into a 3D tensor that is then passed into the model. An embedding
matrix is created utilizing GloVe which is then used to create an embedding layer, that
serves as the second layer of the model.

The CNN model is comprised of 11 layers, including the already created embedding
layer. Aside from the requisite input and output layer, the core of the model is comprised
of 6 alternating convolution and pooling layers followed by a flattening and dense layer.
The alternation between convolutional and pooling layers, is necessary to avoid the curse
of dimensionality being brought to bear upon the model. The activation function for the
majority of the layers is ReLu with the exception of the output dense layer, which utilizes
the softmax function to transform the output of the model into probabilities for easier
digestion. In contrast the RNN model is comprised of 4 layers, owed to Keras’ in-built
support for bidirectional LS-TM models. The models are run over 15 epochs with a batch
size of 2, with the model check-pointing after each epoch in order to update validation
accuracy figures.

Once the models have run their course the final step to perform, is visualization. For
the purposes of this solution, two visualization tools have been utilized. The first of which
is an in-built util of Keras that allows for the printing of the model architecture. This tool
was utilized to generate the model architectures that may be observed in Figures 3 & 4.
The second tool utilized is the popular matplotlib package. Matplotlib was instrumental
in creating the visualizations presented in Section 6.

6 Evaluation

Below, is documented the experiments designed and undertaken for the purposes of test-
ing the effectiveness of both CNN and RNN architectures with various text classification
tasks. Both experiments have been undertaken in the conditions outlined within Section
5, utilizing the architectures discussed within Section 4. To ensure reproducibility of the
results obtained, each model has been constructed to meet two key criteria: each model
is generalized rather than specialized and the data tensor for each experiment is limited
to a length of 1000 in order to avoid inconsistencies.

11



6.1 Experiment 1: BBC Article Categorization

The first experiment undertaken for this paper was based around the task of classific-
ation of an assortment of articles published by the BBC. The models were tasked with
classifying text data taken from BBC articles of varying subject matter. The models
were supplied a selection of 5 labels, ranging from Sport to Politics, and then tasked
with learning the semantic reasoning and the contextual clues behind the individual top-
ics. The results achieved by both model architectures may be observed below. Figures
5 & 6 provide an overview of the training and validation accuracy achieved by both
model architectures over the epochs. Figures 7 & 8 show the loss values received by both
models. Table 3 provides a comparison of the results achieved by the different model
implementations.

Figure 5: Accuracy Results
Achieved with CNN

Figure 6: Accuracy Results
Achieved with RNN

Figure 7: Loss Results Achieved
with CNN

Figure 8: Loss Results Achieved
with RNN

Table 3: BBC Article Categorization Results

Algorithm Time/Epoch Training Accuracy Validation Accuracy
CNN 35ms 0.9961 0.96094
RNN 745ms 0.9903 0.94531

12



6.2 Experiment 2: Spam Detection

The second experiment undertaken for the purposes of this research is the a Spam detec-
tion task. Popular within the literature, this task challenges the models with determining
whether a message can be counted as Spam, an unwanted message, or Ham, a genuine
message. The models have been supplied a selection of data, as described in 2. The ac-
curacy results achieved by the RNN and CNN implementations may be observed within
Figures 9 & 10. Similarly the loss curves for both models may be seen in figures 11 & 12.
A detailed comparison of the achieved results can be viewed within Table 4.

Figure 9: Accuracy Results
Achieved with CNN

Figure 10: Accuracy Results
Achieved with RNN

Figure 11: Loss Results Achieved
with CNN

Figure 12: Loss Results Achieved
with RNN

Table 4: Spam Detection Results

Algorithm Time/Epoch Training Accuracy Validation Accuracy
CNN 30ms 0.9955 0.98564
RNN 338ms 0.9989 0.99102

6.3 Discussion

Regarding the results achieved over the course of the first experiment: it becomes imme-
diately apparent from observation of the training accuracy curves that the CNN model
quickly increases in training accuracy before plateauing at a very high value. The RNN

13



implementation, however, begins sedately before eventually climbing to results compar-
able to those of the CNN implementation. When observing the validation accuracy of
both models a similar trend is evident. The CNN model is quick to achieve high ac-
curacy while staying quite consistent whereas the RNN model fails to reach the same
level of consistency over the epochs. The loss curves once again show a similar trend,
however the RNN implementation is more competitive in this case, achieving exceptional
scores in validation loss. The CNN implementation seems to have suffered from an ex-
ploding gradient during epoch 6, but swiftly corrected the issue. These results generally
reinforce the research results achieved by Hochreiter and Schmidhuber (1997), Socher
et al. (2013). The RNN implementation shows no sign of exploding gradient, owed to its
LS-TM architecture, while the CNN is much faster when it comes to training.

The results achieved in the second experiment, reveal quite a different story to the
results of the first experiment. The accuracy curves remain somewhat similar to those of
the first experiment, however, there is a marked increase in validation accuracy between
both models. Again, the RNN implementation seemingly somewhat trails behind the
results achieved by the CNN implementation. The true surprise, however, comes with
observation of the loss achieved by both models. The RNN model far outstripped the
performance of the CNN model in regards to loss, comfortably sitting 0.1 below the loss
reported by the CCN model. Upon observation of the results within Table 4, it becomes
apparent that the most effective model in terms of accuracy is the RNN model, however
the increase is slight and comes at the cost of significantly longer training time. This
echoes the sentiments reported by Yin et al. (2017).

In retrospect the 1000 limit upon the max sequence length should be tweaked for
future research, as it limited the data the model could draw from to a negative result.
Rather than a clear victor outlined by an exceptional performance, the models remain
rather close in performance. Perhaps a larger sample size could impact this.

7 Conclusion and Future Work

In this paper two individual neural network architectures, CNN and RNN, were compared
and contrasted for their viability for the purposes of text classification. The architectures
were implemented in a comprehensive and accessible manner, in order to facilitate use
by those new to the field and to ensure those wishing to re-purpose the solution, may do
so in a timely manner. It was determined that CNNs achieved high validation accuracy
with consistency, however, RNNs outperformed in both validation accuracy and loss on a
smaller sample size. The key difference observed between the two architectures is training
time, with RNN taking far more time to be trained than CNN. Thus while they may be
comparable in performance, CNN is likely more appealing to many due to low time costs.
Also observed over the course of the research is that batch size and epochs seem to have a
strong effect on the overall effectiveness of the models and as such is likely key to creating
an optimum model. While this solution holds possible potential for commercialization, as
a new entrant to the market geared toward new entrants to the field. This seems unwise
as the market is quite niche and is currently populated with potential competitors such
as RapidMiner8 and Wekka9.

Future work based upon this research would likely focus upon the inclusion of hyper-

8https://rapidminer.com/
9https://www.cs.waikato.ac.nz/ml/weka/

14



parameters into the experimentation. Hyperparameter optimization is a core component
to the creation of more sophisticated machine learning models. With appropriate optim-
ization the solution may be introduced to greater sized datasets, in order to gain a proper
gauge on the performance of both RNN and CNN architectures on big data.

References

Anand, A., Chakraborty, T. and Park, N. (2016). We used neural networks to detect
clickbaits: You won’t believe what happened next!

Chung, J., Gulcehre, C., Cho, K. and Bengio, Y. (2014). Empirical evaluation of gated
recurrent neural networks on sequence modeling, arXiv preprint arXiv:1412.3555 .

Cleeremans, A., Servan-Schreiber, D. and McClelland, J. L. (1989). Finite state automata
and simple recurrent networks, Neural computation 1(3): 372–381.

Collobert, R., Weston, J., Bottou, L., Karlen, M., Kavukcuoglu, K. and Kuksa, P. (2011).
Natural language processing (almost) from scratch, Journal of machine learning re-
search 12(Aug): 2493–2537.

Fan, Y., Qian, Y., Xie, F.-L. and Soong, F. K. (2014). Tts synthesis with bidirectional
lstm based recurrent neural networks, Fifteenth Annual Conference of the International
Speech Communication Association.

Forman, G. (2003). An extensive empirical study of feature selection metrics for text
classification, Journal of machine learning research 3(Mar): 1289–1305.

Fukushima, K. (1980). Neocognitron: A self-organizing neural network model for a
mechanism of pattern recognition unaffected by shift in position, Biological cybernetics
36(4): 193–202.

Graves, A. and Jaitly, N. (2014). Towards end-to-end speech recognition with recurrent
neural networks, International conference on machine learning, pp. 1764–1772.

Graves, A., Mohamed, A.-r. and Hinton, G. (2013). Speech recognition with deep re-
current neural networks, 2013 IEEE international conference on acoustics, speech and
signal processing, IEEE, pp. 6645–6649.

Greene, D. and Cunningham, P. (2006). Practical solutions to the problem of diagonal
dominance in kernel document clustering, Proceedings of the 23rd international confer-
ence on Machine learning, ACM, pp. 377–384.

Hidaka, A. and Kurita, T. (2017). Consecutive dimensionality reduction by canonical cor-
relation analysis for visualization of convolutional neural networks, Vol. 2017, pp. 160–
167.

Hochreiter, S. and Schmidhuber, J. (1997). Long short-term memory, Neural computation
9(8): 1735–1780.

Howard, J. and Ruder, S. (2018). Universal language model fine-tuning for text classific-
ation, arXiv preprint arXiv:1801.06146 .

15



Hubel, D. H. and Wiesel, T. N. (1962). Receptive fields, binocular interaction and func-
tional architecture in the cat’s visual cortex, The Journal of physiology 160(1): 106–154.

Hubel, D. H. and Wiesel, T. N. (1968). Receptive fields and functional architecture of
monkey striate cortex, The Journal of physiology 195(1): 215–243.

Hubel, D. H. and Wiesel, T. N. (1977). Ferrier lecture: Functional architecture of macaque
monkey visual cortex, Proceedings of the Royal Society of London. Series B, Biological
Sciences pp. 1–59.

Ikonomakis, M., Kotsiantis, S. and Tampakas, V. (2005). Text classification using ma-
chine learning techniques., WSEAS transactions on computers 4(8): 966–974.

Joulin, A., Grave, E., Bojanowski, P. and Mikolov, T. (2016). Bag of tricks for efficient
text classification, arXiv preprint arXiv:1607.01759 .

Kim, Y. (2014). Convolutional neural networks for sentence classification, arXiv preprint
arXiv:1408.5882 .

LeCun, Y., Boser, B., Denker, J. S., Henderson, D., Howard, R. E., Hubbard, W. and
Jackel, L. D. (1989). Backpropagation applied to handwritten zip code recognition,
Neural computation 1(4): 541–551.

Lee, J. Y. and Dernoncourt, F. (2016). Sequential short-text classification with recurrent
and convolutional neural networks, arXiv preprint arXiv:1603.03827 .

Li, J., Luong, M.-T. and Jurafsky, D. (2015). A hierarchical neural autoencoder for
paragraphs and documents, arXiv preprint arXiv:1506.01057 .

Mikolov, T., Chen, K., Corrado, G. and Dean, J. (2013). Efficient estimation of word
representations in vector space, arXiv preprint arXiv:1301.3781 .

Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S. and Dean, J. (2013). Distributed
representations of words and phrases and their compositionality, Advances in neural
information processing systems, pp. 3111–3119.

Pang, B., Lee, L. et al. (2008). Opinion mining and sentiment analysis, Foundations and
Trends R© in Information Retrieval 2(1–2): 1–135.

Pearlmutter, B. A. (1989). Learning state space trajectories in recurrent neural networks,
Neural Computation 1(2): 263–269.

Pennington, J., Socher, R. and Manning, C. (2014). Glove: Global vectors for word
representation, Proceedings of the 2014 conference on empirical methods in natural
language processing (EMNLP), pp. 1532–1543.

Socher, R., Perelygin, A., Wu, J., Chuang, J., Manning, C. D., Ng, A. and Potts, C.
(2013). Recursive deep models for semantic compositionality over a sentiment treebank,
Proceedings of the 2013 conference on empirical methods in natural language processing,
pp. 1631–1642.

Weiss, G., Goldberg, Y. and Yahav, E. (2018). On the practical computational power of
finite precision rnns for language recognition, arXiv preprint arXiv:1805.04908 .

16



Yin, W., Kann, K., Yu, M. and Schütze, H. (2017). Comparative study of cnn and rnn
for natural language processing, arXiv preprint arXiv:1702.01923 .

Zhang, X., Zhao, J. and LeCun, Y. (2015). Character-level convolutional networks for
text classification, Advances in neural information processing systems, pp. 649–657.

17


	Introduction
	Related Work
	Text Classification
	Convolutional Neural Networks
	Recurrent Neural Networks

	Methodology
	Data
	Environment
	Process

	Design Specification
	CNN Architecture
	RNN Architecture
	Keras Framework

	Implementation
	Evaluation
	Experiment 1: BBC Article Categorization
	Experiment 2: Spam Detection
	Discussion

	Conclusion and Future Work

