~

-"‘f’“
\ National
College

Ireland

Mobile task offloading based on bandwidth
and battery availability

MSc Research Project
Msc of Science in Cloud computing

Andrew Jaskaniec
Student 1D: 17132266

School of Computing
National College of Ireland

Supervisor: Vikas Sahni

National College of Ireland National
Project Submission Sheet College of

School of Computing Ireland

Student Name:

Andrew Jaskaniec

Student ID: 17132266

Programme: Msc of Science in Cloud computing

Year: 2018

Module: MSc Research Project

Supervisor: Vikas Sahni

Submission Due Date: 20/12/2018

Project Title: Mobile task offloading based on bandwidth and battery avail-
ability

Word Count: 5663

Page Count: [19]

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the

rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary

action.

Signature:

Date:

25th July 2019

PLEASE READ THE

FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). O

Attach a Moodle submission receipt of the online project submission, to | [J
each project (including multiple copies).

You must ensure that

a copy on computer.

your own reference and in case a project is lost or mislaid. It is not sufficient to keep

you retain a HARD COPY of the project, both for | [J

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

Mobile task offloading based on bandwidth and
battery availability

Andrew Jaskaniec
17132266

Abstract

Mobile code offloading is very promising method of delegating tasks from mo-
bile device to the cloud in order to reduce battery consumption and save mobile
resources. There are many available methods and frameworks to offload mobile
processing to the cloud including Clonecloud, Comet, Tango and MobiCop. This
report describes benefits of decision engine residing on a device and running during
app launch to provide response whether to offload specific task to the cloud or run
it on a device. It looks at device hardware specifications, analyzing battery avail-
ability, CPU and memory usage and network availability to provide commitment
to a decision. Proposed software is deployed on Android devices and shown classes
can be used in any app with specific changes required based on Operating System
version. With this software it can be seen that based solely on decision making
engine running on mobile device, it can be decided with high confidence to offload
the process to the cloud to be completed before battery is fully drained taking into
consideration wireless network restrictions.

1 Introduction

With over 5 billion mobile phone users around the world, smart phones with their
capabilities on par with PCs are powerful multitasking tools. Their benefits involving
ease of access, portability and affordability can be limited by various factors, which users
and developers have to overcome on daily basis. These main flows include large battery
consumption coupled with small size of the battery and also different network bandwidth
restrictions. Currently it is hard to find a device that impresses with running one full day
on one battery charge with high usage. While multi-tasking and running CPU intensive
processes, most of mobile phones will not last a day. Similar with network access, while
on slow networks, may it be 3G or public wifi, running different tasks can be disruptive.
It has been proven that code offloading helps in processing large tasks which are running
on a device, when a device is not able to complete them or owner wants to transfer the
task to different device for completion. Code offloading from mobile devices to cloud can
mitigate current flaws in mobile devices segment, mentioned earlier battery capacity and
network bandwidth. It can be seen in this report that offloading processes from mobile
devices to the cloud can be done effectively by using decision making engine run during
app runtime without connecting to external source. In comparison to different offloading
strategies that may require copying of the app code to the cloud and predicting specific
network condition, delegating task to cloud based solely on real time computation can be

as effective. This work displays benefits of decision making engine running on a device
which measures connection status, speed and battery availability to send process to the
cloud or make decision to finish the process on a device.

2 Related Work

2.1 Android resources usage detection

In order to make a decision whether to proceed or not with offloading scenario,
service must correctly evaluate CPU, memory, wifi and battery usage of current tasks.
Merlo et al. investigated the feasibility of constructing power-consumption-based sensors
to measure consumption rates of wifi and CPU on mobile devices (IJ). In that work
different power consumption metering approaches have been analyzed and divided into
three categories: low, medium and high level measurements, based on the method of the
data collection from the device. The tests have been done from a security standpoint,
therefore authors concentrated on identifying threats to the device.

Low level measurements have been provided by Appscope tool and FEPMA (2)),
which have been both extremely invasive to kernel and tied specifically to device mod-
els. High level measurements have been done by app, PowerTutor (3), which injects
high level usage data of the smart device hardware into its models to show its en-
ergy consumption. It includes 6 components: CPU, LCD as well as gps, wifi, audio
and cellular interfaces, and for 10 second intervals it is accurate to within 0.8 per-
cent and most 2.5 percent error. Last method of measurements described by Merlo
et al. (1) is middle level measurement, in which battery usage and level are meas-
ured without connecting to kernel, as most new lithium ion batteries have this in-
formation already stored in files: sys/devices/platform/ds2784-battery/getcurrent, and
sys/devices/platform /ds2784-battery /getvoltage. This means that low level information
can still be reused with application software.

For the use case of task offloading and to achieve certain level of security, middle level
measurement results have been chosen as the most promising for this project, while low
and high level measurements will not be considered.

2.2 Code offloading

In a recent times problem of deployment different software to mobile devices, including
internet of things has become much more visible, due to increased demand for high
end small form factor devices and deployment of most popular services and applications
to mobile devices as well. Same idea around internet of things, where all sensors and
connected devices require vast amounts of processing power, which very often is not
provided by only one device.

Code offloading is a concept which developers are working on, most recently Benedetto
et al., investigated framework for code offloading in internet of things (4). The authors
present MobiCOP-IoT solution, framework that is designed to support code offloading for
iOT and android Things devices using cloud and fog ecosystems. This solution consists of
client libraries installed on a device and server infrastructure, which receives off loading
call from a client. Whenever a task is dispatched by device, service queries integrated
decision making engine to commit to decision of offloading the task, running it locally or
using both approaches.

Another idea described in that paper is decision making engine, incorporated in a
solution on client side, which consists of network and code profiler. Network profiler
estimates and samples network every 15 min (differently on metered and unmetered
network) and checks latency and reliability of connection. Code profiler, on the other
hand, uses heuristic-based algorithm to measure the time taken to run given tasks on
a device. After evaluation, decision is being made if code should be run on a device,
offloaded to the cloud or run the code concurrently on both.

Benchmarking results of this solution prove that code offloading in cloud environment
from mobile and iOT devices is improving performance while not incurring additional
costs, which can be beneficial in my research.

Further exploration of task offloading, mainly concentrated on fog computing was
reported by Aazam et al. in ”Offloading in fog computing for iOT: Review, enabling
technologies and research opportunities” (5). This review presents various criteria includ-
ing excessive computation or resource constraint, latency requirements, load balancing,
permanent or long term storage, data management and organization, privacy and secur-
ity, accessibility, affordability, feasibility and maintenance. These are valid points for
both iOT deployments and mobile device systems.

Authors describe types of middleware technologies used in iOT applications- cloudlets,
mobile edge computing, micro data centre, nano datacentres, delay tolerant networks and
Femto cloud. My research will be exploration of mobile edge computing coupled with
femto cloud approach, which utilizes co-located devices in order to harvest computational
or storage capabilities.

Aazon’s paper also reviews technology enablers for offloading tasks in fog computing-
wireless technology, which is required to properly offload task and its availability. This
is crucial for my research, because slower or less reliable technologies are insufficient.

Second enabler are smart and intelligent autonomous applications, which are using
machine learning and utilizing context aware services, subsequent is virtualization and
containment and finally, parallelism, to enable concurrent offloading on different nodes.
Authors critically analyze as well usages of fog computing and offloading processes like
sensors offloading to fog, smartglasses to smartphone, fog and edge nodes offloading to
cloud or cloud offloading to fog.

Finally, this review also summarizes challenges and limitations that are important in
task offloading processes. This deployment could be impacted by resources allocation
and scalability, so finding the right amount of resources that can be offloaded, depending
on that amount system can be under utilized or offloading process trigerred too often.
Second issue is scalability of the application and its handling of multiple of client con-
nections. Another challenge mentioned in that paper is SLA between two entities (task
offloaded and provider of services), although my research will not consider service level
agreements. Security aspects were also considered. It plays an important role in pro-
cess/tasks management and needs to be taken into consideration, especially now, with
critical data residing on mobile devices. Other relevant challenges for mobile task offload-
ing are: integration and interoperability, fault tolerance, energy consumption trade off,
Incentives for offloading service and monitoring, which have to be included in a design.

In Refactoring Android Java Code for On-Demand Computation Offloading (), Zhang
et al. present Dpartner, tool that automatically refactors android applications to be sup-
porting computation offloading capability. Dpartner analyzes application code to discover
the parts worth offloading, and then creates two artifacts that are to be deployed on an-
droid device and server, respectively. Ranges of improvement in execution time are from

46 to 97 percent, while battery power consumption is lowered by 27 to 83 percent. Re-
factoring design, as proven by authors via their extensive tests using linpack, chess and
3D car game can be important for my research. However repackaging each mobile apk file
to support this solution will not work on global scale with new Operating Systems and
security enhancements enabled in them (to mention Google SafetyNet, unknown sources
or usb debugging). This approach will cause apps to be marked as harmful to use in
corporate or even personal environment.

Computation offloading has been a topic of research since the early days of computing
and certainly many scientists looked at it from mobile perspective. The first practical
implementation of this idea for Android Operating System was explored by Kemp et al. in
Cuckoo: a computation Offloading Framework for Smartphones (7). To minimize impact
for app developers, authors designed framework that offered very simple programming
model, prepared for connectivity drops and bundled all in one package. They integrated
it with existing development tools and automated large chunks of development process
and offered simple way to collect remote resources.

As in Refactoring Android Java Code, Cuckoo system requires app to be developed
first using specific framework to enable intelligent offloading. While it has its benefits, it
requires specific standardization and redeployment of apps currently residing in Google
Play (for Android) or Apple store (i0S). Framework provides two Eclipse builders and
an Ant build file that can be inserted into an android project’s build configuration in
Eclipse. Cuckoo integrates into runtime and decides whether the method invoked should
be run locally and remotely. If remotely, then it can be offloaded to any machine running
Java virtual machine. For my research it is important to consider, as one of aspects of
this exploration is to be able to offload tasks to another mobile device (in close proxim-
ity). Additional part of cuckoo framework is Resource manager application running on
a smartphone. It uses QR code displayed on a screen to register known resource (in this
case server), which will be used to offload any computation directed by Cuckoo, allowing
to be used repeatedly for any application that uses Cuckoo offloading framework. In
this paper authors present two projects using their framework, eyeDentify- a multimedia
content analysis application that performs object recognition of images captured by the
camera of a smart phone and Photoshoot, distributed augmented reality game which uses
augmented reality and face detection algorithm in order to determine which player won
the shootout. Both evaluation projects required little work to enable computational of-
floading using Cuckoo framework. Reviewed system integrates build processes significant
for my work, although does not incorporate encapsulation of the software and requires,
code development from the beginning (new software release).

2.3 MCC architecture

Mobile cloud computing (MCC) provides integration of cloud computing and mobile
environment and overcomes obstacles related to performance, environment and security
that smart phones can potentially face. Dinh et al. present overview of benefits and issues
encountered in "MCC in Survey of mobile cloud computing: architecture, applications
and approaches” (8)).

General architecture of MCC (Figure (1)) shows mobile devices connecting to mobile
networks via satellites, access points or base receiver stations. After connection to internet
is established, device is able to connect to different Cloud distributed networks, which
consists of different layers. Data center layer provides physical infrastructure, linking

Mobile Network Services

é '
|
E.& Database
1" Access wil
Servers
} Pojnt Central BaR>

/ﬁJ/ Processor: Cloud Computing

|
I
|
: Data center owners or
| cloud service providers

b

e e e e e

@ » CAARD
Access \.
Servers
L' paint Central

Mabile | 1
devices | Application

T T 1

Mobile users Network operators Internet service Application service providers
providers (ISPs)

Figure 1: Mobile Cloud computing architecture ().

servers with high speed networks, laas is built on top of data center layer, providing
provisioning of storage, servers or networking components, while PaaS provides integrated
environment for deploying applications. Many applications are being used in Software as
a service mode, where user pays only for software used in cloud.

Issues discussed by authors in MCC space ((8) are very important to my research.
Low bandwidth, availability of the service (in this case server side as well as other mobile
client), were mentioned in ref. 1-12. Obstacle that this design must overcome is also
heterogenity of mobile computing, as different mobile nodes access to the cloud through
different radio technologies (GPRS, WLAN, WCDMA, among others), which causes con-
cerns related to scalability, power efficiency or wireless connectivity. As proposed by
Dinh et al., there is need to intelligent context switching engine, which will qualify device
eligibility to run on this service, in case of my research project, should the resources be
offload to different device or not.

Another take on context-aware mobile cloud services has been described in architec-
ture of Volare system by monitoring users device preferences and resources with provision-
ing of appropriate services for each user (9)). Volare uses a middleware module embedded
on mobile device to monitor resources and contexts, dynamically adjusting them based
on user requirements (Figure [2) .

This approach can be used in this project to commit to decisions of offloading to
another device through the cloud or continuing to work on current mobile phone.

2.4 Android architecture

My research project focuses on mobile devices, especially on Android operating sys-
tem. In recent years Google has been trying to raise security bar for its devices or any

T e T
L

L
~Sorvice FRenegotiation| Adapted

Binding Request |ServiceReguest
v
Service Binding
Medule
_ +—Adapted
S_emce Service Service
Binding | Provision Request
QoS Monitoring Events Adaption Module
Module
A Context
. Data & Service
SSW'CG Context Change Request
QoS Binding Events
i) Service Request
Monitor Context Monitoring r:.-‘lodulequ
Data Module
ontext Service
Data Request
Yy — T
Service T
N ™
Bindin Mobile OS)
;\._\ ,/
__ Application ___:_\/’E;:ndr::e Client Device
T Request

Figure 2: Volare context system architecture (9.

using Android OS with new OS updates, security patches and features. In Secure con-
tainers in android: the Samsung KNOX case Study, Kanonov and Wool (10) present a
systematic assessment of security critical areas in design and implementation of secure
containers in Android ecosystem. The relevance of this work is very important for this
paper, as offloading system needs to take into consideration areas identified by authors
as threatening, such as device being registered on untrusted networks, loss or theft of the
device (physical breach) or malware that can infect the device. All these threats can be
mitigated or reduced, by proper implementation of secure container on a device.

In that paper authors list different options of securing android device, by using mobile
device management solution (MDM) to implement policies. It can be also achieved by
root based approach via Deepdroid, which is not a go to solution as it requires device to be
rooted. Finally software containers, like android enterprise (formerly android for work),
which utilizes multiple user mechanism available in Android 5.0+ to allow isolation of
work and personal content can be also used for this securing purpose. All listed solutions
can be attacked and compromised by kernel security exploits. Answer for those exploits
is obtained via software and hardware solution, incorporated in Samsung KNOX devices,
which root of trust is hardware implementation of ARM TrustZone. This architecture will
allow secure code offloading without data being compromised. Knox architecture consists
of few components. First is SEAndroid, which is a fine grained security policy enforced
by SELinux, isolating applications from each other. Second component is Trustzone-
based Integrity Measurement Architecture (TIMA), which is an architecture design that
contains all the security applications in the container. Finally Secure boot secures device
while booting up, making sure that each step is validated starting from verification if

ROM has not been tampered with. Knox provides additional layer of encryption on top of
standard Android OS and extensive VPN framework intended for enterprise applications.
These KNOX features are important for this paper, as they can help with deployment
and securing of any data that can be accessed or transferred from the device. As authors
present, there is a danger of sharing KNOX services with user applications, even in
the presence of dedicated security measures, therefore this implementation of offloading
application needs to take into consideration security risks that are brought with mobile
world and specially BYOD (Bring your own device) space.

2.5 MQTT Broker

For purpose of this project and offloading mechanism of proposed solution, there
needs to be implemented lightweight data transport solution to support sending and
receiving information between devices.

Based on research done by Thangavel et al. (I1]), bandwidth- efficient and energy-
efficient Message Queue Telemetry Transport Protocol will fit in this scenario. MQTT is
an application layer protocol, which has publish-subscribe architecture, allowing clients
to publish messages to particular topic. Afterwards all clients which are subscribed to
this particular topic will receive this message. This protocol is often used for resource
constrained devices.

The authors compare MQTT protocol to Constrained Application Protocol (CoAP),
which is newer and based on Representational State Transfer (REST) architecture and
perform series of tests using common middleware. While MQTT uses TCP transport
layer, has 3 Quality of service layers and publish-subscribe architecture, CoAP uses UDP
layer, no quality of service layers and request-response architecture. Differences in layers
do not show in results, as one protocol can outperform other one in different areas.
Advantage of MQTT is seen in many use cases and developments for wireless distributed
systems. An interesting idea is presented in Canderoid, which is a mobile system to
remotely monitor travelling status of the elderly with dementia (I2) . Canderoid is
reliable, energy saving system, which can help caretakers to precisely and fully understand
travelling status of an elderly person.

Figure (3| displays design of Broker introduced communication architecture, enabling
bi-directional communication between smartphone client and caretaker platform. This
deals with a problem of knowing IP address by caretaker, as broker dispatches messages to
different peers. This approach is crucial for deployment of distributed system throughout
different wireless networks.

Authors developed an application called ” Wanderoid” for mobile devices, which made
a device work as a group of sensors and record travelling status of the owner. This
information was recorded and sent to the server via MQTT protocol to provide data to
another client (caretaker operator) that receives message. Wanderoid architecture was
tested for reliability using Android battery dog software showing only one connection
break during all rounds of testing, which was recovered from in a second.

The ease of implementation of MQTT protocol for resource constrained device is
further described in "MQTT-S A Publish/Subscribe Protocol For Wireless Sensor Net-
works” by Hunkeler et al. (I3]).

Hunkeler described, MQTT-S as an extension of the open MQTT protocol designed
for Wireless sensor networks (WSN), designed in a way that can run on low power, battery
operated sensors and can be used and operate over limited bandwidth wireless networks

terminal Gateway

—

martpho
(Sensor/A

]

Wireless .
Communieltiﬂl-‘ 4

Caretaker service
(Potential Actuator)

LAN 2

Figure 3: Canderoid Broker Introduced communication architecture(12]).

o

MOQTT
Broker

Figure 4: MQTT-S architecture(13).

(such as ZigBee). Figure [4] shows that MQTT-S architecture is similar to standard
MQTT, seen in canderoid design, consists from broker, gateways and clients hosted in
wireless network. In their research authors outline two different types of MQTT gateway,
transparent, where for each connected client, a transparent GW sets up and maintains a
MQTT connection and aggregating gateway, where there is only one gateway connection
to the broker for all connected clients at once. Aggregating gateway is documented to
be more helpful due to reduction in number of connection that broker has to support.
The difference between MQTT and support of short message payload, (used with sensor
networks by Zigbee client), is limited to 60 kb. This approach is not needed with that
design as devices targeted by this research are more powerful and implementation of
MQTT architecture may prove to be sufficient.

2.6 Current frameworks

As stated by Yuan Zhang et al. (14]), current work on mobile offloading frameworks
follows three approaches categorized by the granularity and partition algorithm being
used; full migration, pre-calculated offline partitions and Making decision at runtime.
Authors describe full migration as inflexible and not granular enough, used in early stages
of research, while using pre calculated offline partitions might not simulate all ofloading
scenarios that can occur during real world execution.

Sample framework using pre calculated offline partitions is CloneCloud (15)), however
as stated by authors, real network and device conditions cannot be generalized into fixed
amount of states, which means that using the pre-calculated partitions cannot cover all
the offloading scenarios. Other popular frameworks used are Comet (16) and Tango (17)
which suffer from issues where it is hard to replicate offloading tasks. Making decision at
runtime examples of this approach are Odessa [9], MAUI [6] and Wishbone [7].

MobiCop, presented by Jose I Benedetto et al. (I§]), is an offloading platform that
seeks to address the reproducibility issues of other offloading solutions by encapsulating
all offloading logic in a library and offering compatibility with major ITaaS providers is
a newest addition to common offloading methods. It is designed to minimize execution
time by invoking service application component. Developer needs to deploy custom an-
droid class and provide custom parameters to be marshalled by OS. Framework provides
fully functional decision engine which predicts execution times based on previous runs.
It is joined with network profiler, but is only supported if past records exist for previous
executions. MobiCop’s architecture consists of client library, covering android service
that oversees handling of incoming tasks and connects platform components. It quer-
ies decision making engine to figure out execution context. Platform communication
layer makes use of asynchronous data transfers to transfer messages via XMPP through
Google’s firebase cloud messaging system. Server component consists of four modules:
public interface, middleware, an elastic cloud component and Android server environ-
ment. Developers are required to preinstall their applications apk into the server for the
platform to be operational, which may slow the whole process down. API, application
programming interface proposed by Benedetto et al. encapsulates offloaded tasks in run-
nable derived from superclass, providing utility methods for Accessing Android code.After
defining class, users can declare input and apk to the platform, which provides them with
id for future associated tasks. Results of these actions are being sent to local broadcast
receiver. Decision Engine consists of two modules- QOS monitor and code profiler. Qual-
ity of service component takes care of profiling network- availability, latency and transfer

Oclient
APK
Application i Fi
— irebas
[PY Cloud Messaging
Decision Making Engine -
Lo Internet . Endpoint
Public Interface Middlew
]
Communications Handler "
! Output |)
| |] o
: [Il | [
MCC Framework Library
(Android Service) - i
Hypervisor (Optional)
|
-
‘ , I I
Google Play Services

Figure 5: MobiCop architecture(18))

speed. Wifi connection speed is being sampled on connection to new network and cached
for future use. This presents problem with changing network speed on different services.
Network speed for mobile networks (LTE, GPRS, EDGE, etc.) is based on average trans-
mission types. Code profiler keeps track of past task executions and predicting runtime of
future tasks. In this paper there is emphasis on improving QoS part of a decision engine
to incorporate analysis of hard drive space, battery left on a device and available memory
and cpu. It also evaluates network currently being accessed during running of software
and decision on offloading is being provided. This report will be focused on logic residing
on mobile device and implementation of it using classes that can be deployed with any
android apk files.

3 Methodology

3.1 Evaluation of CPU/ Memory usage on android devices.

To evaluate the CPU and Memory on android devices there need to be taken into con-
sideration different specifications based on API availability and OS version. This research
was concentrated on Android devices as iOS based devices would require also native code
to analyze performance and can be taken into research in the future work. Additionally
to evaluation of Memory and CPU methodology, incorporated in this research is usage of
battery check, whether device is low on battery it will send process to the cloud. These

three attributes help prove the concept of distribution and sending process from mobile
device to the cloud. (Fig[6)

3.2 Setting threshold and limit on which action will be made.

In proposed software threshold is set to 20 percent of battery used. When triggered
and battery is lower than proposed threshold, process is being sent to cloud via MQTT
protocol and topic is distributed via cloud broker. Any associated clients are able to see
topic of the message.

10

MobileDistribution

SEND PROCESS TO CLOUD (TEST)

Figure 6: Nexus emulator with Android 7

3.3 Execution of the task on a device.

Task executed on a device shows animated android icon rotating consecutively during
work phase of the program. When logic is met and process is sent via MQTT broker,
animation stops spinning. Actual process of animating the image is not processed in
the cloud in this project, as this will require further research and will be explored in my
future work.

3.4 Commit decision if task is send to the cloud or is executed
on a device.

For this research demo purpose, there has been added ”send process to cloud(test)”
button, which eliminates need to lower battery usage and bypasses this logic.

3.5 Sending task via MQTT service to the cloud.

When condition is met and battery limit reaches set threshold job is being stopped
on a device and is being sent to cloud via MQTT protocol. MQTT broker connection
is being established and information is being sent to another client subscribed to this

thread. Fig

3.6 Receiving confirmation from the cloud if the task was com-
pleted and get the result and time.

Proposed solution shows python client running on windows machine connected to
cloud broker receiving information about device state from MQTT broker (Fig E[) If the

11

B CloudMQTT mobiedisrburion ~

$SVs/broker/bytes/received @ | Comectingtomaaoudmay
18398

$5Vs/broker/bytas/sant
70050

s

ssvsbr
o

stamsTics

ssvs/br
o

Figure 7: MQTT broker statistics information
When conditions are met with battery power being low and Wifi network accessible,
proposed software stops the process and sends information about task to the broker [7]
Information about task being sent is available on windows client connecting to the same
topic via broker Fig([9).

2819-85-18 18:58:56: Saving in-memory database te /var/lib/mosquitto/13e
2819-85-12 19:28:57: Saving in-memory database teo /var/lib/mosquitto/13e
2819-85-12 2 3 w connection from 1€9.255.139.121 on port 13822,
2819-85-18 w client connected from 189.255.139.121 as paho3747728733948 (c1, k&8, u'pflnyyaj')
2819-85-12 w connection from 1€9.255.139.121 on port 13822,

2919-85-18 New client connected from 1€9,255.139.121 as paho39429777260@ (c1, kee, u'pflnyyaj')
2819-85-18 19:58:58: Saving in-memery database te /var/lib/mosgquitto/13e22/db.

2919-85-12 208:28:59: Saving in-memory database teo /var/lib/mosquitto/13e22/db.

fdb.
fdb.

99
22
=
22

Figure 8: MQTT broker connections established

battery level is under 20 percent, device will offload the process while informing clients
via sending to subscribed devices message ”Battery level is under 20 percent”.

4 Design Specification

Solution for decision engine is an android app developed in Android studio, with
MQTT and firebase implementation.

Design of proposed solution incorporates TelephonyManager class to establish what

type of mobile service is available on a device. If connection is 2g, offloading scenario will

EX Command Prompt - MOT Tclient.py - O x

is und
is und

Figure 9: MQTT Client

12

Figure 10: Types of mobile networks established using TelephonyManager.

not be established, while on 3g or 4g it will proceed.

Similar scenario is seen when connectivityManager class finds Wifi network connected,
task can be offloaded to the cloud if meeting rest of criteria.

Functions GetCPUCores and ReadCpuusage establish number of Cores available on
a device and overall CPU usage. Currently on android behaviour of these functions
might change depending on APT level (OS version) used. To read CPU usage access to
7 /proc/stat” file is needed, which from API 28 has been removed. In future work there
needs to be other method evaluated.

While evaluation is completed process is being sent to cloud via MQTT protocol and
stops run on a device. For the purpose of this project free version of CLOUDMQTT
broker has been deployed to cloud.

5 Implementation

5.1 Description of technology used

This paper incorporates Java based services deployed in Android Studio for the pur-
poses of evaluation of decision making engine sending offloaded process to the cloud. Java
class implements broadcast receiver that checks for battery usage, wifi speed, memory
and CPU usage during program run. When condition is met broadcaster send informa-
tion to receiver to offload information to the cloud. For purposes of this paper there is
implemented firebase plugin to monitor these statistics in a cloud as well showing overall
runtime of specific processes and any failures encountered. It is not a feature explored
in this work, but monitoring code using firebase plugin might be interesting for the fu-
ture work exploration. After committing to decision of offloading the task to the cloud,
information is being passed to MQTT broker hosted at CloudMQTT portal using MQTT
protocol. This information is passed on subscription topic that any client can connect
to. In this research for picking up topic data is being used python client Fig.

13

5.2 Logic behind evaluation of data- reasons and thresholds for
offloading processes.

Proposed software evaluates if battery is under 50 percent and makes a decision
to send process to the cloud. When it is below limit, it checks for available network
bandwidth to proceed with offloading scenario. If network is not sufficient, task might
be stopped due to possibility of failure and not completing at all.

5.3 Explanation of service that monitors CPU/Memory on a
device

Service uses Broadcast Receiver Java class to monitor CPU/Memory and battery
activity. A broadcast receiver is an Android component which allows you to register for
system or application events. All registered receivers for an event are notified by the
Android runtime once this event happens. Current implementation monitors for changes
in battery state, where if Battery is below 20 percent threshold, code is being offloaded
to the cloud.

It also monitors for network that is being accessed, where offloading currently takes
place only on WiFi, not 3g as it might be not reliable. Future plans are to evaluate
bandwidth available on network to actively establish quality of connection available for
current task.

Last monitor checks for CPU and Memory usage, but with barriers in establishing
how much of the CPU current task is using, this is area for future work to explore.

6 Evaluation

6.1 CPU/Memory below threshold scenario (running process
on a device)

When software is run it evaluates if the battery is in good condition to complete the
process. It continues to run the process until battery reaches specified threshold. If the
threshold is not met, process will be completed successfully on a device without offloading
to the cloud. [12]

6.2 CPU/Memory over threshold scenario (offloading to the
cloud)

In proposed software, when battery reaches under 20 percent of life, service run in example
is being stopped, as per animation, and information is being sent via MQTT protocol to
the cloud. Network state is also evaluated, if not feasible and on low bandwidth network,
process will not be offloaded. This solution also provides override of the specific scenario,
which enables user to send process to cloud manually in Fig[13] Additional constraints
are CPU and Memory utilization, which are analyzed in proposed software, but due to
OS restrictions may need to be subject to future work for implementation on different
Android versions as well as iOS and widnows implementations.

14

Request new task
processing

Device

Cloud

Send information
about process to

| no

broker
available

yes

device

MQTT broker- available
request task
completion on next
device

Send information
about process to
MQTT broker

broker
available|

M Check if memory is

Check if CPU is
free over 50%

yes

Complete task on a
device

Check if latency is
under 2ms

Check if CPU is.
free over 50%

no

yes

Check if memory is
free over 50%

\

?

yes

'

Complete task on a
device

O

Figure 11: UML design of resources threshold analysis.

15

= Decision engine on a device

Initiate task

Mo check battery
> percentage

Software runtime

No

Check Wifi3G | _
Bandwidth Check CPU

| !

_Bes fiot.__
"meg_tcr_i_t__eﬂﬁ'*‘_ Check Memory

N
PN
ecisionta_
< ofead >
“~goftware
el

o

Figure 12: Current decision making engine on a device .

Termin

Figure 13: Power capacity set manually on android emulator (8g]).

16

¥ Firebase MastersA) -

Project Overview & Performance > On device > broadcast.trace > Duration

< Sessions

L] Distribution @

22 ms-42 ms

May 12, 3:50:32 pm 28ms

9 1.00) [samsung Galaxy 10 =2 © Ireland _A Vodafone Eircell » e

cPUO ® User® @ System®

broadca

Figure 14: Firebase monitoring

6.3 Discussion

Decision making engine explored in this paper is a strong tool in computing real
time hardware capability to offload specific tasks to the cloud. Running java code that
can be simply incorporated in any android application makes it a very easy and familiar
experience for any developers. Using Broadcast receiver, telephony manager, battery
manager and connectivity manager classes, mobile devices performance and resource can
be measured on demand and effectively utilized. Logic presented in this paper measures
battery level, wifi/mobile data speed and availability as well as CPU and memory usage.
It provides result when battery is low (under 20 percent) and connection is good, in the
research only accepted offloading network is Wifi, however in the future work there might
be added mechanism to offload using mobile networks as well, considering bandwidth and
local tariff operators costs. Next scenarios are highly dependant on Operating systems
or even devices. Measuring CPU usage based on proc/stats information is hard task on
newer Android devices as from android 8 this functionality has been removed and the
engine has to be deployed on android 7 devices to be fully functional. On evaluated device
function can distinguish CPU used and also number of Cores, which can present specific
information. Implementation of runtime calculation without incorporating prediction
engine as described by Benedetto et al (4) comes with benefits but also some limitations.
Engine presented in this paper is fast and does not require many additional changes during
deployment of the app to the store, only addition of the classes needed for computation.
Limitations are shown as code is needed to be changed for different android OS version
and also extended to different systems not being tested (10S, Windows).

17

7 Conclusion and Future Work

This research paper proposed mobile task offloading based on local computation using
WiFi and battery availability. In described work it has been shown that decision making
engine run locally on a device as a part of an application can be successful in establishing if
task can be offloaded to the cloud. This computation has been done during runtime of the
application using Java classes. It shows that computation based on Battery availability,
mobile or wireless network access and CPU/Memory usage can be sufficient and fast for
specific use cases. In comparison to other available frameworks, calculating if the process
is offloaded dynamically during runtime reduces computation time and dependencies on
other services, which may reduce errors. Future work will include standardization of
the code between available OS versions, testing of secure containerization methodology
for Android enterprise and KNOX as well as other Operating systems to fully support
different mobile architectures.

References

[1] A. Merlo, M. Migliardi, and P. Fontanelli, “On energy-based profiling of malware in
android,” pp. 535-542, 2014. cited By 20.

[2] K. Kim, D. Shin, Q. Xie, Y. Wang, M. Pedram, and N. Chang, “Fepma: Fine-
grained event-driven power meter for android smartphones based on device driver
layer event monitoring,” 2014. cited By 11.

[3] L. Zhang, B. Tiwana, R. Dick, Z. Qian, Z. Mao, Z. Wang, and L. Yang, “Accurate
online power estimation and automatic battery behavior based power model gener-
ation for smartphones,” pp. 105-114, 2010. cited By 302.

[4] J. I. Benedetto, L. A. Gonzlez, P. Sanabria, A. Neyem, and J. Navn, “Towards a
practical framework for code offloading in the internet of things,” Future Generation
Computer Systems, vol. 92, pp. 424 — 437, 2019.

[5] M. Aazam, S. Zeadally, and K. A. Harras, “Offloading in fog computing for iot: Re-
view, enabling technologies, and research opportunities,” Future Generation Com-
puter Systems, vol. 87, pp. 278 — 289, 2018.

[6] Y. Zhang, G. Huang, X. Liu, W. Zhang, H. Mei, and S. Yang, “Refactoring android
java code for on-demand computation offloading,” pp. 233-247, 2012. cited By 37.

[7] R. Kemp, N. Palmer, T. Kielmann, and H. Bal, “Cuckoo: A computation of-
floading framework for smartphones.,” Mobile Computing, Applications Services
(9785642293351), p. 59, 2012.

[8] H. T. Dinh, C. Lee, D. Niyato, and P. Wang, “A survey of mobile cloud computing:
architecture, applications, and approaches,” Wireless Communications and Mobile
Computing, vol. 13, no. 18, pp. 1587-1611.

[9] P. Papakos, L. Capra, and D. S. Rosenblum, “Volare: context-aware adaptive cloud
service discovery for mobile systems,” in Proceedings of the 9th International Work-
shop on Adaptive and Reflective Middleware, pp. 32-38, ACM, 2010.

18

[10]

[11]

[12]

[13]

[15]

[16]

[17]

[18]

U. Kanonov and A. Wool, “Secure containers in android: The samsung knox case
study,” pp. 3-12, 2016. cited By 10.

D. Thangavel, X. Ma, A. Valera, H. Tan, and C. K. Tan, “Performance evaluation of
mqtt and coap via a common middleware,” in 2014 IEEE Ninth International Con-

ference on Intelligent Sensors, Sensor Networks and Information Processing (1SS-
NIP), pp. 1-6, April 2014.

B. Xiao, M. Z. Asghar, T. Jms, and P. Pulii, “”canderoid”: A mobile system to
remotely monitor travelling status of the elderly with dementia,” in 2013 Interna-

tional Joint Conference on Awareness Science and Technology Ubi-Media Computing
(1CAST 2013 UMEDIA 2013), pp. 648-654, Nov 2013.

U. Hunkeler, H. L. Truong, and A. J. Stanford-Clark, “Mqtt-s a publish/subscribe
protocol for wireless sensor networks,” 2008 3rd International Conference on Com-
munication Systems Software and Middleware and Workshops (COMSWARE ’08),
pp. 791-798, 2008.

Yuan Zhang, Hao Liu, Lei Jiao, and Xiaoming Fu, “To offload or not to offload:
An efficient code partition algorithm for mobile cloud computing,” in 2012 IFEFE
1st International Conference on Cloud Networking (CLOUDNET), pp. 80-86, Nov
2012.

B.-G. Chun, S. IThm, P. Maniatis, M. Naik, and A. Patti, “Clonecloud: Elastic
execution between mobile device and cloud,” in Proceedings of the Sixth Conference
on Computer Systems, EuroSys '11, (New York, NY, USA), pp. 301-314, ACM,
2011.

M. S. Gordon, D. Jamshidi, S. Mahlke, Z. Mao, and X. Chen, “Comet: code offload
by migrating execution transparently,” pp. 93-106, 10 2012.

M. S. Gordon, D. K. Hong, P. M. Chen, J. Flinn, S. Mahlke, and Z. M. Mao,
“Tango: Accelerating mobile applications through flip-flop replication,” GetMobile:
Mobile Comp. and Comm., vol. 19, pp. 10-13, Dec. 2015.

J. I. Benedetto, A. Neyem, J. Navon, and G. Valenzuela, “Rethinking the mobile
code offloading paradigm: From concept to practice,” in 2017 IEEE/ACM jth Inter-
national Conference on Mobile Software Engineering and Systems (MOBILESoft),
pp. 63-67, May 2017.

19

	Introduction
	Related Work
	Android resources usage detection
	Code offloading
	MCC architecture
	Android architecture
	MQTT Broker
	Current frameworks

	Methodology
	Evaluation of CPU/ Memory usage on android devices.
	Setting threshold and limit on which action will be made.
	Execution of the task on a device.
	Commit decision if task is send to the cloud or is executed on a device.
	Sending task via MQTT service to the cloud.
	Receiving confirmation from the cloud if the task was completed and get the result and time.

	Design Specification
	Implementation
	Description of technology used
	Logic behind evaluation of data- reasons and thresholds for offloading processes.
	Explanation of service that monitors CPU/Memory on a device

	Evaluation
	CPU/Memory below threshold scenario (running process on a device)
	CPU/Memory over threshold scenario (offloading to the cloud)
	Discussion

	Conclusion and Future Work

