
Framework for availability assurance of
services running on AWS EC2 Spot instances

MSc Research Project

Cloud Computing

Jerry Danysz
Student ID: 16148690

School of Computing

National College of Ireland

Supervisor: Victor Del Rosal

www.ncirl.ie

National College of Ireland
Project Submission Sheet

School of Computing

Student Name: Jerry Danysz

Student ID: 16148690

Programme: Cloud Computing

Year: 2019

Module: MSc Research Project

Supervisor: Victor Del Rosal

Submission Due Date: 12/08/2019

Project Title: Framework for availability assurance of services running on
AWS EC2 Spot instances

Word Count: 6537

Page Count: 31

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature:

Date: 6th August 2019

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). �
Attach a Moodle submission receipt of the online project submission, to
each project (including multiple copies).

�

You must ensure that you retain a HARD COPY of the project, both for
your own reference and in case a project is lost or mislaid. It is not sufficient to keep
a copy on computer.

�

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

Framework for availability assurance of services
running on AWS EC2 Spot instances

Jerry Danysz
16148690

Abstract

Amazon Web Services since early 2009 is offering its spare capacity at a dis-
counted price. This discount comes at the price of unpredicted price changes and
sudden instance termination. In this paper, we are presenting a solution to one of
the challenges when using AWS Spot Instances, that is Termination of the instance
on short notice.

Presented in this paper, Spot Instance Management System (SimS) can effectively
manage spot instances and keep up the availability on the desired level. Thanks
to machine learning, risk assessment mechanism and proactive actions system can
assure required three nines SLA. The results are showing that usage of a proactive
system like SimS proves to be valuable if our main goals are low running costs and
availability of the systems running on the spot instances.

1 Introduction

Starting in 2009, Amazon as the first cloud provider started offering the new cost model
for its flag service of providing virtual instances (EC2) In contrast to their other models
ON-Demand and Reserved, Spot instances offered significant price drop per hour of usage.
This offering was not without its hooks. The conditions for providing the spot instance
were related to two factors, the availability of the spare capacity in the region and supply
and demand.

One of the base assumptions behind spot instances is that price is dynamic and can
change anytime based on available capacity and current demand for the type of instance.

Usage of spot instances requires from the customers to set maximum instance price (per
hour) that they wish to pay and also to understand the risk that if the price of the
instance changed above the maximum price the instance would be suddenly terminated
and all data lost if it is not saved elsewhere.

Until 2015 the instance termination would be executed without prior notification to the
customer, therefore usage of the spot instance even if its cost-effective could be limited
only to applications that are either not critical or are design for interruptions.

Since 2015 Amazon improved their spot service by offering a different type of termination
behaviours ranging from default termination through stopping the instance to hibernation
of the instance.

1

All of those options have specific requirements that need to be taken into account before
requesting the spot instance. None of those is offering actual prevention from the instance
interruption itself.

The Spot Instance Management System that we are presenting in this research has the
main goal to counter the sudden unexpected termination of the systems running on EC2
Spot instances.

This is achieved by the application of machine learning and prediction of the next price
change. In case systems detect that within next hour price would change and risk of the
instance termination is High, the appropriate actions are taken.

The actions could be live migration to another availability zone or redeployment of spot
instance with a higher maximum bid. It is worth to notice that all actions are done
proactively, while the risky instance is still running, therefore minimising the potential
downtimes of any service using EC2 spot instances.

In this paper, we are investigating if it is possible to maintain the agreed service level of
99.9% that is common for a business-critical application while savings costs by running
those applications on EC2 Instances.

Our goal is to prove or disprove that EC2 Spot instances can be used in combination
with the management systems like The SimS as reliable hosting platforms for critical
applications.

Research Question : For mission-critical services utilising EC2 Spot Instances, how
can the service availability requirement of 99.9% be assured with spot price prediction
using machine learning and automated system migration to avoid sudden interruptions

2 Related Work

In this section, we will look into past work in areas of price prediction, bidding strategies
and interruption mitigation solutions.

2.1 Prediction of Spot Instances Pricing

We are starting a literature review section with the overview of publications present-
ing methods used in various research to predict the price of the AWS Spot Instances
accurately.

Spot Price Prediction (SPP) has been a topic of research since the introduction of Amazon
spot instances in 2009. Ben Yehuda in his paper Agmon Ben-Yehuda et al. (2013) ap-
proached topic of predicting spot price by deconstruction and reverse engineering of
hypothetical spot instance algorithm that despite common assumption spot prices might
not be supply and demand-driven but instead are randomly generated from dynamic
hidden reserve price.

To confirm his hypothesis, he analysed the spot market and divided it to three pricing
epochs with each epoch change at the significant change of SPP Pricing models. As the

2

conclusion, the author is acknowledging that there is a market element in the price, but
prices are still driven from the hidden reserved price.

Authors of Singh and Dutta (2015) seem not to fully agree with Ben’s Yehuda conclusion
as their algorithm model for Dynamic Price prediction is accounting for global market
trends and local Seasonality.
The dynamic Price Prediction model is presenting two types of predictions short-term
(hourly based) and long-term (a week ahead) based on analysis of 9 months of historical
data for the top ten used spot instances.

In the conclusion of their work, authors present the prediction result of an average 9.4%
prediction error in short-term prediction and 20% in long-term (five days ahead) price
prediction.

In the work of Wallace et al. (2013), authors are presenting a novel approach to aws
spot price prediction by using a moving simulation model to create an artificial neural
network-based algorithm for price prediction.
Authors used historical data available for only the medium size instances in a period of 7
months to train the MLP model resulting in 4% prediction error in short-term prediction
(hourly prediction) on average for medium size spot instances concluding that neural
network models are well suited for the prediction of price changes of Spot Instances.

This conclusion has been initially confirmed by the researchers concluding the evaluation
of algorithms used for spot price prediction Arévalos et al. (2016) who compared above
prediction method (naming it a state-of-the-art method) with Support Vector POly Ker-
nel Regression (SMOReg), Gaussian Process and Linear Regression.

Models have been trained for the month with 12 months of historical data for the three
most used types of instances. The prediction has been generated for short (next hour),
medium (half-day) and Long (next day) periods. As the conclusion, the neural network-
based algorithms are performing better than others for medium (half-day predictions)
where SMOReg is better suited for predictions with hight variable months.

Neural Network-based algorithms have also been evaluated in Amekraz and Youssef
(2016), in this paper authors have used Adaptive neural fuzzy interface system (AN-
FIS) model that is the combination of neural networking and fuzzy interface system to
analyse three months of historical data for one type of EC2 Instance.

In this work, authors are leaning towards Ben Yehuda view that behind the appearance of
randomness, there is regularity and order that is hidden. In conclusion, authors are using
the chaos theory principals, can conclude that spot pricing model is in fact, chaotic and
models like ANFIS would be better suited for price prediction than stochastic forecasting
presented by [7].

Authors of Zhao et al. (2015) are presenting a different approach to a prediction by using
time-based series forecasting method, ARIMA Model (Auto-Regressive Integrated moving
average) that is lighter compared to machine learning technics like neural networking.

Authors similar to researchers in Singh and Dutta (2015) have added season component
to their ARIMA model effectively changing it to SARIMA model. SARIMA has been

3

used to analyse five months of historical data and create a prediction that is close to the
average price for a period of 48h.

From the above analysis, we can see that there are different approaches to prediction
of the spot instances pricing ranging from reverse engineering and understanding what
principals are behind the price level, through the classical statistical approach to the
most modern use of artificial intelligence and machine learning techniques like neural
networking.

Based on the above, we can state that all of those approaches are valid and have great
potential if researched further. In our research proposal, we are planning the usage of
machine learning algorithms to predict price and potential price change.

2.2 AWS Spot bidding strategies overview

Researches like in previous sections are trying to find the best strategy to find a golden bid
to assure spot instance availability, Authors in Andrzejak et al. (2010) ask the question
how to bid if there are strict target dates or SLA and they focus the investigation of their
bidding strategies with that goal. Authors of Li et al. (2015) in their overview is dividing
common biding approaches into three types:

• White box approach where bidding strategies are taking into account interactions
between different market participants and effectively bidding can influence a spot
price.

• Grey box approach has more individual biding strategies wherein contrary to white-
box, market interactions are not taken into account, but strategies are focusing
mostly on workload, cost and availability of the resources.

• Black Box approach, which consists most common strategies derives its biding from
historical spot pricing data and do not focus so much on workload, cost and avail-
ability nor interactions between market participants.

Five most classic strategies in Black Box approach have been discussed in Li et al. (2015)
and Voorsluys and Buyya (2012)
those strategies are:

• The minimum price, where the bid is based on spot historical minimum price

• Mean, the bid price is set as the mean of all values of the historical spot price

• High, the bid price on the maximal price observed in historical data

• Current, the bid price is set as the value of current spot price

• On-demand is the bid price equal to the on-demand price of the instance.

Above five strategies have also been incorporated to the solution for reliable provision-
ing of spot instances in Voorsluys and Buyya (2012), where authors are combining all

4

five strategies with fault tolerance techniques like migration to assure the most reliable
solution for the limitations of spot instances.

In the survey on the spot pricing Kumar et al. (2017) authors are presenting four strategies
that are similar to earlier introduced five.

Those strategies are :

• Bidding on near to reserve price

• Bidding on above the average price calculated from the historical data

• Bidding close to the on-demand price

• Bidding over the on-demand price

We can see here that in both cases, we have bidding on-demand and above demand prices
that are meant to assure the availability of the resource.

The biding strategies are divided into two types of the approach in Li et al. (2015),
statistical-based bidding strategies that are independent of auction-based strategies and
are adapted for Map-reduce jobs and economic-based strategy, which are the auction and
game-based strategies.

BlackBox strategies (auction-based) in the work of Li et al. (2015) have been extended by
a new type of Bidding, on a feedback control based mechanism. This is the mechanism
using historical data as the input reference and analysing it using a proportional-integral
controller to deliver the final bid.

The bid forecasting has also been investigated using time series forecasting in Ch-
hetri et al. (2017) and algorithms like NATIVE, SEASONAL NATIVE (SNATIV), AR-
IMA,ETS, STL and TBATS to accurately predict most effective bid based on 110 days of
historical data, in the conclusion authors admit that snative (seasonal native) algorithm
had the best scores in terms of predicting bid price when ARIMA failed with all of the
predictions.

According to researchers, the seasonal component and extreme price spikes have cause
ARIMA not to be able to predict with much of the success.

To summarise there is a wide variety of approaches to biding for spot instances as we
could see above some researchers are trying to use forecasting techniques to predict the
best bid, others are approaching the Bidding with a strategy of looking into the past
historical data and bid on the average or maximum bid price.

Cloud consumers that are constrained by the time or SLA can choose to bid according
to on-demand or above on-demand price, while this will give them more certainty field
of available, it may not necessarily bring cost savings foreseen by use of spot instances.
A. Andrzejak is his work Andrzejak et al. (2010) advice that in those cases the best is to
bid on more powerful machines that may be more expensive but will execute job quicker
hence filling the objecting of time and possible cost

5

2.3 Mitigation of interruption risk

During our search for relevant material, we have come across comparable work in all of
the fields of Spot Pricing in the cloud Li et al. (2016). Base on that work, we have looked
into two specific techniques to address the termination risk for workload running on the
AWS Spot Instances.

Authors of Li et al. (2016) have defined checkpointing and migration among the different
types of mitigating the risk of work interruption.

a) Checkpointing

In the overview work of Li et al. (2016), authors are pointing to four different approaches
to the checkpointing,

• adaptive checkpointing

• application-centric scheme

• enhanced incremental adaptive scheme

• hourly scheme

Adaptive checkpointing was also a topic of the research done in Jangjaimon and Tz-
eng (2015). Authors used adjusted Markov Model (AMM) and implemented multi-level
checkpointing for multithreaded applications. In their conclusion, authors state that ad-
aptive checkpointing brings lower checkpoint overhead and may reduce the overall cost
of the job run.

Hourly based checkpointing was one of the components of the bigger solution provided
in Voorsluys and Buyya (2012).
In their work, authors claim that the use of hourly checkpointing guarantees that only
used time for the processing is paid.

Authors of Nicolae and Cappello (2013) have presented checkpointing technique based
on the incremental snapshot of a single disk image instead of a whole virtual machine,
with their solution the dedicated repository is used.
Authors have concluded that disk image checkpointing results in a reduction of check-
pointing downtime.

The exciting approach was also presented in the Neto et al. (2018). Authors have decided
to use price prediction techniques to predict interruption and based on that prediction
to set up checkpointing intervals. During the research, historical data of 6 months have
been used to predict price changes in 7 days period.

b) Migration

Migration can be understood as a different type of checkpointing, like in work of Nicolae
and Cappello (2013) the snapshot is taken, in this case of the whole instance and then
used to resume work on another instance.

6

Authors of Voorsluys and Buyya (2012) have incorporated the migration of persistent
VM State to their reliable provisioning solution; in their case, the snapshot is used to
lease new instance under new biding terms.

The migration framework was described in the Huang et al. (2017). Authors created a
framework that could be used to migrate virtual machines based on KVM. Their solution
provides four modules

• performance migration

• geolocation migration

• encrypted migration

• random migration

Despite work being interesting is very unlikely that it could be easily adapted to the
Amazon spot instance market.

Another way of performing migration mentioned in Li et al. (2016) is using nested vir-
tualisation as a means to have greater control over the nested virtual machine and then
migrate it if there is a risk of the host being interrupted, unfortunately, this solution
currently would not be possible on AWS since Amazon EC2 Instances are not supporting
nested virtualisation.

c) Other mitigation techniques

Apart one of the most popular methods described in previous point authors of full re-
view Li et al. (2016) has taken note of other techniques mentioned in professional literature
like :

• Duplication and redundancy

• Lineage-based recovery

• Stop and redo model

• Service Scaling Down

• Hybrid spot instance

Purpose of this section in the literature review is to give an overall overview of current
techniques of mitigation the risk of service interruption.

Each of the mentioned techniques has its benefits but also costs.

Checkpointing and migration might have a cost of extra overhead due to the need for
extra storage needed to store a snapshot of current work.

Duplication and redundancy would require additional computing power in order to
assure that data are duplicated and consistent.

7

Nested virtualisation or hybrid spot instances would required change in a way how
current services are provided by Amazon, while those changes could benefit the cloud
consumer, it would be very likely against the business interest of cloud provider.

3 Methodology and Design

3.1 Case Scenario

For this research, we assume a scenario where IT Service Provider is responsible for
providing a business-critical batch processing and ERP application for European Finan-
cial Institution with agreed Availability of the service on the level of 99.9%

The IT Service Provider and European Financial Institution has agreed upon a project
to run the batch processing application using only AWS Spot Instances for the cost-
effectiveness

3.1.1 Application Business Critically

The criticality matrix determines the application critically level with three main aspects

• Availability - Impact if information Availability is affected

• Integrity - Impact if information Integrity is affected

• Confidentiality - Information Confidentiality Level

Figure 1: Business Application Critically Matrix

As seen above, the application is highly critical to the core business of the European
Financial Institution.

If Availability of the system and therefore, the application is compromised, the ability of
proper institution operations is degraded and therefore could lead to substantial losses in
both profits and reputation.

In case when the integrity of the information in the system is affected; this could lead
to substantial losses in profits as well as could be a risk to the confidentiality of the
information.

8

Since system holds amounts of confidential information, including information that needs
to be secured under the GDPR, in case of breach of confidentiality Institution could face
legal actions based on GDPR provisions as well as the loss of customer trust, that could
eventually lead to the loss of profits and the reputation.

3.1.2 Service Level Requirements (SLR)

Based on critically matrix following service level requirements have been presented

• Application Criticality : High

• AWS Region : eu-central-1

• Cummlative Downtime including maintance 3.65 days per year

• Mean Time to Respond : 2 minutes

• Mean Time to Resolve : 15 minutes

Based on the above Service Level Agreement has been agreed with Service Level of three
nines (99.9%)

Service Level will be measured by using monitoring system site24x7, where the system
will measure Availability of the system by checking HTTP response codes and general
Availability of the host.

3.2 Project Development Steps

In this section, we are discussing our approach and steps taken during the development
stage required for this research.

3.2.1 High-Level Project Plan

In this section, we presented in the form of bullet points the main milestones of this
research project.

• Development of the Spot Instance Management System

• Deployment of SuiteCRM Application simulating the critical business application
as spot instance controlled by the SiMS and uncontrolled

• Deployment of Site24x7 Monitoring system and configuration of availability mon-
itoring of Control System (not manged by SiMS) and system under the control of
the SiMS

• Execution of Interruption simulation of the control system

• Execution of the sudden price change to force SiMS to act in case that price in the
real world is stable for a number of days

9

3.2.2 Limitations

During the development of the SiMS, we have encountered some of the limitations that
we have not been aware during the project proposal and design phase.

Lambda Function Limitation Lambda functions where one of the key elements to be
used by the SiMS system to be fully serverless, unfortunately, certain limitations such as
duration of the lambda function execution and filesystem restrictions forced us to change
the use of Lambda to be just a trigger for tasks executed now as docker containers using
AWS Fargate

Computation Time Data Analysis module is the one requiring a lot of computation
power due to the size of of the dataset and combination of all instances types and number
of all availability zones. To save computing time and costs associated with it, we have
decided to limit data analysis and machine learning to only EU-CENTRAL-1 region and
three selected types of instances c5.xlarge, t3.micro and t3.medium.

3.2.3 Spot Instance Management System (SiMS)

We have started our project by developing the Spot Instance Management System com-
posed of four main modules

• The Data Collection Module

• The Data Pump Module

• The Data Analysis Module

• The Risk Assessment and Automation module

The prime idea behind the system is to have automated mechanism that with use
of machine learning, can predict the price of the spot instance in next hour and act
accordingly by migrating the affected spot instance to the next availability zone. In case
when all availability zones would be labelled as High Risk, System will redeploy spot
instance with new bid price larger by 20%

In the worst-case scenario, where there would be no spare capacity to spin the machine,
the system would run the on-demand machine only for the time while the capacity is not
available.

3.2.4 SLA Monitoring System

To gather availability data and later use this data for SLA calculation, we have configured
a cloud-based monitoring system site24x7. This system, compared to others like OP5,
can generate SLA reports for custom periods and not just for a month. It is offered in
SaaS model, therefore, saving time and effort required for setting up the system.

10

3.3 SiMS: Data Collection Module

The Data Collection Module is responsible for downloading and aggregating historical
data for EC2 Spot prices.

The process is started by the Time Event configured in AWS Cloudwatch. This time
event will execute the Lambda Function responsible for triggering the AWS Fargate Task
definition.

During the task execution, the docker image is pulled from the AWS Docker registry and
started with entry point pointing to the data collection script written in Powershell.

During the script execution, the module is running a query using AWS Powershell modules
and is collecting full last month of historical data of all regions and all instance types,
during the collection this data is stored in the memory.

One the collection is completed, the content of the memory is saved to a CSV File called
master.csv and saved to S3 Bucket sims-data-collection/Landing Zone.

In the last step, the trigger file is saved in trigger bucket on S3 to allow Data Pump
Lambda function to execute data pump tasks.

Figure 2: Data Collection Module

The module has been entirely developed in the Powershell using AWS Powershell modules
and build using docker file and therefore delivered as a docker image.

11

Docker image is scheduled to be deployed on AWS Fargate service in EU-WEST-1 Region
(Ireland) using Lambda Function and Cloud watch time event.

3.4 SIMS: Data Pump Module

The Data Pump module is small module mainly responsible for moving collected data
from S3 Landing zone Bucket to S3 Staging Zone bucket after data collection, where later
this data is used by Data Analysis Module for training the machine learning algorithm.

Launch mechanism is almost the same as in case of the data collector, in case of data
pump, S3 put file event is triggering the Lambda function executing data pump task
definition in AWS Fargate.

Once the docker container is started, the PowerShell script responsible for moving data
from the landing zone to the staging zone is executed.

During the execution, the master.csv file is fetched from data collection landing zone s3
bucket and moved to stage zone in the same data collection bucket. This operation is
required to avoid any potential issues if the master file was presented in a landing zone
while the data collection is running.

Once the execution is completed, the trigger file is saved in trigger s3 bucket to allow the
data analysis module to start.

The Data pump is executed by Lambda Function triggered by trigger file saved by the
Data Collection module in S3 Triggers bucket which causes S3 New file Cloud watch
event

Figure 3: Data Pump Module

The module has been entirely developed in the Powershell using AWS Powershell modules

12

and build using docker file and therefore delivered as a docker image.

3.5 SIMS: Data Analysis Module

The Data Analysis module is one of two key components of the SiMS system. Data Ana-
lysis module is responsible for analyzing historical data gathered by the data collection
module and then is responsible for applying the machine learning model based on random
forest regression

Data Analysis execution is triggered by the trigger file created after execution of the data
pump. Execution is started via Amazon Lambda function that is responsible for starting
the AWS Fargate Task.

In the Fargate task definition, three docker containers are defined. Each container is
responsible for data analysis for configured availability zone. Since we have focused our
efforts on eu-central-1 region, therefore docker containers are running the data analysis
for Availability zones eu-central-1, eu-central-1b and eu-central-1c simultaneously.

During the Data analysis process data set is downloaded from the S3 bucket and analyzed
using random forest regression, results in the form of price predictions for the next 48
hours are saved into DynamoDB Table.

Figure 4: Data Analysis Module

The module has been entirely developed in the Python and build using docker file and
therefore delivered as a docker image.

13

3.6 SIMS: Risk and Automation Module

The risk and automation module is one of two key modules of the SiMS solution. The
module consists of two primary submodules, namely the risk engine and the automation
engine.

This module is responsible for risk analysis of the instance interruption in each of availab-
ility zones in the configured region and next for taking the appropriate actions concerning
the level of the risk.

All components of the module have been developed in Python and are delivered as one
risk and automation docker container.

3.6.1 The Risk Engine

The risk engine is the part of the risk and automation module responsible for the cal-
culation of the risk of instance interruption in each of the availability zones. The risk
is calculated based on the maximum bid price, current price, predicted price and the
threshold for each of the risks level LOW, MEDIUM, HIGH.

The risk is calculated for each of the availability zones in a given region with the following
formula:

if Current price (Cp) is smaller than 55% of the Maximum Bid price (Mb) and Prediction
price(Pp) is smaller than Maximum bid (Mb) the risk is calculated as LOW

Lr = Cp <

(
55

100
x Mb

)
AND (Pp < Mb) (1)

If Current Price (Cp) is larger than 55% and lower or equal 80% of Maximum bid price
(Mb) and Prediction price (Pp) is smaller than Maximum bid (Mb) the risk is calculated
as MEDIUM

Mr = Cp >

(
55

100
x Mb

)
AND Cp <

(
8

10
x Mb

)
AND (Pp < Mb) (2)

If the current price (Cp) is larger than 80% of the maximum bid price (Mb) and prediction
price is smaller than the maximum bid price risk is calculated as High

Hr = Cp >

(
8

10
x Mb

)
AND (Pp < Mb) (3)

If the case when prediction price (Pp) is larger than the maximum bid price risk is
calculated as High.

Hr = Pp > Mb (4)

14

3.6.2 The Automation Engine

The Automation Engine is responsible for the interruption mitigation actions based on
the risk assessment for every availability zone in the region.

During the execution, the Automation Engine is comparing interaction risk level of each
of the managed spot instances in their respective location to the risk assessment of other
two availability zones. In case that current risk is assessed as LOW, there is no action
taken.

In case that current risk is Medium and there is at least one Availability zone with LOW-
Risk assessment than migration operation is starting to that zone. If there is no LOW
zone, there is no action taken.

In case that current risk is HIGH and there is LOW or Medium Zone available than the
migration process will move the instance to the lowest risk zone.

In case if the risk is HIGH in all availability zones, the machine is redeployed by auto-
mation engine to the same availability zone but with 20% higher maximum bid price.

Figure 5: Risk and Automation Module

3.7 Simulation

For the simulation purposes, we have created a python script that during execution,
would execute the following steps :

• Change Predicted price for next full hour to one of the values selected randomly
on every execution (OnDemand price, predicted price, maximum bid price, current
price, mean of all above)

15

• Execute Risk Recalculation

After risk is recalculated, we would rely on the automation module to evaluate and
execute necessary actions against SimS Manged instance.

For our not managed instance (the control instance) script will execute the following
steps:

• Evaluate if Maximum bid price is lower than the predicted price

• If the predicted price is higher, terminate instance after 2 minutes

At this stage, the script would simulate two minutes notification given by Amazon. After
two minutes, the instance is terminated.

Based on our first experiment (described in the next section), we have updated simulation
script to simulate the engineer acting on the incident created by the monitoring system.

We have calculated that manual intervention required to bring the system back on-line
would take approx. Four minutes and 45 seconds.

Therefore part of the script simulating the engineering work is taking to account two
essential values :

• The time between interruption and incident in the Monitoring system

• The time required to bring system on-line

4 Implementation

This chapter is describing our implementation of the SimS Systems and all inputs and
outputs of each model. We have started our implementation with setup of the cloud
environment using AWS Cloud in region eu-west -1 (Ireland)

4.1 Cloud Setup

4.1.1 Simple Storage Service

Data Collection and Data Analysis are heavily depending on the CSV files generated by
each of the modules. Those files need to be stored in accessible and reliable storage;
therefore, we have configured an S3 bucket called SIMS-Data-Collection.

The data collection bucket contains three folders:

• Landing Zone: Where CSV File generated by Data Collection is stored

• Staging Store : Where thanks to data pump files are moved from the Landing
zone and later accessed by the Data Analysis Module

16

• Trigers: Where trigger files at the end of the execution of data collection and data
pump are stored.

Figure 6: Data Collection S3 Bucket

4.1.2 DynamoDB

The DynamoDB is a crucial component used mainly by risk and automation module and
as a data analysis outputs.

• Project: Table containing predicted Spot price

• Risk: Table containing calculated risk for each availability zone and used type of
spot instances

• Instances: Table containing information such as current price, bid price, OS Type
and Instance ID of available or past instances

Figure 7: DynamoDB Tables

17

4.1.3 AWS Elastic Container Service - Fargate

Initially, the SimS was planned as completely serverless solutions, and unfortunately, due
to limitations we described in the previous chapter, we had to adapt to semi-serverless
by using AWS Fargate.

The Fargate Service is the docker container execution service not requiring underlying
docker infrastructure. We have defined tasks for each of the modules using the build-in
task definition.

Following tasks definitions have been configured:

• SimS Data Collection

• SimS Data Analysis

• SimS Automation

• SimS Risk Analysis

• SimS Simulation

Figure 8: Fargate Task Definitions

In the scope of AWS ECS, we have also configured Docker Image Repositire using AWS
Elastic Container Registry. The registry was automatically updated via CI/CD pipeline
configured in GITLAB.

Following repositories have been configured :

18

• data-collector

• data-analysis

• data-pump

• risk-and-automation

Figure 9: Amazon Docker Repositories

4.1.4 AWS Lambda

As mentioned in previous sections, we have planned for SimS to be based entirely on
AWS Lambda functions, but due to its limitations, we had to adopt a new approach.
Instead of relying on lambda to execute full code, we have decided to use lambda to
execute triggering python code and execute AWS Fargate Tasks on a defined schedule.

We have configured the following functions:

• SIMS Start dataCollection

• SIMS-Start DataPump

• SIMS Risk-Analysis

• SIMS Data-Analysis

• SIMS Simulation

Figure 10: Lambda Functions

19

4.1.5 AWS Cloud Watch

AWS Cloud Watch triggering rules have been configured in conjunction with the AWS
Lambda. We required a time trigger and S3 file trigger to be configured to execute
required lambda functions. We have configured four time-triggers and two (using lambda
interface) file events.

4.1.6 Route 53 DNS and Elastic IP

As part of the implementation, we have registered a domain name EIF.SYSTEMS using
the amazon DNS service Route53 and Elastic IPs.

In DNS we have pointed the A records of DNS Server to our two test subjects (described
below).

• ba.eif.systems - for our test subject fully controlled by our solution.

• control.eif.systems - for our control machine, a machine that is not controlled by
our solution system

4.2 Test subject implementation

In order to have separate infrastructures between the SIMS system and test subjects,
we have used the eu-central-1 region for the two test machines running CRM software
simulating business-critical application.

We have deployed two spot instances using instance type t3.medium and SuitCRM
Amazon image from Amazon Marketplace.

Each of the test subjects had a list of mandatory tags associated with it to tell SimS
system which of the two instances is the control instance and which is the one managed
by the SimS System

Figure 11: Test Machines running in eu-central-1

20

4.3 The Monitoring System

To gather availability data, we needed to find a monitoring system that would be inde-
pendent of our solution and would provide SLA type reports and SLA Configuration.

We have found SaaS offering of Site24x7 brought by Zoho Corporation.

In the site24x7, we have configured monitoring for the websites that are checking in one
minute’s intervals connectivity to HTTP ports of defined targets, its response time, DNS
response time and general availability by ping.

Figure 12: Site24x7 Monitoring System Dashboard

4.4 SimS System Inputs and Outputs

4.4.1 Data Collection Module

• Input: JSON Data gathered from Amazon

• Output : master.csv saved to S3 Bucket

4.4.2 Data Pump

• Input: master.csv from Data Collection Landing Zone S3

• Output: master.csv in Data Colelction Staging Store S3

4.4.3 Data Analysis

• Input: Master.csv file from Data Collection Staging Store S3

• Output: data in Project DynamoDB Table

4.4.4 Risk Engine

• Input: Prediction Price from Project Table, current spot price from Amazon and
Maximum bid price from currently running instances

• Output: Risk Levels saved in Risk DynamoDB Data and Instance information
saved to Instances Table in DynamoDB

21

4.4.5 Automation Engine

Input Risk Level from Risk dynamo DB table, Instance information from Instances
DynamoDB

Output During the migration execution, the following outputs are generated :

• New Temporary Amazon Image (AMI) created based on the current instance

• New Instance deployed to target availability zone based on the created image

• Old Instance Data removal from DynamoDB Instances Table.

Figure 13: Instance Migration Process

5 Evaluation

5.1 Interuption of Control System

• Scenario: Classic Termination of EC2 Spot Instance

• Actors: Simulator

• Desired Outcome: System Terminated and restored

5.1.1 Test Steps

Simulation script to terminate EC2 Instance with 2 minutes delay simulating Amazon
Notification grace period and later restoring the service simulating the system engineer.

22

5.1.2 Results

Figure 14: Root Cause Analysis Report from Monitoring System

Figure 15: Outage reports of control system

The control system during the experiment has been terminated a number of times causing
reported outage and unavailability of the application.

23

5.2 SimS Automated Actions LOW Risk

• Scenario: Risk Level: LOW LOW LOW

• Actors: SimS System

• Desired Outcome: No migration initiated

5.2.1 Test Steps

Automated Execution of Automation Module

5.2.2 Results

Figure 16: Cloud Watch Log representing No Actions

Expected behaviour, if all availability zones are LOW risk, is not to take action. As
presented above, the automation module evaluated the risk and did not perform any
actions.

5.3 SimS Automated Actions High Risk

• Scenario: Risk Level: High High High

• Actors: SimS System

• Desired Outcome: Instance Redeployed with higher bid price, no system downtime
reported by monitoring system

5.3.1 Test Steps

During the execution, the Automation Module will evaluate risk in all availability zone
and based on the result will move the instance to another availability zone or redeploy
to current with the higher bid price.

24

5.3.2 Results

Figure 17: Redeployment of Instance with new Bid Price

In this scenario, The Sims System detected that all availability zones in the region are
High Risk. In this situation, the system is designed to redeploy the instance with a
higher bid price to mitigate the high risk of interruption and therefore to maintain desired
availability level by setting up (migrating new instance) and reassigning the elastic IP
from Risky instance to newly deployed one, therefore allowing traffic to reach the system
without any issue.

Figure 18: Response time monitoring of the System

25

Figure 19: No outage reported by the system

Monitoring system did not report system outage, the only indication of migration is a
short spike in response time

5.4 Five Days SLA Monitoring

• Scenario: 5 Days SLA Monitoring

• Desired Outcome: SLA Level of 99.9%

5.4.1 Test Steps

Simulation script has been scheduled and running in four hours intervals affecting the
classic EC2 Spot instance as well as risk analysis data for the SimS System. Due to
random price selection, exact time and date of the next interruption were not known.

5.4.2 Results

Figure 20: 5 Days SLA Report for Control System

26

Figure 21: 5 Days availability report for Control System

Figure 22: 5 Days SLA Report for SiMS Managed System

27

Figure 23: 5 Days availability report for SimS Managed System

5.5 Discussion

The results are showing that usage of a proactive system that is managing spot instances
can prove to be valuable if our main goals are low costs and availability of the system
using the spot instances.

We can see that if automation is designed to act while a risky instance is still running,
automated switch over is almost seamless but at the price of a drop in performance during
the migration of the instance.

For applications that are very response time-sensitive this could be still the issue, as well
as for the application where data is written continuously as during the migration the
checkpoint (image) of the machine is created and any data written in the time between
image creation and switch over of the traffic to the newly deployed machine would be
lost.

The question in here would be the trade-off, in case of classic spot instance customer can
face unexpected termination and if they do not have any solution that would periodically
save the data from that instance while running they could face complete data loss in
compering to few seconds of loss in case of SimS Managed System, therefore automated
system as one presented in this research can significantly expand possibilities of the
application of spot instances as well as can help with reduction of operational costs

28

The Spot Instance Management system for its risk analysis is using Random Forest
regression-based machine learning model, while this model during our research proved
sufficient, the model itself was not a part of in-depth testing and therefore could be
not as accurate as we could hope. Necessary comparison testing showed us that price
predicted are the same as current prices or difference in price is minimal.

Our prediction machine learning model requires a lot of computing power, to calculate
price predictions for 150 types of EC2 spot instances for every availability zone in EU
Region would require over 26 hours running in 4CPU docker containers provided by the
Amazon. Even with those limitations, we have been able to prove that smart, proactive
system that can move around spot instances based on the predicted price and therefore
risk calculated from it can be effective in achieving not only 99.9% availability but even
100%.

In our research question we are asking How can we assure SLA Level of 99.9% for service
running on EC2 Spot instance, as mentioned above and shown in the evidence The SimS
System is able to effectively managed spot instances and keep up the availability on
the desired level and achieve required three nines SLA thanks to its Risk assessment
mechanism and proactive actions before any terminate can happen.

With automatic bid rise in case of High risk in all availability zone at the current stage,
this could lead to higher than desired bid price and therefore not always keeping cost-
effectiveness.

6 Conclusion and Future Work

In our research question, we are asking How can we assure SLA Level of 99.9% for service
running, In our paper, we show the Spot instance Management system in principle can
manage spot instances effectively to keep up availability level on the 99.9%

A system like SimS to be effective requires a good and reliable machine learning module
to predict spot price in next hour accurately. In hour five-day test we have simulated
number of interruptions of classic ec2 spot instance, and we put this together with the
change of the risk level in availability zones to force the SimS system to act and migrate
affected machine if are located in a high availability zone. Migration is using image
creation (checkpointing).

Currently, due to the limitation in computing power and desire to run the system as
serverless as possible the support for more just a subset of instance is limited by the
computation power of AWS Fargate docker containers.

Future researchers could take this solution step further by selecting more sophisticated
machine learning model that would take into account not only the historical data but also
seasonality, and it would perform better, therefore, allowing support for a more significant
number of instances and availability zones.

For limitations regarding potential data loss during the migration process and switch over,
further research could be done in the field of vMotion style migration where performance
nor data is affected.

29

References

Agmon Ben-Yehuda, O., Ben-Yehuda, M., Schuster, A. and Tsafrir, D. (2013). De-
constructing amazon ec2 spot instance pricing, ACM Transactions on Economics and
Computation 1(3): 16.

Amekraz, Z. and Youssef, M. (2016). Prediction of amazon spot price based on
chaos theory using anfis model, Computer Systems and Applications (AICCSA), 2016
IEEE/ACS 13th International Conference of, IEEE, pp. 1–6.

Andrzejak, A., Kondo, D. and Yi, S. (2010). Decision model for cloud computing under
sla constraints.

Arévalos, S., López-Pires, F. and Baran, B. (2016). A comparative evaluation of al-
gorithms for auction-based cloud pricing prediction, 2016 IEEE International Confer-
ence on Cloud Engineering (IC2E), IEEE, pp. 99–108.

Chhetri, M. B., Lumpe, M., Vo, Q. B. and Kowalczyk, R. (2017). On estimating bids for
amazon ec2 spot instances using time series forecasting, Services Computing (SCC),
2017 IEEE International Conference on, IEEE, pp. 44–51.

Huang, K., Gao, X., Zhang, F. and Xiao, J. (2017). Coms: Customer oriented migration
service, 2017 IEEE 10th International Conference on Cloud Computing (CLOUD),
pp. 692–695.

Jangjaimon, I. and Tzeng, N.-F. (2015). Effective cost reduction for elastic clouds under
spot instance pricing through adaptive checkpointing, IEEE Transactions on Com-
puters 64(2): 396–409.

Kumar, D., Baranwal, G., Raza, Z. and Vidyarthi, D. (2017). A survey on spot pricing
in cloud computing, Journal of Network and Systems Management 26.

Li, Z., Kihl, M. and Robertsson, A. (2015). On a feedback control-based mechanism
of bidding for cloud spot service, 2015 IEEE 7th International Conference on Cloud
Computing Technology and Science (CloudCom), pp. 290–297.

Li, Z., Zhang, H., OBrien, L., Jiang, S., Zhou, Y., Kihl, M. and Ranjan, R. (2016). Spot
pricing in the cloud ecosystem: A comparative investigation, Journal of Systems and
Software 114: 1 – 19.
URL: http://www.sciencedirect.com/science/article/pii/S0164121215002332

Neto, J. P. A., Pianto, D. M. and Ralha, C. G. (2018). A prediction approach to define
checkpoint intervals in spot instances, International Conference on Cloud Computing,
Springer, pp. 84–93.

Nicolae, B. and Cappello, F. (2013). Blobcr: Virtual disk based checkpoint-restart for hpc
applications on iaas clouds, Journal of Parallel and Distributed Computing 73(5): 698–
711.

Singh, V. K. and Dutta, K. (2015). Dynamic price prediction for amazon spot in-
stances, 2015 48th Hawaii International Conference on System Sciences (HICSS),
IEEE, pp. 1513–1520.

30

Voorsluys, W. and Buyya, R. (2012). Reliable provisioning of spot instances for compute-
intensive applications, Advanced information networking and applications (aina), 2012
ieee 26th international conference on, IEEE, pp. 542–549.

Wallace, R. M., Turchenko, V., Sheikhalishahi, M., Turchenko, I., Shults, V., Vazquez-
Poletti, J. L. and Grandinetti, L. (2013). Applications of neural-based spot market
prediction for cloud computing, Intelligent Data Acquisition and Advanced Comput-
ing Systems (IDAACS), 2013 IEEE 7th International Conference on, Vol. 2, IEEE,
pp. 710–716.

Zhao, H., Pan, M., Liu, X., Li, X. and Fang, Y. (2015). Exploring fine-grained resource
rental planning in cloud computing, IEEE Transactions on Cloud Computing 3(3): 304–
317.

31

Configuration Manual

MSc Research Project

Cloud Computing

Jerry Danysz

Student ID: 16148690

School of Computing

National College of Ireland

Supervisor: Victor Del Rosal

National College of Ireland

MSc Project Submission Sheet

School of Computing

Student Name:

JERRY DANYSZ

Student ID:

16148690

Programme:

MSc Cloud Computing

Year:

2

Module:

RESEARCH PROJECT

Lecturer:

Victor Del Rosal

Submission Due

Date:

12/08/2019

Project Title:

Spot Instance Management System Configuration Manual

Word Count:2065

 Page Count: 24

I hereby certify that the information contained in this (my submission) is information

pertaining to research I conducted for this project. All information other than my own

contribution will be fully referenced and listed in the relevant bibliography section at the

rear of the project.

ALL internet material must be referenced in the bibliography section. Students are

required to use the Referencing Standard specified in the report template. To use other

author's written or electronic work is illegal (plagiarism) and may result in disciplinary

action.

Signature:

……

Date:

……

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple

copies)

□

Attach a Moodle submission receipt of the online project

submission, to each project (including multiple copies).

□

You must ensure that you retain a HARD COPY of the project, both

for your own reference and in case a project is lost or mislaid. It is not

sufficient to keep a copy on computer.

□

Assignments that are submitted to the Programme Coordinator Office must be placed

into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

1

Configuration Manual

Jerry Danysz

Student ID: 16148690

1 Introduction

1.1 Purpose of this document
This Configuration Manual is based on the NCI Research project requirements described in the Project
Handbook. Main purpose of this document is to describe the required software tools and settings in order to
successfully deploy the Spot instance Management System

1.2 Document Structure

Section Purpose

General Information and Prerequisites This chapter describes general information

and prerequisites needed for the installation

of the system

Development Environment Requirements This chapter describes steps required for

successful setup of development environment

used for development and update of the

solution

Solution Deployment Procedure This chapter describes step by step procedure

of deployment of the SiMS Solution

Validation This chapter describes steps required to

validate successful deployment of the

solution

2 General Information

2.1 Objectives
The main objective of Spot Instance Management System is to implement platform for effective and automatic

management of AWS Spot Instances and to prevent unplanned interruptions of services depending on those

services by usage of machine learning for the prediction of next hour spot price and automation for mitigation

of the high risk of interruption by migration of potentially risky instance to another region where the

interruption of the risk is lower.

2.2 Solution Summary
The Spot Instance Management System solution consists of four separate modules interlinked and acting as
one ecosystem.
The Data Gathering module is responsible for gathering historical Spot price data for past month and saving it
to AWS S3 bucket for later consumption by other modules.

2

The Data Pump module is the storage (s3) management module that is responsible for moving gathered data
to respective folders in S3 Buckets.

The Data Analysis module is responsible for analysing gathered data by application of machine learning
algorithms (Random Forest Regression) and resulting with two days of spot instance pricing per every hour

The Risk and Automation module is responsible for the risk assessment of the availability zones where current
spot instances are residing and if there is a need (high risk) executing automated mitigation actions such as
migration to lower risk zone or redeployment of instance with higher maximum bid price.
Automation module during the migration will also reconfigure additional services such as elastic IP

2.3 Architectural Requirements
In this section we describe base architectural requirement.

2.3.1 Cloud Platform
The Spot Instance Management System is the cloud management platform designed to explicitly manage
Amazon Web Services Spot Instance; therefore, it is required that solution is deployed in Amazon Web Services
Cloud.

2.3.2 Docker Environment
Solution is designed to run independent scripts in Docker containers for each of the modules.
It is required to use Elastic Container Service provided by the Amazon Web Services.
Use of the AWS Faregate is recommended but other offering in scope of ECS such as EC2 Container cluster or
AWS Managed Kubernetes could be also accepted but at this current stage solution was not tested on those
services.

2.3.3 Simple Storage Service (S3)
Simple storage service (S3) provided by the Amazon is required for the data gathering and data pump
operations and are used to store trigger files therefore properly configured S3 Buckets have to be deployed.

2.3.4 Cloud Watch Monitoring
Time events configure in the Cloud Watch service provided by Amazon are required in order to trigger and
execute different modules operations as given time.
Output logs of the each of the operations are automatically stored in Log Trail of Cloud Watch.

2.3.5 AWS Lambda
AWS Lambda functions written in Python 3.6/3.7 are responsible for executing AWS Faregate tasks definitions
connected to each of the solution’s modules.

2.4 Required Skills
In this guide we assume that operator following this guide possess all basic system administration skills
including basic knowledge of usage of git commands and basic knowledge of Amazon Web Services.

3

3 Development Environment Requirements

3.1 Code Repository

3.1.1 GIT LAB Access

In order to have access to the developed code you need first request access to the Spot Management System
group in GIT LAB. To request access please follow steps outlined below:

1 Go to
https://Gitlab.com

and login with
your existing

account or register
for the new

account.

2. Once Logged on,
select Groups and

Explore groups

3. In the Groups
screen type in

Search box: Spot
Management

System

4. Click on the

group and in group
screen click on
request access

https://gitlab.com/

4

5. Once Access is
given you should
see list of the
projects

3.1.2 Downloading Code from GIT LAB
In order to download code for the GitLab user should have GitLab installed on his PC.
If its Windows PC than please download GITBASH from https://gitforwindows.org/
In case its Linux or Mac please use build in package manager to install the GIT software.

Please follow GIT LAB Documentation for configuring the SSH Keys
https://docs.gitlab.com/ee/gitlab-basics/create-your-ssh-keys.html

Once the GIT has been configured on the PC and GITLAB Account configured with SSH Keys of the user
You can now clone (download required repositories)

Run following commands in the Windows PowerShell or Linux / Mac Terminal to get all required code
packages.

Data Collector:
git clone git@gitlab.com:sport-management-system/data-collector.git

Data Pump
git clone git@gitlab.com:sport-management-system/data-pump.git

Data Analysis
git clone git@gitlab.com:sport-management-system/data-analysis.git

Risk and Automation
git clone git@gitlab.com:sport-management-system/risk-and-automation.git

Lambda Triggers
git@gitlab.com:sport-management-system/lambda-triggers.git

https://gitforwindows.org/
https://docs.gitlab.com/ee/gitlab-basics/create-your-ssh-keys.html
mailto:git@gitlab.com:sport-management-system/data-collector.git

5

3.2 Required Programming Languages

3.2.1 PowerShell Core v 6.1
PowerShell core is available for platforms (Windows, Linux, OSX).
For this project following PowerShell modules are required:

• AWSPowerShell.NetCore == 3.3.390.0

3.2.2 Python v 3.6 or above
Install Python 3.6 or above using Anaconda 3 Distribution.
Once installed install following required packages:

• numpy==1.16.4

• pandas==0.24.2

• boto3==1.9.111

• python_dateutil==2.8.0

• joblib==0.13.2

• scikit_learn==0.20.3

• requests==2.21.0

3.2.3 Update to wrapper.ps1 in Data Collector
Before progressing to creation of docker images, please make sure to update script wrapper.ps1
In data-collector and data-pump repositories

In both scripts please update line 2 and replace Access Key and Secret Key with keys configured for your
Amazon Account

Initialize-AWSDefaultConfiguration -AccessKey <update> -SecretKey <update> -

Region eu-central-1

3.3 Creating Docker Images
To create docker images please make sure that you have installed latest docker environment on your
development machine.

In order to create the docker image of each of the modules please do following:

1. Navigate to root folder of each module (i.e. /opt/scripts/data-analysis)
2. Run following command: docker build .

Once docker image is created you can push it to docker repository of your choice (we recommend using AWS
ECR (elastic container registry)

6

4 SimS Deployment Procedure

4.1.1 AWS S3 Bucket Configuration

Login to AWS Console with your username and
password

In AWS management console Find Service S3

In S3 Console create bucket sims-data-
collection by clicking on blue button create
bucket,

Enter the sims-data-collection buck and create
following folders:

• Landing zone

• Staging store

• trigers

7

4.1.2 Amazon Elastic Container Registry Setup

Login to AWS Console with your
username and password

In AWS management console Find
Service ECR

In ECR website click Get-started

Select name of the repository and
press create repository button
please create separate repository
for each of the modules:
- Data-Collector
- Data-Analysis
- Data-Pump
- Risk-and-automation

Once the container registry is completed please use command
Docker login and docker push in order to push docker images

8

4.1.3 Create AWS IAM Role for Faregate Execution
In our example we have given to our role full administrative access to services that we required,
This is not recommended and if possible, you should limit this to only actions that the role really requires.

Login to AWS Console with your
username and password

In AWS management console Find
Service IAM

In Create Role screen select following
services that will use the role:

• EC2

• Lambda

In permission screen select following
Policies:

• AmazonEC2FullAccess

• AmazonS3FullAccess

• AmazonDynamoDBFullAccess

• AmazonECSTaskExecutionPolicy

In Tags Screen Click Next

In Review Screen Type ecsExeutionRole
in role name field and click create role.

9

4.1.4 Setup AWS Faregate Cluster

Login to AWS Console with your
username and password

On Faregate Control panel, click
Clusters under Amazon ECS and press
blue button Create Cluster

In the Create Cluster screen at step one
selects Networking Only and at step2
name the cluster Sims-cluster (in the
cluster name field) and tick Create VPC

4.1.5 Setup AWS Faregate Task Definition
In the task definition section, we need to create task definition for each of the core modules of the SiMS
Following the same procedure for each

10

Login to AWS Console with your
username and password

On Faregate Control panel, click
Task Definitions under Amazon ECS
and press blue button Create new
task definition.

In the Create new Task definition
screen select FARGATE and click
next Step (repeat this and below
steps for each of the tasks
mentioned in next table)

Scroll down and select button
Configure via JSON.
Paste content of the table below

Once Configuration is completed
you should have number of tasks
created

11

Task definition:

Please replace mark red IAM and Image sections of each json and replace with your own:

Data Collection

Data Pump

{
"ipcMode": null,
"executionRoleArn":
"arn:aws:iam::897636107041:role/ecsTaskExecutionRole",

"containerDefinitions": [
{
"dnsSearchDomains": null,
"logConfiguration": {
"logDriver": "awslogs",
"secretOptions": null,
"options": {
"awslogs-group": "/ecs/SIMS_Data-Collector",
"awslogs-region": "eu-west-1",
"awslogs-stream-prefix": "ecs"

}
},
"entryPoint": [
"pwsh -c ./get-data-csv.ps1"
],
"portMappings": [
{
"hostPort": 22,
"protocol": "tcp",
"containerPort": 22
}
],
"command": [],
"linuxParameters": null,

"cpu": 0,
"environment": [],
"resourceRequirements": null,
"ulimits": null,
"dnsServers": null,

"mountPoints": [],
"workingDirectory": null,
"secrets": null,
"dockerSecurityOptions": null,
"memory": null,
"memoryReservation": 4096,
"volumesFrom": [],
"stopTimeout": null,
"image": "897636107041.dkr.ecr.eu-west-

1.amazonaws.com/nci_sims/data-collector",

"startTimeout": null,
"dependsOn": null,
"disableNetworking": null,
"interactive": null,
"healthCheck": null,
"essential": true,
"links": [],
"hostname": null,
"extraHosts": null,
"pseudoTerminal": null,

"user": null,
"readonlyRootFilesystem": null,
"dockerLabels": {
"Stage": "FAT",
"System": "SIMS"
},
"systemControls": null,
"privileged": null,
"name": "SIMS_DC"
}
],
"placementConstraints": [],
"memory": "4096",
"taskRoleArn": null,
"compatibilities": [

{
 "ipcMode": null,
 "executionRoleArn":

"arn:aws:iam::897636107041:role/ecsTaskExecutionRole",

 "containerDefinitions": [
 {
 "dnsSearchDomains": null,
 "logConfiguration": {
 "logDriver": "awslogs",
 "secretOptions": null,
 "options": {
 "awslogs-group": "/ecs/Data_Pump",
 "awslogs-region": "eu-west-1",
 "awslogs-stream-prefix": "ecs"

 }
 },
 "entryPoint": [
 "pwsh"
],
 "portMappings": [],
 "command": [
 "./move-to-stage.ps1"
],
 "linuxParameters": null,
 "cpu": 0,
 "environment": [],
 "resourceRequirements": null,
 "ulimits": null,

 "dnsServers": null,
 "mountPoints": [],
 "workingDirectory": null,
 "secrets": null,
 "dockerSecurityOptions": null,

 "memory": null,
 "memoryReservation": null,
 "volumesFrom": [],
 "stopTimeout": null,
 "image": "897636107041.dkr.ecr.eu-west-
1.amazonaws.com/nci_sims/data-pump",
 "startTimeout": null,
 "dependsOn": null,
 "disableNetworking": null,
 "interactive": null,
 "healthCheck": null,
 "essential": true,
 "links": null,
 "hostname": null,
 "extraHosts": null,
 "pseudoTerminal": null,
 "user": null,
 "readonlyRootFilesystem": null,
 "dockerLabels": {
 "Project": "SIMS"

 },
 "systemControls": null,
 "privileged": null,
 "name": "data-pump"
 }
],
 "placementConstraints": [],
 "memory": "4096",
 "taskRoleArn":
"arn:aws:iam::897636107041:role/ecsTaskExecutionRole",
 "compatibilities": [
 "EC2",
 "FARGATE"
],
 "taskDefinitionArn": "arn:aws:ecs:eu-west-1:897636107041:task-

12

"EC2",
"FARGATE"

],
"taskDefinitionArn": "arn:aws:ecs:eu-west-1:897636107041:task-
definition/SIMS_Data-Collector:1",
"family": "SIMS_Data-Collector",
"requiresAttributes": [
{
"targetId": null,
"targetType": null,
"value": null,
"name": "ecs.capability.execution-role-ecr-pull"
},
{
"targetId": null,
"targetType": null,
"value": null,
"name": "com.amazonaws.ecs.capability.docker-remote-api.1.18"
},
{
"targetId": null,

"targetType": null,
"value": null,
"name": "ecs.capability.task-eni"
},
{
"targetId": null,
"targetType": null,
"value": null,
"name": "com.amazonaws.ecs.capability.ecr-auth"
},
{
"targetId": null,
"targetType": null,
"value": null,
"name": "ecs.capability.execution-role-awslogs"
},
{
"targetId": null,
"targetType": null,
"value": null,

"name": "com.amazonaws.ecs.capability.logging-driver.awslogs"
},

{
"targetId": null,
"targetType": null,
"value": null,
"name": "com.amazonaws.ecs.capability.docker-remote-api.1.21"
},
{
"targetId": null,
"targetType": null,
"value": null,
"name": "com.amazonaws.ecs.capability.docker-remote-api.1.19"
}
],
"pidMode": null,
"requiresCompatibilities": [
"FARGATE"
],

"networkMode": "awsvpc",
"cpu": "1024",
"revision": 1,
"status": "ACTIVE",
"proxyConfiguration": null,
"volumes": []
}

definition/Data_Pump:2",
 "family": "Data_Pump",

 "requiresAttributes": [
 {
 "targetId": null,
 "targetType": null,
 "value": null,
 "name": "ecs.capability.execution-role-ecr-pull"
 },
 {
 "targetId": null,
 "targetType": null,
 "value": null,
 "name": "com.amazonaws.ecs.capability.docker-remote-
api.1.18"
 },
 {
 "targetId": null,
 "targetType": null,
 "value": null,
 "name": "ecs.capability.task-eni"

 },
 {
 "targetId": null,
 "targetType": null,
 "value": null,
 "name": "com.amazonaws.ecs.capability.ecr-auth"
 },
 {
 "targetId": null,
 "targetType": null,
 "value": null,
 "name": "com.amazonaws.ecs.capability.task-iam-role"
 },
 {
 "targetId": null,
 "targetType": null,
 "value": null,
 "name": "ecs.capability.execution-role-awslogs"
 },
 {

 "targetId": null,
 "targetType": null,

 "value": null,
 "name": "com.amazonaws.ecs.capability.logging-
driver.awslogs"
 },
 {
 "targetId": null,
 "targetType": null,
 "value": null,
 "name": "com.amazonaws.ecs.capability.docker-remote-
api.1.19"
 }
],
 "pidMode": null,
 "requiresCompatibilities": [
 "FARGATE"
],
 "networkMode": "awsvpc",

 "cpu": "1024",
 "revision": 2,
 "status": "ACTIVE",
 "proxyConfiguration": null,
 "volumes": []
}

Data Analysis Automation
{
 "ipcMode": null,
 "executionRoleArn":

"arn:aws:iam::897636107041:role/ecsTaskExecutionRole",

{
 "ipcMode": null,
 "executionRoleArn":
"arn:aws:iam::897636107041:role/ecsTaskExecutionRole",

13

 "containerDefinitions": [
 {

 "dnsSearchDomains": null,
 "logConfiguration": {
 "logDriver": "awslogs",
 "secretOptions": null,
 "options": {
 "awslogs-group": "/ecs/SiMS_Data-Analysis",
 "awslogs-region": "eu-west-1",
 "awslogs-stream-prefix": "ecs"
 }
 },
 "entryPoint": [
 "python3",
 "spot-predict.py",
 "eu-central-1a"
],
 "portMappings": [],
 "command": [],
 "linuxParameters": null,
 "cpu": 0,

 "environment": [],
 "resourceRequirements": null,
 "ulimits": null,
 "dnsServers": null,
 "mountPoints": [],
 "workingDirectory": "/opt/data-analysis",
 "secrets": null,
 "dockerSecurityOptions": null,
 "memory": null,
 "memoryReservation": null,
 "volumesFrom": [],
 "stopTimeout": null,
 "image": "897636107041.dkr.ecr.eu-west-
1.amazonaws.com/nci_sims/data-analysis",
 "startTimeout": null,
 "dependsOn": null,
 "disableNetworking": null,
 "interactive": null,
 "healthCheck": null,
 "essential": true,

 "links": null,
 "hostname": null,

 "extraHosts": null,
 "pseudoTerminal": null,
 "user": null,
 "readonlyRootFilesystem": null,
 "dockerLabels": {
 "Name": "DA-Central"
 },
 "systemControls": null,
 "privileged": null,
 "name": "SIMS_DA-Central-1a"
 },
 {
 "dnsSearchDomains": null,
 "logConfiguration": {
 "logDriver": "awslogs",
 "secretOptions": null,
 "options": {

 "awslogs-group": "/ecs/SiMS_Data-Analysis",
 "awslogs-region": "eu-west-1",
 "awslogs-stream-prefix": "ecs"
 }
 },
 "entryPoint": [
 "python3",
 "spot-predict.py",
 "eu-central-1b"
],
 "portMappings": [],
 "command": [
 ""
],
 "linuxParameters": null,
 "cpu": 0,

 "containerDefinitions": [
 {

 "dnsSearchDomains": null,
 "logConfiguration": {
 "logDriver": "awslogs",
 "secretOptions": null,
 "options": {
 "awslogs-group": "/ecs/SiMS_Automation",
 "awslogs-region": "eu-west-1",
 "awslogs-stream-prefix": "ecs"
 }
 },
 "entryPoint": [
 "python3",
 "automation.py"
],
 "portMappings": [],
 "command": null,
 "linuxParameters": null,
 "cpu": 0,
 "environment": [],

 "resourceRequirements": null,
 "ulimits": null,
 "dnsServers": null,
 "mountPoints": [],
 "workingDirectory": null,
 "secrets": null,
 "dockerSecurityOptions": null,
 "memory": null,
 "memoryReservation": null,
 "volumesFrom": [],
 "stopTimeout": null,
 "image": "897636107041.dkr.ecr.eu-west-
1.amazonaws.com/nci_sims/risk-and-automation:latest",
 "startTimeout": null,
 "dependsOn": null,
 "disableNetworking": null,
 "interactive": null,
 "healthCheck": null,
 "essential": true,
 "links": null,

 "hostname": null,
 "extraHosts": null,

 "pseudoTerminal": null,
 "user": null,
 "readonlyRootFilesystem": null,
 "dockerLabels": null,
 "systemControls": null,
 "privileged": null,
 "name": "SIMS_AUTOMATION"
 }
],
 "placementConstraints": [],
 "memory": "4096",
 "taskRoleArn":
"arn:aws:iam::897636107041:role/ecsTaskExecutionRole",
 "compatibilities": [
 "EC2",
 "FARGATE"
],

 "taskDefinitionArn": "arn:aws:ecs:eu-west-1:897636107041:task-
definition/SiMS_Automation:1",
 "family": "SiMS_Automation",
 "requiresAttributes": [
 {
 "targetId": null,
 "targetType": null,
 "value": null,
 "name": "com.amazonaws.ecs.capability.logging-
driver.awslogs"
 },
 {
 "targetId": null,
 "targetType": null,
 "value": null,
 "name": "ecs.capability.execution-role-awslogs"

14

 "environment": [],
 "resourceRequirements": null,

 "ulimits": null,
 "dnsServers": null,
 "mountPoints": [],
 "workingDirectory": "/opt/data-analysis",
 "secrets": null,
 "dockerSecurityOptions": null,
 "memory": null,
 "memoryReservation": null,
 "volumesFrom": [],
 "stopTimeout": null,
 "image": "897636107041.dkr.ecr.eu-west-
1.amazonaws.com/nci_sims/data-analysis",
 "startTimeout": null,
 "dependsOn": null,
 "disableNetworking": null,
 "interactive": null,
 "healthCheck": null,
 "essential": true,
 "links": null,

 "hostname": null,
 "extraHosts": null,
 "pseudoTerminal": null,
 "user": null,
 "readonlyRootFilesystem": null,
 "dockerLabels": {
 "Name": "DA-WEST"
 },
 "systemControls": null,
 "privileged": null,
 "name": "SIMS_DA-Central-1b"
 },
 {
 "dnsSearchDomains": null,
 "logConfiguration": {
 "logDriver": "awslogs",
 "secretOptions": null,
 "options": {
 "awslogs-group": "/ecs/SiMS_Data-Analysis",
 "awslogs-region": "eu-west-1",

 "awslogs-stream-prefix": "ecs"
 }

 },
 "entryPoint": [
 "python3"
],
 "portMappings": [],
 "command": [
 "spot-predict.py",
 "eu-central-1c"
],
 "linuxParameters": null,
 "cpu": 0,
 "environment": [],
 "resourceRequirements": null,
 "ulimits": null,
 "dnsServers": null,
 "mountPoints": [],
 "workingDirectory": "/opt/data-analysis",

 "secrets": null,
 "dockerSecurityOptions": null,
 "memory": null,
 "memoryReservation": null,
 "volumesFrom": [],
 "stopTimeout": null,
 "image": "897636107041.dkr.ecr.eu-west-
1.amazonaws.com/nci_sims/data-analysis",
 "startTimeout": null,
 "dependsOn": null,
 "disableNetworking": null,
 "interactive": null,
 "healthCheck": null,
 "essential": true,
 "links": null,
 "hostname": null,

 },
 {

 "targetId": null,
 "targetType": null,
 "value": null,
 "name": "com.amazonaws.ecs.capability.ecr-auth"
 },
 {
 "targetId": null,
 "targetType": null,
 "value": null,
 "name": "com.amazonaws.ecs.capability.docker-remote-
api.1.19"
 },
 {
 "targetId": null,
 "targetType": null,
 "value": null,
 "name": "com.amazonaws.ecs.capability.task-iam-role"
 },
 {

 "targetId": null,
 "targetType": null,
 "value": null,
 "name": "ecs.capability.execution-role-ecr-pull"
 },
 {
 "targetId": null,
 "targetType": null,
 "value": null,
 "name": "com.amazonaws.ecs.capability.docker-remote-
api.1.18"
 },
 {
 "targetId": null,
 "targetType": null,
 "value": null,
 "name": "ecs.capability.task-eni"
 }
],
 "pidMode": null,

 "requiresCompatibilities": [
 "FARGATE"

],
 "networkMode": "awsvpc",
 "cpu": "2048",
 "revision": 1,
 "status": "ACTIVE",
 "proxyConfiguration": null,
 "volumes": []
}

15

 "extraHosts": null,
 "pseudoTerminal": null,

 "user": null,
 "readonlyRootFilesystem": null,
 "dockerLabels": {
 "Name": "DA-WEST"
 },
 "systemControls": null,
 "privileged": null,
 "name": "SIMS_DA-central-1c"
 }
],
 "placementConstraints": [],
 "memory": "8192",
 "taskRoleArn":
"arn:aws:iam::897636107041:role/ecsTaskExecutionRole",
 "compatibilities": [
 "EC2",
 "FARGATE"
],
 "taskDefinitionArn": "arn:aws:ecs:eu-west-1:897636107041:task-

definition/SiMS_Data-Analysis:5",
 "family": "SiMS_Data-Analysis",
 "requiresAttributes": [
 {
 "targetId": null,
 "targetType": null,
 "value": null,
 "name": "com.amazonaws.ecs.capability.logging-
driver.awslogs"
 },
 {
 "targetId": null,
 "targetType": null,
 "value": null,
 "name": "ecs.capability.execution-role-awslogs"
 },
 {
 "targetId": null,
 "targetType": null,
 "value": null,

 "name": "com.amazonaws.ecs.capability.ecr-auth"
 },

 {
 "targetId": null,
 "targetType": null,
 "value": null,
 "name": "com.amazonaws.ecs.capability.docker-remote-
api.1.19"
 },
 {
 "targetId": null,
 "targetType": null,
 "value": null,
 "name": "com.amazonaws.ecs.capability.docker-remote-
api.1.17"
 },
 {
 "targetId": null,
 "targetType": null,

 "value": null,
 "name": "com.amazonaws.ecs.capability.task-iam-role"
 },
 {
 "targetId": null,
 "targetType": null,
 "value": null,
 "name": "ecs.capability.execution-role-ecr-pull"
 },
 {
 "targetId": null,
 "targetType": null,
 "value": null,
 "name": "com.amazonaws.ecs.capability.docker-remote-
api.1.18"
 },

16

 {
 "targetId": null,

 "targetType": null,
 "value": null,
 "name": "ecs.capability.task-eni"
 }
],
 "pidMode": null,
 "requiresCompatibilities": [
 "FARGATE"
],
 "networkMode": "awsvpc",
 "cpu": "4096",
 "revision": 5,
 "status": "ACTIVE",
 "proxyConfiguration": null,
 "volumes": []
}

Risk Analysis

{
 "ipcMode": null,
 "executionRoleArn": "arn:aws:iam::897636107041:role/ecsTaskExecutionRole",
 "containerDefinitions": [
 {
 "dnsSearchDomains": null,
 "logConfiguration": {
 "logDriver": "awslogs",
 "secretOptions": null,
 "options": {
 "awslogs-group": "/ecs/SIMS_Risk-Analysis",
 "awslogs-region": "eu-west-1",
 "awslogs-stream-prefix": "ecs"
 }
 },
 "entryPoint": [
 "python3",

 "risk_analysis.py"
],
 "portMappings": [],
 "command": null,
 "linuxParameters": null,
 "cpu": 0,
 "environment": [],
 "resourceRequirements": null,
 "ulimits": null,
 "dnsServers": null,
 "mountPoints": [],
 "workingDirectory": null,
 "secrets": null,
 "dockerSecurityOptions": null,
 "memory": null,
 "memoryReservation": null,
 "volumesFrom": [],
 "stopTimeout": null,
 "image": "897636107041.dkr.ecr.eu-west-1.amazonaws.com/nci_sims/risk-and-automation:latest",
 "startTimeout": null,

 "dependsOn": null,
 "disableNetworking": null,
 "interactive": null,
 "healthCheck": null,
 "essential": true,
 "links": null,

 "hostname": null,
 "extraHosts": null,
 "pseudoTerminal": null,
 "user": null,
 "readonlyRootFilesystem": null,
 "dockerLabels": null,
 "systemControls": null,
 "privileged": null,
 "name": "SIMS_RA"

17

 }
],

 "placementConstraints": [],
 "memory": "4096",
 "taskRoleArn": "arn:aws:iam::897636107041:role/ecsTaskExecutionRole",
 "compatibilities": [
 "EC2",
 "FARGATE"
],
 "taskDefinitionArn": "arn:aws:ecs:eu-west-1:897636107041:task-definition/SIMS_Risk-Analysis:1",
 "family": "SIMS_Risk-Analysis",
 "requiresAttributes": [
 {
 "targetId": null,
 "targetType": null,
 "value": null,
 "name": "com.amazonaws.ecs.capability.logging-driver.awslogs"
 },
 {
 "targetId": null,
 "targetType": null,

 "value": null,
 "name": "ecs.capability.execution-role-awslogs"
 },
 {
 "targetId": null,
 "targetType": null,
 "value": null,
 "name": "com.amazonaws.ecs.capability.ecr-auth"
 },
 {
 "targetId": null,
 "targetType": null,
 "value": null,
 "name": "com.amazonaws.ecs.capability.docker-remote-api.1.19"
 },
 {
 "targetId": null,
 "targetType": null,
 "value": null,
 "name": "com.amazonaws.ecs.capability.task-iam-role"

 },
 {

 "targetId": null,
 "targetType": null,
 "value": null,
 "name": "ecs.capability.execution-role-ecr-pull"
 },
 {
 "targetId": null,
 "targetType": null,
 "value": null,
 "name": "com.amazonaws.ecs.capability.docker-remote-api.1.18"
 },
 {
 "targetId": null,
 "targetType": null,
 "value": null,
 "name": "ecs.capability.task-eni"
 }

],
 "pidMode": null,
 "requiresCompatibilities": [
 "FARGATE"
],
 "networkMode": "awsvpc",
 "cpu": "2048",
 "revision": 1,
 "status": "ACTIVE",
 "proxyConfiguration": null,
 "volumes": []
}

18

4.1.6 AWS Lambda Configuration
Lambda is used to trigger Faregate tasks at scheduled time or via file trigger
Please follow below steps for each of the actions:

• Data Collection

• Data Analysis

• Data Pump

• Automation

• Risk Analysis

Login to AWS Console with your
username and password

Go to AWS Lambda (Service /
Lambda) and click on Create
Function

• In Create Function scream
select Author from
scratch,

• in function name type the
name of the action
triggered,

• in runtime select Python
3.6 or Python 3.7,

• in execution role select
create new role with basic
Lambda permissions

19

For Data-Analysis only
On new screen under designer
please click on + Add Triger and
add S3 File event as a trigger,
In Bucket please select sims-data-
collection bucket and in the prefix
type trigers/datapump.trigger

For Data-Pump only
Follow above steps, in prefix filed
type trigers/collection.trigger

FOR ALL FUNCTIONS
 Go to your local folder with
trigger scripts
Open a trigger file current stage
and copy content of that file.
In Lambda Editor paste it

Repeat above steps for each of
the steps and you should have
number of functions created

4.1.7 Setup CloudWatch time events
From Amazon Console select service in top menu and type Cloud Watch

In Cloud Watch console select Rules on left
panel

Create Rule by clicking Create Rule Button

20

Create Automation Rule with following:

• Cron expression 15,45 * * * ? *

• Target: Automation Lambda

Create Data Collection Rule

• Cron expression 30 22 * * ? *

• Target: ECS Task

21

Create Risk-Analysis Rule

• Cron expression 1,30 * * * ? *

• Target Risk Analysis Lambda

5 Validation
In order to validate the implementation, please go to AWS Console / Service / ECS
Click on Task definition and open Data Collection task definition.
From Actions menu select RUN TASK

In next screen select :

• Launch type: Fargate

• Cluster VPC : Default

• Subnets Default

• Auto-Assign Public IP: Enable

Click Execute

Observer the task TAB in cluster Screen.
Once tasks are started the Last Status will be Running

	Framework_for_availability_assurance_of_services_running_on_AWS_EC2_Spot_instances(FINAL)
	Introduction
	Related Work
	Prediction of Spot Instances Pricing
	AWS Spot bidding strategies overview
	Mitigation of interruption risk

	Methodology and Design
	Case Scenario
	Application Business Critically
	Service Level Requirements (SLR)

	Project Development Steps
	 High-Level Project Plan
	Limitations
	Spot Instance Management System (SiMS)
	SLA Monitoring System

	SiMS: Data Collection Module
	SIMS: Data Pump Module
	SIMS: Data Analysis Module
	SIMS: Risk and Automation Module
	The Risk Engine
	The Automation Engine

	Simulation

	Implementation
	Cloud Setup
	Simple Storage Service
	DynamoDB
	AWS Elastic Container Service - Fargate
	AWS Lambda
	AWS Cloud Watch
	Route 53 DNS and Elastic IP

	Test subject implementation
	The Monitoring System
	SimS System Inputs and Outputs
	Data Collection Module
	Data Pump
	Data Analysis
	Risk Engine
	Automation Engine

	Evaluation
	Interuption of Control System
	Test Steps
	Results

	SimS Automated Actions LOW Risk
	Test Steps
	Results

	SimS Automated Actions High Risk
	Test Steps
	Results

	Five Days SLA Monitoring
	Test Steps
	Results

	Discussion

	Conclusion and Future Work

	MSc Research Project Config Man - SIMS

