
Chokegati: a browser extension to mitigate
resource hints vulnerabilities in HTML5

MSc Internship

Cyber Security

Roshan Rangwani
x17131120

School of Computing

National College of Ireland

Supervisor: Rohan Singla

www.ncirl.ie

National College of Ireland
Project Submission Sheet – 2017/2018

School of Computing

Student Name: Roshan Rangwani
Student ID: x17131120
Programme: Cyber Security
Year: 2017
Module: MSc Internship
Lecturer: Rohan Singla
Submission Due
Date:

17/09/2018

Project Title: Chokegati: a browser extension to mitigate resource hints vul-
nerabilities in HTML5

Word Count: 5934 words

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students
are encouraged to use the Harvard Referencing Standard supplied by the Library. To
use other author’s written or electronic work is illegal (plagiarism) and may result in
disciplinary action. Students may be required to undergo a viva (oral examination) if
there is suspicion about the validity of their submitted work.

Signature:

Date: 14th September 2018

PLEASE READ THE FOLLOWING INSTRUCTIONS:
1. Please attach a completed copy of this sheet to each project (including multiple copies).
2. You must ensure that you retain a HARD COPY of ALL projects, both for
your own reference and in case a project is lost or mislaid. It is not sufficient to keep
a copy on computer. Please do not bind projects or place in covers unless specifically
requested.
3. Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only
Signature:

Date:
Penalty Applied (if
applicable):

Chokegati: a browser extension to mitigate resource
hints vulnerabilities in HTML5

Roshan Rangwani
x17131120

MSc Internship in Cyber Security

14th September 2018

Abstract

There has been drastic improvement in the speed of web over the years. Because
of the introduction of resource hints feature of HTML5, web has become much
faster by utilizing the predictive loading of resources. This feature has become the
principle road for the attacks on users privacy and security. Attacks also include
popular cyber-attacks like Cross Site Request Forgery, Cookie stuffing. Mitigation
to these attacks are slow and easily bypassed. Our research focuses on reviewing
the present defenses and provide a novel approach to the defensive challenges. In
this paper, we present CHOKEGATI, a chrome browser extension based on URL
filtering approach using DOM model. By doing so, we are able to mitigate risks
involved.

1 Introduction

Usage of web has become an essential part of daily life. Recent years have notice a
tremendous growth in the usage, due to its easily accessible and faster, growing demand
of web has increased the requirement of faster web. Hence, to fulfill growing demands of
faster web HTML5 is been introduced. Its some features like geolocation, local storage,
speed and platform independency have made HTML5 widely used and adopted. In
a recent study conducted by stats incore reveals about 153 companies out of top 500
US Fortune companies have preferred HTML5 over other technologies as their website
technology1. To easily access all the functionality of web, a user agent is required by
the user which acts as a bridge between web and the user. User agent often also called
browser stores information about the user which include browsing history, user sessions,
cookies, cached data and user behavior. A user holds all the responsibilities of actions
and requests initiated by the browser (Vlajic et al.; 2017a). Many of the tasks performed
by the user agent are conducted in background which include cookies send, page loading,
and connecting domain name servers. Browser require multiple types of resources in
order to load a web page completely for user. While calculating performance of a user
agent, resource loading time, rendering time and script execution speed are important
factors to consider. A company providing survey result, when conducted, 1% sale lose to

1Statistics provided by Incore on HTML5 adoptation: https://www.incore.com/Fortune500HTML5/

1

https://www.incore.com/Fortune500HTML5/

Amazon when web page delay increased by minute 100msec, while the revenue of Google
will be affected by 20% when delay increased by 500msec this shows how much of revenue
depends on loading time of the web page. Loading time can be decreased by server and
client side. User agent being the client side use techniques, which includes prefetching,
caching to improve web experience and performance. Web speed is always considered to
be important factor. To reduce delay and increase speed HTML5 came up with resource
hints feature in 2016. Resource hints uses <link >of HTML and based on the idea of
preloading with predicting user future need in order to provide better experience and
speed. Aim of implementing resource hints is to provide zero delay web page loading
as resources are loaded in the background. Preconnect, prerender, domain name server
prefetch and prefetch are the four methods used for resource preloading by resource hints.
Execution of resource hints doesnt require any user involvement, are executed by the user
agent as background process. Figure 1 explains the working of resource hints in chrome
browser

Figure 1: Execution of resource hints in chrome browser

Apart from positive impacts, a researcher Vlajic, Shi, Roumani and Madani (2017b)
experimented and concentrated on negative impacts of the resource hints. Their research
provides evidences of the attacks possible because of resource hint. Attacks include Cookie
stuffing, Cross-site request forgery (XSRF), Etag tracking, Framing Attack, targeted DOS
attack, Data Analytics Pollution attack. These attacks have very high impacts on privacy
and security of the user data which may lead to complications, ideally risks must not be
neglected. In the recent years, many of the attacks are made possible because of the
resource hints feature, we have discussed some of the cases involved child pornography,
ebay affiliated cookie loss and cross site request forgery attacks, in later part of the paper,
under the case study scenarios.
Motivation: While surfing blogs on cyber-attacks and cases, we went through some
cases about resource hints. Further, working in the direction we examined that there lies
enormous opportunities to new research work. Previous research work, are focused on
the defense mechanism which are less efficient to mitigate risks, which provides us with
opportunity and motivation to conduct research. Research question We enhance

HTML5 security with the help of browser extension using document object
model based filters to mitigate risk involved due to resource hints features.
The rest of this paper is structured as follows. We provide an overview of related work
in context to the current work as Related Work having 3 subsections as (2.1) Research
related to prefetch and dns prefetch (2.2) Privacy implications due to resource hints (2.3)
Present defenses to the attacks caused due to resource hints feature. In section 3 we
discuss about the methodology which will be followed. Section 4 and 5 elaborate the
implementation and evaluation. We draw some discussions in Section 6 by concluding
our research and providing future scope.

2 Related Work

Resource hints is an emerging concept, and recently cyber-attacks have emerged because
of its usage. This needs to be improved with proper mitigation techniques. There are
few papers on such an emerging concept already published which are discussed in the
following sub sections.

2.1 Research related to prefetch and dns prefetch

In order to gain better understanding about working of resource hints, we will discuss
about the browser and loading resource relationship, then later in this section we will
discuss about the techniques, used to load resources and decrease load time with their
privacy issues. To load web page, browser needs to follow a procedure either dynamic or
concurrently which must be executed. Each component of the web page, forms a docu-
ment object model and internally represent as DOM tree, render tree is formed by using
DOM tree once it gets formed and by painting above render tree layout is formed. Figure
2 explains DOM tree and rendering of the objects by browser.

Figure 2: DOM tree and rendering of objects by browser

Many resources are required by user agent, for loading a web page. When the browser
request for the foremost resource i.e. main source, it may also request for the remaining
other resources which are required to load the content (Wang et al.; 2012). A decent
amount of time, is required by the browser to request for the resources and loading it as
a web page. Researchers have used various techniques, in order to decrease this load time

and make web faster which also involves predictive gathering of resources in background
once user gets busy reading the loaded page. One such technique which works on the
same technique and principal and also an integral part of Resource Hints is prefetching.
Mainly, to increase speed and reduce latency of web this technique is used and is well
researched in literature. A researcher Padmanabhan and Mogul (1996) in their research,
mainly focused on the idea of predictive loading in server side. Researchers learned and
analysed, behavior of the clients by sending client information to the server with help of
client cache. Yang, Zhang and Li (2001) used dependency graph method to maintain
pattern of client and achieved decrease in latency, although a huge number of packets were
increased in the network. Yang, Zhang and Li proposed and used an algorithm Greedy
Dual Frequency Size (GDSF), in which a predictive factor was added to reduce the us-
age of cache, which is required for prefetching. Author for predicting web surfers future
requests, collected and analyzed web logs. Apart from improved performance the sys-
tem also supported present architecture, but failed to support when cache size increased.
Another researcher De La Ossa, Gil, Sahuquillo and Pont (2007) pointed, that much
of the work done concentrated on predictive algorithm. Author focused on making web
prefetching efficient with improved performance. Author followed an approach combining
dependency and double dependency graph. However, authors were able to reduce latency
by a peripheral proportion. A research conducted by Fan, Cao, Lin and Jacobson (1999)
followed an approach of prefetching in browsers and cache proxies. In their approach,
they utilized network idle time, efficiently for prefetching between the requests made by
the user. Research provided a lot of improvement in the latency with approximately
zero extra traffic in the network. However, to improve results many non-standardized
assumptions made, which may not be suitable in each case. Throughout the years much
work has been done for enhancing execution of prefetching, however Jourdan (2007)
identified the negative impacts of the prefetching on the users privacy. Their research
provided the evidences of prefetching method responsible for creating security issues in
the system. Also, prefetching indirectly download pages, for which request are never
made which is always a point of concern over privacy. Author also found prefetching,
making difficult for website owner to differentiate between, the real and fake request made
by the user. Some evidences were found in case of automatic prefetch links, lead to web
applications crash making it unavailable for the user. Moreover, attacks can be prevented
by making some change in default settings of the user agent, which are expected to be
altered rarely. Inorder, to protect user and web, instead of ignoring the above evidences
and leaving users with choices, steps can be taken which may protect privacy of the users.

Another popular technique and most used to reduce web latency named as DNS
prefetching. A study done by Cohen and Kaplan (2002) provide us the concept of pre-
resolving, pre-connecting and pre-warming. Their research also provide evidences about
the TCP connections made by the user agent, in order to support DNS prefetching and
effectiveness of the techniques. In their analysis, done on the server response to translate
DNS lookups, the authors noticed and identified near about 10% servers surpasses the
limit time of 3 secs, considered to be a huge amount of delay. Translation time of the
servers are mostly dependent on the locality. Author with their research proposed an
approach by combining pre-resolving, pre-warming and pre-connecting named as pre-
transfer in order to minimize latency. A significant amount of long waiting times were
reduced, when the above approach used. However, the research limited to high overhead
introduced to the user agent. In a study done by Krishnan and Monrose (2011) on

DNS prefetching claims, providing a significant quicker experience to user. Author also
provide evidences of top search engines like google using prefetch technique, to support
instant search feature. Usage will significantly increase in near future. Although, post
analysis result shows relative overhead time increment for the server. Their research
also provided evidences of violation of user privacy and security issues in the system.
The author Krishnan and Monrose (2010) found DNS prefetching violating privacy, by
pre-resolving each and every hyperlinks at loading time of the web page. Author also
questioned about the implementation of the technique and risks involved. In the next
subsection, we will further discuss about the other popular used techniques and security
issues with resource hints features.

2.2 Privacy implications due to resource hints

We will first discuss about preconnect and prerender in this section, later we will discuss
about privacy implications of resource hints. TCP preconnect is a prefetching technique
based on connections on TCP protocols. Deng and Manoharan (2015) performed ana-
lysis on compatibility of pre-connect with protocols HTTP1.0 and HTTP 1.1. According
to authors, research pre-connect is limited to single resource under HTTP1.0 per TCP
connection. However, to achieve multi fetching resources HTTP 1.1 can be used to reduce
web latency. According to Deng and Manoharan (2015), preconnect create a persistent
connection with the server leading to increase overhead of the server. Newton, Jeffay
and Aikat (2013) when analyzed web traffic, provided empirical evidences of increase
in the number of unused connections and web activity when preconnect feature is used
by the user agents. Also author stated that preconnect feature may lead to Denial of
service attacks in the near future. Another popular prefetching technique, used by mod-
ern browser is prerender. Browser utilizes pre-fetcher module to pre-render web resources
according to a study conducted by Gudla, Sahoo, Singh, Bose and Ahamed (2016). Ren-
dering resources also include JavaScript, HTML files and some graphical files like images.
Pre-fetcher use internal engine of the user agent to ensure prior and speedily loading of
the web page. Pre-render with the use of pre-fetcher, helps to reduce launching time of
the web. The author also provided evidences of consumption of huge amount of power
and memory when unhandled properly. Author Deng and Manoharan (2015) in their
study states that pre-render follows similar procedure like browser follows to load a site
page. Procedure also includes creation of DOM objects, by parsing HTML code with an
addition of various scripts like CSS and JavaScript. Author, also performs experiment
and states prerender works similar to browser with a slight difference, pre-rendered page
appear to be in hidden tab, as if the request for page is done explicitly by entering URL
in the address bar. Another experiment conducted by (Vlajic et al.; 2017a) provides
significant changes in the browser cache when a page is rendered, havent appeared in
the browsing history. The author also focuses on the possible attacks when pre-render
feature is used. We have discussed four types of prefetching techniques in above sections.
In 2016 a draft presented by w3 combined all four techniques, in a single feature with
the introduction of HTML5, to speed up the loading time of the web, which referred as
resource hints. Although, the implementation of resource hints is yet to be standardized,
and havent been researched in the literature, but because of the speedy features and
supported by 90% of modern browsers, the usage of resource hints have gained enough
popularity. However, a researcher Vlajic, Shi, Roumani and Madani (2017b) while con-
ducting experiments found web applications security issues when resource hints features

are used. Security issues also include pruning system to cyber-attacks like XSRF, Fram-
ing Attack, Targeted DOS, Data Analytics Pollution Attack, Etag Tracking Attack and
Cookie Stuffing attack. Author also states, about the possible security and privacy breach
of the user when feature is misused. Author also discussed about the defense mechan-
isms about the attacks and result of vulnerability scanners which are used at present.
However, research also provide evidences of scanners failing to detect possible attacks
because of resource hints. While the researchers bring a light to possible security issues
and attacks done using resource hints, but failed to provide a defense mechanism against
the following. In next section we will understand about the present defense mechanism
of these attacks.

2.3 Present defenses to the attacks caused due to resource hints
feature

We have discussed above about the possible attacks when resource hints features are
used. In this section we will study and discuss about the present defense mechanisms of
the attacks. Cross site request forgery attack (XSRF) takes place, when user agent sends
cookies or the cached credentials automatically, when a request from cross domain arrive
according to (Maes et al.; 2009). XSRF attack is one of the top 10 OWASP2 vulnerab-
ilities and mainly perform requests like funds transfer or changing other personal details
like email. In their research author proposed a solution to mitigate XSRF focusing on
client side. Author, also analysed cross domain requests which are evolved . Follow-

Figure 3: Bob request for xyz.com and gets cookie set in the browser

ing the above, approach much of the false positives requests were reduced by relaxing
server policies. Over the years, so many defense mechanism have been proposed. Au-
thor Jovanovic, Kirda and Kruegel (2006) while conducting research provided evidences
of XSRF occurring and cases of people getting harm. Author also proposed server side
defense methods and automatic mechanism to prevent XSRF. Another researcher Barth,
Jackson and Mitchell (2008) provide defenses by blocking referrer and secret tokens using
same origin header. They were able to reduce privacy concerns of user. Defense mechan-
ism only work when JavaScript is enabled, is a limitation to the research. (Vlajic, Shi,

2Owasp https://www.owasp.org/index.php/Main_Page

https://www.owasp.org/index.php/Main_Page

Roumani and Madani; 2017a) also conducted studies how XSRF can occur by exploiting
vulnerability using resource hints feature of HTML5.In the figure 3 and figure 4 below
explains how XSRF can occur with use of resource hints.
Cross Site Framing Attack is another type of attack, which involves planting of the false

Figure 4: Bob visits trudy site which is using resource hints and sends cookie authentic-
ation

evidences on a computer by exploiting browser vulnerability or weaknesses of the web-
site. Author Gelernter, Grinstein and Herzberg (2015) conducted research on cross site
framing attack on search engines like Google, Bing, Yahoo also found false evidences in
result being planted in the computer. Author provided the details regarding the defense
mechanism against these attacks and how it can work, with different services like web
service, web browsers and other forensics software. While researching on the cross site
framing attack, we noticed that some of the innocent people were charged under child
pornography due to false evidences planted on their system and later on when investiga-
tion was made, the forensic team cleared that it was due to malware frames which were
planted resulted in web session redirecting them to such websites.3

Case study: Data Analytics Pollution Attack Data analytics pollution attack is latest
type of attack and havent much addressed in the literature. Under this attack logs of the
web server, are polluted in order to create a negative impact on competitors business in-
telligence. Thus, using resource hints feature of HTML5 one can easily pollute and plant
false enquiries of the product which may have high impact on the businesses dependent
mainly on online revenues.
Case study: Targeted DOS Attack Under this attack an attacker specifically targets vic-
tims frequently visited websites by sending prefetch requests such that victims IP address
gets blacklist by the server. Hence, its called targeted DOS attack as its specific to a
target. Main aim of the attack is to get victim unable to attend the services. A study
conducted on targeted denial of service by Kuzmanovic and Knightly (2006) very ef-
ficiently displays network implications and TCP connections. Author used analytical

3Article on child pornography case: https://www.theregister.co.uk/2009/11/09/malware_

child_abuse_images_frame_up/

https://www.theregister.co.uk/2009/11/09/malware_child_abuse_images_frame_up/
https://www.theregister.co.uk/2009/11/09/malware_child_abuse_images_frame_up/

modeling approach for analysing DOS patterns, they achieved remarkable result and also
able to detect and reduce attacks by a notable amount. The defensive approach followed
reduces the performance of the system and insufficient to prevent DOS attacks which are
categorized as browser based.
Case study: Cookie Stuffing Attack Affiliate marketing is one of the popular form, in
which marketers need to pay commission for converting traffic i.e. pay per sale advert-
ising method. The merchant need to pay commission to the affiliate for each and every
sale made. The author Chachra, Savage and Voelker (2015) in their research also discuss
about the affiliated cookies and cookie stuffing. Author, also focuses on how these cookies
are abused and what are the present mitigations of the cookie stuffing. One such fraud
case happened with EBay for affiliate cookie fraud of $28M because of the cookie Stuffing
technique 4.
Case study: ETag tracking ETag is a part of Hyper Text Transfer Protocol, which allows
web caches work more efficiently. ETag field is of 81864 bits long and hence its very
easy to store identity of the user, which can be used by the companies to track users.
Hence, with very little effort the following ETag can be changed. El Masri and Vlajic
(2017) in their research conducted on top5 browser extensions, which are used by most
of the users, in order to prevent XSRF and Cross site framing attack. Author, analysed
extensions on the basis of the popular HTML tags such as iframe, prefetch, img in code
and surprisingly found that, none of the extensions where able to protect, their user when
resource hints features were used. Also author in their analysis providing details about
extensions, mostly are focused on examining tags such as img, href, anchor tag, while ig-
noring the link tag which is also the root cause of attacks possible because of the resource
hints. We have conducted research on resource hints, while conducting our research, we
found that to protect these attacks most of the extensions are focused on tags which
are not related to the resource hints. Therefore, unable to protect the users, against the
vulnerabilities. Hence, there exist enough scope to research further in order to protect
users against these attacks by focusing on the root cause of the attacks i.e. focusing
on the tags such as <link>. We discussed in the other sections about the formation of
the DOM tree of HTML code. A researcher Gupta, Kaiser, Neistadt and Grimm (2003)
provided us the concept of the DOM based extractions and how to use extracted contents.
Another researcher Maes, Heyman, Desmet and Joosen (2009)provided proof of concept
of detecting malicious web pages on the basis of the DOM objects extracted. The author
performed lexical analysis, blacklisting and predictors to detect malicious links. Model
proposed is extremely popular and statically blockage ratio of malicious pages are higher
than other models, thus we expect efficient results. We therefore, accepted this approach
as our model with slightly modifying the input URL as providing link tag URLs. In the
next section, we will discuss about details of methodology.

3 Methodology

It is very important to follow and understand the flow process and connection between the
different components. Also, to understand task done by the specific component. We have
researched different methodologies, which can be applied to defend against the resource
hints, among all DOM based filter method fits best because of the standardization and

4Article on Ebay affiliate cookie fraud: http://uk.businessinsider.com/

ebay-the-fbi-shawn-hogan-and-brian-dunning-2013-4?r=US&IR=T

http://uk.businessinsider.com/ebay-the-fbi-shawn-hogan-and-brian-dunning-2013-4?r=US&IR=T
http://uk.businessinsider.com/ebay-the-fbi-shawn-hogan-and-brian-dunning-2013-4?r=US&IR=T

easy to understand. Model applied before have achieved high result with better accuracy.
DOM based URL filter have been explained by Maes, Heyman, Desmet and Joosen
(2009). Figure 5 shows the graphical representation of the methodology

Figure 5: Flow Diagram of methodology used.

3.1 Extracting elements from DOM extractor

As discussed above in section 2.1 each and every HTML element will be represented as
object in DOM tree. We are here performing the extraction of the link element which
is also the main source of resource hints. Using HTML DOM model we will access link
elements like dns-prefetch, pre-connect, pre-fetch and prerender. In the figure 6. below
HTML elements of a web page are represented in a DOM tree.

Figure 6: Representation of DOM objects of a simple web page in DOM tree

3.2 URL filtering and analysis

We have extracted the URL from above DOM extractor and performed analysis on the
same. We performed lexical analysis, host based, blacklisting domains and unsecured
functions. Working of every tasks are discussed in detailed below:
Lexical Analysis of the URL : Lexical analysis is done on the extracted URL to gather
basic information like length of the URL, primary domain, longest word etc. While ad-
vanced lexical analysis is performed to gather IP address of the URL and keyword present
in the URL. To perform lexical analysis of the URL JavaScript is used as scripting lan-
guage.
Blacklisting URL: Although, this method is old fashioned but very effective, provides
a faster results, saving a lot of time. If the URL is already present in the list of blacklist
URL, it gets blocked. However, using alone blacklisting as a filtering option is not suit-
able to perform appropriate analysis. But once, used with other filtering options act as
an asset to the predictor model which improves performance.
Unsecured elements extraction: The URL or the string inside the link element is
extracted with the help of DOM extractor. We will extract number of iframes, harmful
functions, script and other unsymmetrical or suspicious strings. Analysis is also done
on the basis of the keywords present such as banking, username, confirmation code. For
conducting we will be using HTML, JavaScript.

3.3 Working of Predictor

As the name suggest predict, predictor acts as the brain and act as decision maker.
Predictor is supplied all the input of the previous analysis like lexical, blacklisting, html
extractor. Once content are provided as input predictor performs predictive analysis and
provides result to allow access link to the browser or to block. Browser is provided with
the feedback. Predictor updates database if URL found to be vulnerable.

4 Implementation

To implement the above model we have followed prototyping model approach. Proto-
typing approach makes us understand better about the system, while in the developing
phase, identifying the missing functionalities and detecting errors is easy. We have util-
ized HTML, JavaScript, CSS, PHP and JSON as programming and scripting languages
to develop browser extension for chrome named as chokegati. In the below section im-
plementation of the steps been explained.

4.1 Extracting elements from DOM extractor

When a web-page is loaded DOM object is formed for each element. We have implemented
DOM extraction to extract link tags which is the main source of the resource hints. Hence
after getting link tag extracted we perform further analysis. To extract objects we have
programmed scripts which is written using JavaScript. Here is the snippet of the code.
<link rel=“prerender” href=“/chokegati/serverB/a evil.php”>
<script>
function getresourcehint() {

var x = document.getElementsByTagName(“link”)[0].getAttribute(“href”);
document.getElementById(“resourcehint”).innerHTML = x;
}
</script>

4.2 Implementing Lexical Analysis on URL

The filtered string under the link tag is taken into analysis using different JavaScript
functions in order to observe information about the attribute URL like length of the
URL, length of the primary domain, IP address if any. Below is the sample snippet of
obtaining the attribute value for the resource hints option prerender.
<link rel=“prerender” href=“/resourceblocker/serverB/a evil.php”>
document.getElementById(“href”).size

4.3 Performing Host Based Analysis

We have observed the hostname provided in the URL. Whether the hostname provided
is of the same origin or the cross domain. For example if host is related to music but
in the URL its contacting some xyz bank then URL automatically become suspicious.
Hence we obtained host details of the URL with following snippet
getLocation(“/resourceblocker/serverB/a evil.php”);

4.4 BlackListing Checker

It is an important step if the URL present in database of already blacklisted by the
search engines, ad blocks then it will directly be blocked owing to trust the database
collect from the search engines. We have collected already blacklisted URL using google
search engine, ad blockers and saved in the backend with which each time URL is verified
before passing into predictor.

4.5 Unsecured elements extractor

If the attribute doesnt contains any URL it may contain some harmful string or HTML
element which may lead to vulnerabilities. Hence, with the HTML element extractor we
perform the sanitization of the string which removes all the harmful characters, tags by
which vulnerability can occur. We have use different sanitization function in order to
sanitize and clean string under the resource hint attribute.One of the snippet is:
chokegati.sanitize(‘‘);

4.6 Working of predictor

Predictor analyses the result obtain from the previous steps and provide decision to the
browser for allowing or blocking the content. Predictor allows if no suspicious URL
is found and blocks if any suspicious pattern is found and increase the number of links
block. Combining all these technologies and implementation, we created a chrome browser
extension and added to the browser.

5 Evaluation

To evaluate our browser extension and collect artifacts we have created sets of pages
one set is normal pages and the other set consists of evil pages. Normal set of pages
calls evil one using different resource hints options. While performing experiment we ini-
tiated request/retrieval of the pages named a normal.php, b normal.php, c normal.php
and d normal.php. The observations in table 1 are summarized as: When a normal.php
and b normal.php are requested which contains dns-prefetch and preconnect options of
resource hints respectively in the code. We havent recognized any change in the chrome
browser history, cache or in cookie creation. Hence, these option can be considered to
make lower impacts. In figure 7 we have shown the experimental setup to evaluate the
effect on chrome browser.

Figure 7: Experimental setup for evaluation with resource hints options using chrome
browser.

When c normal.php and d normal.php are requested by the browser which contains
prefetch and prerender options of resource hints respectively in the code. We recog-
nized a number of changes in the browser history, cache and cookie which are related
to c evil.php and d evil.php are found. We noticed and collected artifacts shown in the
table 1 below that cookies created which are associated with the pages . Pages appear in
cache even when request is not made explicitly.

Resource hints option Chrome History Changes Chrome Cache Changes Cookies effect
DNS-prefetch no change no change no change
Preconnect no change no change no change

Prefetch no change present in cache cookies are created
Prerender no change present in cache cookies are created

Table 1: Artifacts collected using chrome browser

5.1 Experiment and evaluation with chrome browser

We evaluated chokegati by running our programmed scripts which directly contains re-
source hints code intentionally. In order, to ensure proper working of the extension we
run programmed page multiple times and evaluated performance of the browser. In figure
8,9 and 10 we have shown the experimented performed and how chokegati able to block
the URL. In figure 8 we have executed page containing resource hint when chokegati is
disabled while in fig9 we executed when chokegati is enabled. Fig 10 shows the demo
code of the page executed.

Figure 8: Resource hints link executed when chokegati extension is disabled

Figure 9: Resource hints link blocked when chokegati extension is enabled

Figure 10: Code snippet of the figure 8 and figure 9 to check functionality test of chokegati

5.2 Test Cases

We have performed three types of testing in the browser extension named chokegati they
are smoke testing, regression testing and system integration testing.
Smoke Testing: Whenever a new functionality was added we tested the functionality
alone and then we integrated with the existing tested code.
System Integration Testing: We have tested our product with the chrome browser under
different cases by enabling the developer mode. We also tested performance changes of
the chrome browser. Fig 11 shows us the integration of chokegati with chrome browser.
Regression Testing: We tested whole system when a new functionality was added in order

Figure 11: System integration testing of chokegati with chrome

to check working of the browser extension chokegati.

5.3 Discussion

We have experimented various cases of resource hints. We found how easily these at-
tacks can occur, with little effort. We experimented with cases of dns-prefetch, prefetch,
preconnect, prerender and found artifacts in the browser. We noticed changes, in the
cache and cookies of the browser, when prerender and prefetch options are used. When
pages appear in the cache or create cookie, but the page is not present in the history, is
automatically a sign of suspicious activity. While most of the request are sent automat-
ically by the browser without the knowledge of user. Hence, it has sparked many issues
related to users privacy and security. We studied different cases of resource hints, used for
the cyber- attacks like XSRF, Cross site framing attack, E-tag tracking, Cookie stuffing,
Data analytics pollution attack and targeted DOS attack. Some of the attacks have very
high industrial impacts, as we studied past cases which involved millions of dollars loss to
different companies, because of the attacks placed with the use of resource hints. Other
attacks involved loss in the data privacy of the user. We evaluated the above situation

with our chrome browser extension chokegati and performed testing which include re-
gression, integration and smoke test of the functionalities. We found out chokegati able
to mitigate the risks involved due to resource hints features by blocking the URL using
DOM based URL filtering.

6 Conclusion and Future Work

Resource hints create very high impact on the speedy loading of the web page. Today
around 90% of the browsers support this feature of HTML5. The attacks occurs due to
resource hints are very easy to execute because of the lack of user awareness. We have
discussed about the privacy and threats occurred with their implications. The goal of this
paper, is to propose a novel approach to mitigate risks involved with resource hints. We
use the DOM extractor and URL filtering in order to block malicious web pages. We have
implemented this approach to create chrome browser extension named CHOKEGATI
and validated it using resource hints options. Our results, shows extension able to block
malicious URL where other browser extension were failing to. Hence, CHOKEGATI able
to set bench mark in order to mitigate risks involved using resource hints. Increased
CPU utilization can be a limitation to the research. Further work, is required to make
CHOKEGATI available for other browsers with decrease in CPU utilization and to detect
and mitigate other new possible attacks which arises due to its usage.

7 Acknowledgement

We have been supported by National College of Ireland, Dublin to conduct this academic
research. I would especially like to thank Mr. Rohan Singla, my mentor for the academic
research. As my teacher and mentor, he has guided and encouraged me in every phase
of my research. His knowledge and experience was really helpful for me. I would like to
thank another person Mrs. Rashmit Singh from Altda Dublin for guiding me with her
knowledge which helped my research to meet industry level.

References

Barth, A., Jackson, C. and Mitchell, J. C. (2008). Robust defenses for cross-site request
forgery, Proceedings of the 15th ACM conference on Computer and communications
security, ACM, pp. 75–88.

Chachra, N., Savage, S. and Voelker, G. M. (2015). Affiliate crookies: Characterizing
affiliate marketing abuse, Proceedings of the 2015 Internet Measurement Conference,
ACM, pp. 41–47.

Cohen, E. and Kaplan, H. (2002). Prefetching the means for document transfer: A new
approach for reducing web latency, Computer Networks 39(4): 437–455.

De La Ossa, B., Gil, J., Sahuquillo, J. and Pont, A. (2007). Improving web prefetching
by making predictions at prefetch, Next Generation Internet Networks, 3rd EuroNGI
Conference on, IEEE, pp. 21–27.

Deng, Y. and Manoharan, S. (2015). Review and analysis of web prefetching, Com-
munications, Computers and Signal Processing (PACRIM), 2015 IEEE Pacific Rim
Conference on, IEEE, pp. 40–45.

El Masri, M. and Vlajic, N. (2017). Current state of client-side extensions aimed at pro-
tecting against csrf-like attacks, Communications and Network Security (CNS), 2017
IEEE Conference on, IEEE, pp. 390–391.

Fan, L., Cao, P., Lin, W. and Jacobson, Q. (1999). Web prefetching between low-
bandwidth clients and proxies: potential and performance, ACM SIGMETRICS Per-
formance Evaluation Review, Vol. 27, ACM, pp. 178–187.

Gelernter, N., Grinstein, Y. and Herzberg, A. (2015). Cross-site framing attacks, Proceed-
ings of the 31st Annual Computer Security Applications Conference, ACM, pp. 161–
170.

Gudla, S. K., Sahoo, J. K., Singh, A., Bose, J. and Ahamed, N. (2016). Framework to im-
prove the web application launch time, Mobile Services (MS), 2016 IEEE International
Conference on, IEEE, pp. 73–78.

Gupta, S., Kaiser, G., Neistadt, D. and Grimm, P. (2003). Dom-based content extraction
of html documents, Proceedings of the 12th international conference on World Wide
Web, ACM, pp. 207–214.

Jourdan, G.-V. (2007). Centralized web proxy services: Security and privacy considera-
tions, IEEE Internet Computing 11(6).

Jovanovic, N., Kirda, E. and Kruegel, C. (2006). Preventing cross site request forgery
attacks, Securecomm and Workshops, 2006, IEEE, pp. 1–10.

Krishnan, S. and Monrose, F. (2010). Dns prefetching and its privacy implications: when
good things go bad, Proceedings of the 3rd USENIX conference on Large-scale ex-
ploits and emergent threats: botnets, spyware, worms, and more, USENIX Association,
pp. 10–10.

Krishnan, S. and Monrose, F. (2011). An empirical study of the performance, security
and privacy implications of domain name prefetching, Dependable Systems & Networks
(DSN), 2011 IEEE/IFIP 41st International Conference on, IEEE, pp. 61–72.

Kuzmanovic, A. and Knightly, E. W. (2006). Low-rate tcp-targeted denial of ser-
vice attacks and counter strategies, IEEE/ACM Transactions on Networking (TON)
14(4): 683–696.

Maes, W., Heyman, T., Desmet, L. and Joosen, W. (2009). Browser protection against
cross-site request forgery, Proceedings of the first ACM workshop on Secure execution
of untrusted code, ACM, pp. 3–10.

Newton, B., Jeffay, K. and Aikat, J. (2013). The continued evolution of web traffic,
Modeling, Analysis & Simulation of Computer and Telecommunication Systems (MAS-
COTS), 2013 IEEE 21st International Symposium on, IEEE, pp. 80–89.

Padmanabhan, V. N. and Mogul, J. C. (1996). Using predictive prefetching to im-
prove world wide web latency, ACM SIGCOMM Computer Communication Review
26(3): 22–36.

Vlajic, N., Shi, X., Roumani, H. and Madani, P. (2017a). Resource hints in html5: A new
pandora’s box of security nightmares, Proceedings of the 12th International Conference
on Availability, Reliability and Security, ACM, p. 61.

Vlajic, N., Shi, X., Roumani, H. and Madani, P. (2017b). Rethinking the use of re-
source hints in html5: Is faster always better!?, Journal of Cyber Security and Mobility
6(2): 195–226.

Wang, Z., Lin, F. X., Zhong, L. and Chishtie, M. (2012). How far can client-only solutions
go for mobile browser speed?, Proceedings of the 21st international conference on World
Wide Web, ACM, pp. 31–40.

Yang, Q., Zhang, H. H. and Li, T. (2001). Mining web logs for prediction models in
www caching and prefetching, Proceedings of the seventh ACM SIGKDD international
conference on Knowledge discovery and data mining, ACM, pp. 473–478.

	Introduction
	Related Work
	Research related to prefetch and dns prefetch
	Privacy implications due to resource hints
	Present defenses to the attacks caused due to resource hints feature

	Methodology
	Extracting elements from DOM extractor
	URL filtering and analysis
	Working of Predictor

	Implementation
	Extracting elements from DOM extractor
	Implementing Lexical Analysis on URL
	Performing Host Based Analysis
	BlackListing Checker
	Unsecured elements extractor
	Working of predictor

	Evaluation
	Experiment and evaluation with chrome browser
	Test Cases
	Discussion

	Conclusion and Future Work
	Acknowledgement

