

National College of Ireland

BSc in Computing – Internet of Things

2017/2018

Ryan Bannon

14488478

x14488478@student.ncirl.ie

VanWatch

Final Report

Date: 13/05/2018

Table of Contents

Executive Summary .. 3

1 Introduction ... 4

1.1 Background ... 4

1.2 Aims .. 5

1.3 Technologies ... 5

2 System .. 10

2.1 Requirements .. 10

2.1.1 User requirements .. 11

2.1.2 Functional requirements ... 12

2.1.3 Data requirements .. 20

2.1.4 Environmental requirements ... 20

2.1.5 Usability requirements .. 20

2.2 Design and Architecture .. 21

2.3 Graphical User Interface (GUI) Layout .. 22

2.4 Implementation .. 24

2.4.1 Python Implementation ... 24

2.4.2 Android Implementation .. 34

2.5 Testing .. 43

2.6 Customer testing ... 45

3 Conclusions ... 50

3.1 Product comparison table .. 50

3.2 Further development or research .. 51

3.3 Final thoughts .. 52

4 References .. 53

5 Appendix ... 55

5.1 Project Proposal .. 55

5.2 Project Plan ... 59

 - 3 -

Executive Summary

Developing a surveillance system is always something I thought would be

extremely fun, challenging and useful. As a result of the immense increase in

popularity of the Raspberry Pi and the area of the “Internet of Things” in the world

of I.T, this has now become a much more achievable thing to do. However, there

are so many surveillance systems currently out there, such as home surveillance,

store/ shop security systems and many more. So why would this be a good idea for

me to consider for my final year project? The reason for this is, I believe I have

found a niche in this market. Van theft has been around for a long time, however, it

appears to be somewhat out of hand in Ireland at this moment in time.

With the use of a Raspberry Pi and other hardware components and software

services, I will develop a system that will hopefully prevent this crime. What it will

guarantee however, is that should the owner of a van with this system installed fall

victim to theft, they will have a multitude of tricks up their sleeve to catch the culprit

red handed. The system will sense the movement of the criminal when they break-

in and record their actions. All of this footage will be safely stored and easily

retrievable. Also, many other features will help increase the efficiency and effect of

the system.

With this in mind, and a system such as this in play, I believe that it will hugely

decrease the chance of people attempting this crime.

1 Introduction

1.1 Background

Break-ins to vans are extremely common in Ireland today. And unfortunately, at the

forefront of these robberies are mainly tradesmen. Highly expensive tools and products

are stored there, so they can work and make a living. The design and objectives of a

van is too carry items in it, to many destinations. Sadly, they are seen as an easy

target for some that think they can grab some extra cash by breaking in and stealing

what is not theirs.

This project idea came to my mind because quite recently, a relative of mine had fallen

victim to this crime and was then left largely out of pocket because thousands of euro

worth of tools and appliances had been stolen from them. This experience is the

reason I feel strongly about this topic, because I know I have the capability to help

prevent such crimes from happening to others.

From my research, it is clear that this is an issue that has to be addressed. I happened

to come across a number of different sources that reported this crime to be out of hand

at this moment in time. With a quick search on Facebook, I also found that there are

Facebook pages for people to post their personal situation in regard to robberies, in

the hope that someone who sees it may know or have seen something useful to them.

The worst part about this is, there is not a whole lot the Gardai can do. They can ask

questions, take statements and search through CCTV footage, if there is any, but they

cannot do much more.

The following statement from a report on Independent.ie news, states:

“Tools worth around €26,000 were found during a checkpoint on Stockhole Lane,

Cloughran, Co Dublin in May.” [1]

I hate to say, but this figure suggests that these criminals are continuing with these

acts because there is in fact great money involved if you are good enough at

committing the offenses. This then also raises the question of whether people are

claiming on their insurance when they have been robbed, because it may then

increase the price of their premium. This is a terrible situation that some people have

been put in, and the rate in which they are occurring does not seem to be going down

anytime soon. This is why I propose that a system such as mine may benefit the hard-

working man.

 - 5 -

1.2 Aims

My aim coming into this project initially was to build a project based around the area of

the “Internet of Things”. It was key that when I was coming up with my idea, that I

found something challenging and fun. Otherwise, I knew that I would not enjoy my

project, which is a recipe for disaster. Then after a long time of hard thought, I finally

found a problem that I can offer a solution for. This idea is also one that is challenging

and I am extremely passionate and enthusiastic about, so I know that I will thoroughly

enjoy creating it.

My next aim was to then run this idea by my supervisor and confirm that it has the

potential to be my final year project, and that it meets all criteria or requirement

standards necessary. To my delight, I discovered that this in fact did just that and as a

result, my next aim was to research in depth the market that this system will be

entering.

My overall aim of the system itself is that it helps bring the number of van thefts in

Ireland down by proving that the completed system can not only carry out all of the

features that I will discuss in this paper, but also be a tool for catching criminals in the

act.

1.3 Technologies

Raspberry Pi

A Raspberry Pi is a small credit card sized mini-computer. [2] It has great ability to

interface with many components, and as a result of its size, is very portable. The

newest model, Raspberry Pi 3 Model B, is the one that I will be using in this project.

 - 6 -

Python Programming Language

The scripts that will be in control of recording the footage of the crime and all other

features that will be running on the Raspberry Pi, will be programmed with the Python

programming language. I have found this language to be wonderful for connecting

Raspberry Pi projects to the real world and one that is extremely powerful to program

with.

Java in Android Studio

An Android application will provide the user with an interface to view and alter data

captured by the observing raspberry pi on the vans environment.

GrovePi

GrovePi+ is a board that is also the same size as a credit card. [3] It is an add-on

board, which essentially means that it sits on top of the Raspberry Pi. The two boards

are connected through the GPIO pins and the GrovePi+ offers an easy and flexible

solution for interfacing sensors with the Raspberry Pi. In my project, it will be used to

easily connect and disconnect the Passive Infrared (PIR) motion sensor [4] to and from

the Pi. As a result, there is no soldering or breadboards necessary to interface this

sensor, which is a huge bonus.

 - 7 -

Motion Detector

The PIR motion detector will connect to the GrovePi+ and will detect any movement

that is in its range. This sensor will detect the motion of any intruders.

Pi Camera

This is the Raspberry Pi camera module which has the ability to record and take

pictures like a normal camera does. This camera captures an impressive 8 mega

pixels (MP). This will be used in my project to record any intruders and for observing

the van through a live stream.

 - 8 -

RFID RC522 receiver

Radio Frequency Identification (RFID) uses electromagnetic fields to automatically

identify and track tags attached to certain objects. In this system, the RFID reader

(receiver) will be connected to the Raspberry Pi. The RFID tag will be attached to the

user’s keys for their vehicle. If the reader receives a signal from a tag, the system will

turn off. I will be using the RC522 receiver alongside an RFID tag(s).

Adafruit Ultimate GPS

The ultimate GPS offers a solution for gathering geospatial data by communicating

with at least three satellites that are orbiting earth approximately 20,000 kilometers

above ground. [5] And the antennae on this device is smaller than a cola-cola bottle

cap, so as you can imagine it is a delicate piece of hardware. With this in mind, the

ideal location for this once the system was installed to a vehicle, would be on the roof

in a casing that would prevent damage as it needs a good clear look at the sky to get

any sort of a signal back.

 - 9 -

Google Firebase

I will make great use of three sections from within the Google Firebase Cloud Service,

the Real-time database, Storage and Authentication.

AWS S3 bucket

I will push all recordings to an Amazon Web Services S3 bucket. This will be a backup

cloud platform containing all recordings to fall back on, should data be lost from the

Google storage platform for any reason whatsoever.

One final piece of technology that is worth mentioning is GitHub. This version control

system will be used to ensure I am always working on the most recent version of the

code I write throughout this project. It is also important because it means a copy of all

of my files will be stored in the cloud, just in case anything happens to my own

machine or it was damaged beyond repair, I know a simple “git pull” command will

retrieve everything.

VanWatch GitHub Repo: https://github.com/ryanbannon/VanWatch-SoftwareProject

https://github.com/ryanbannon/VanWatch-SoftwareProject

 - 10 -

2 System

2.1 Requirements

The below requirements are functional features that this system must employ in order

for the user requirements to be met. Any features after these, are extra functions that

are integrated to further improve the system. I found that eliciting these requirements

to be a very enjoyable process.

The Use Case Diagram below will give a broad visual of these requirements and how

they will work together to create my desired system.

 - 11 -

2.1.1 User requirements

Performance/Response time requirement

The performance and response time of this system will need to be extremely good. As

I will be creating a solution for a crime that can be done in a very short space of time,

this systems response time in particular will need to be of a high standard. If it is not,

the camera may not capture footage of the heist or the user could not be alerted of the

theft, and much more. These are all situations and outcomes that must be nullified, in

order for this project to have the effect it can.

Security requirement

This project’s main goal is to provide security for its users. They should be able to rest

assured, knowing that their vehicle and all items inside of it, are secure. In terms of

security to the systems software, the Pi will be connected to a private network and all

data that will be transferring to the internet will be stored in Google Firebase, a secure

cloud service.

Reliability requirement

Reliability is possibly the most crucial entity within this project, as if this project is not

reliable, then what is the point in it? If the surveillance footage of a vehicle only works

sometimes, or if the motion detector doesn’t always work, this project will become a lot

less desirable to people. It must be systematically sound, robust and durable. Should it

tick all of these boxes, it will certainly be reliable too.

 - 12 -

2.1.2 Functional requirements

Requirement 1 System Armed

Description & Priority

The priority of this use case will be to ensure that the system is activated and ready to

detect and react to any suspicious activity in the owner’s van.

Use Case

System Armed

Scope

The scope of this use case is to provide the functionality for the system, that can arm

the security surveillance of the van.

Flow Description

Precondition

The system awaits a loss of connection between the RFID tag and receiver.

Activation

This use case starts when either the user manually activates the system, or if the user

is out of range of the vehicle.

Main flow

The system will recognise that the RFID tag attached to the user’s keys is out of range

of the receiver.

The system will be armed, which means that it will be on the lookout for any

unwarranted behaviour.

Any activity found as a result of this use case will initiate the Intruder Detected Use

Case.

Alternate flow

The user manually arms the system through the controlling application.

Exceptional flow

Error may occur due to lack of the internet connection or RFID tag/ receiver fails.

Termination

The system terminates this use case when the user manually disarms the system

through the application, or if the RFID tag comes within range of the receiver and

vehicle.

 - 13 -

Post condition

The system awaits a loss of connection between the RFID tag and receiver.

Requirement 2 Intruder Detected

Description & Priority

The priority of this use case will be to ensure that the system is capable of detecting

movement within the van when it is armed.

Use Case

Intruder Detected

Scope

The scope of this use case is to provide the system with the ability to detect an intruder

to one’s van with the use of a motion detector.

Flow Description

Precondition

The system must be armed in order for this use case to be able to perform.

Activation

This use case will immediately be activated as soon as the motion detector realises

there is movement within its range.

Main flow

The system is armed and waiting to detect any activity.

The motion detector recognises movement.

The Record & Store Crime Use Case will be initiated.

The Alert User Use Case will be initiated.

Alternate flow

The motion detector does not pick up any activity.

Exceptional flow

Error may occur due to a failure of a hardware component.

Termination

The system terminates this use case when the motion detector realises there is no

more movement within its range.

 - 14 -

Post condition

The system awaits a detection of any movement once again.

Requirement 3 Record & Store Crime

Description & Priority

The priority of this use case will be to ensure that the system records any thefts and

stores these recordings in the cloud.

Use Case

Record Crime

Scope

The scope of this use case is to provide the system with the ability to capture the event

with a camera and store the recordings in a service in the cloud.

Flow Description

Precondition

The system must sense an intruder.

Activation

This use case will immediately be activated as soon as the motion detector realises

there is movement within its range.

Main flow

The system is armed and waiting to detect any activity.

The motion detector recognises movement.

The camera records the footage.

The Alert User Use Case will be initiated.

Alternate flow

The motion detector does not pick up any activity.

Exceptional flow

Error may occur due to a failure of a hardware component.

Termination

The system terminates this use case when the motion detector realises there is no

more movement within its range.

 - 15 -

Post condition

The system stores this recording in the cloud and awaits a detection of any movement

once again.

Requirement 4 Alert Owner

Description & Priority

The priority of this use case will be to ensure that the owner of the vehicle that the

system is installed into, is notified of any intruders.

Use Case

Alert Owner

Scope

The scope of this use case is to provide the system with the ability to send an SMS

message to the owner, making them aware of the intrusion.

Flow Description

Precondition

The system must sense an intruder.

Activation

This use case will immediately be activated as soon as the motion detector realises

there is movement within its range.

Main flow

The system is armed and waiting to detect any activity.

The motion detector recognises movement.

The camera records the footage.

The alert message is sent to the user.

Alternate flow

The motion detector does not pick up any activity.

Exceptional flow

Error may occur due to a failure of a hardware component.

Termination

The system terminates this use case when the alert message has been sent.

 - 16 -

Post condition

The system carries on recording the heist.

Requirement 5 System Disarmed

Description & Priority

The priority of this use case will be to ensure that the system is deactivated when

necessary.

Use Case

System Disarmed

Scope

The scope of this use case is to provide the functionality for the system, that can

disarm the security surveillance of the van.

Flow Description

Precondition

The system awaits communication between the RFID tag and receiver.

Activation

This use case starts when either the user manually deactivates the system, or if the

user comes within range of the vehicle.

Main flow

The system will recognise that the RFID tag attached to the user’s keys come within

range of the receiver.

The system will be disarmed, as the owner is now in a close enough proximity to notice

and react should a theft be attempted.

The system awaits a loss of connection between the RFID tag and receiver.

Alternate flow

The user manually disarms the system through the controlling application.

Exceptional flow

Error may occur due to lack of the internet connection or RFID tag/ receiver fails.

 - 17 -

Termination

The system terminates this use case when the user manually arms the system through

the application, or if the RFID tag goes out of range of the receiver and vehicle.

Post condition

The system awaits communication between the RFID tag and receiver.

Requirement 6 Observe the van

Description & Priority

The priority of this use case will be to ensure that the user can observe the van when

they wish.

Use Case

Observe the van

Scope

The scope of this use case is to provide the functionality for the system to display the

current state of the inside of the van, when the user requests to do so through the

application.

Flow Description

Precondition

The system and all hardware components must be in full working order.

Activation

This use case starts when user requests to view the inside of the van through the

application.

Main flow

The user opens the application on a device.

They choose to view current footage of the inside of the vehicle.

The camera records the footage.

Playback is displayed to the user

Exceptional flow

Error may occur due to a failure of a hardware component.

Termination

 - 18 -

The system terminates this use case when the user longer wishes to observe their

vehicle.

Post condition

The application and system continues as normal.

Requirement 7 Playback a record

Description & Priority

The priority of this use case will be to ensure that the user can watch any previous

recordings, if there happens to be any.

Use Case

Playback a record

Scope

The scope of this use case is to provide the functionality for the system to display any

recordings that may have been previously stored.

Flow Description

Precondition

The system and all hardware components must be in full working order.

Activation

This use case starts when user requests to view previous recordings.

Main flow

The user opens the application on a device.

They choose to view previous recordings.

Playback is displayed to the user

Exceptional flow

Error may occur due to a failure of a hardware component.

Termination

The system terminates this use case when the user longer wishes to watch any

recordings.

Post condition

The application and system continues as normal.

Requirement 8 Send emergency message to Gardaí

 - 19 -

Description & Priority

The priority of this use case will be to ensure that the user has the ability to quickly

contact An Garda Síochána, should they need to.

Use Case

Send emergency message to Gardaí.

Scope

The scope of this use case is to provide the functionality for the user to contact the

Gardaí in the case of an emergency. Having a form of “Panic Button” such as this, will

save time if a theft does occur.

Flow Description

Precondition

The user must notice that there is an intruder in their vehicle.

Activation

This use case starts in the event of an emergency and when the user selects the

option to contact the Gardaí on the application.

Main flow

The system is armed and happens to detect intruder activity.

The system alerts the user.

The user responds to the crime by selecting the contact emergency services button on

the application.

Alternate flow

The motion detector does not pick up any activity.

Exceptional flow

Error may occur due to a failure of a hardware component.

Termination

This use case is terminated when the Gardaí have been contacted in relation to the

break-in.

Post condition

The application and system continues as normal.

 - 20 -

2.1.3 Data requirements

The data requirements of this project will consist of collecting the correct data that will

be captured from the sensor nodes and distributing the results in a precise and

accurate fashion to the appropriate platforms or services. Also, data that must be

retrieved in the systems setup, for instance, name and phone number of the user and

other similar information.

2.1.4 Environmental requirements

As my system will be focused on a specific space in a vehicle there are many

environmental requirements I must factor in for this project. The objective of a vehicle

is to move from one place to another, meaning its environment is constantly changing.

Also as people put and take large or heavy items into and out of the van, the pi and

sensors are vulnerable to being damaged should they be hit. Therefore, carefully

designing the case that the unit can slot into and be protected with during rough

journeys and avoiding damage from being knocked, is an important requirement to

bare in mind.

As the pi will be placed in a vehicle, it will be limited to its power supply. My favoured

solution for this would be to provide power through the vehicles cigarette lighter socket

using a USB adapter. However, it is imperative that the adapter has an output current

of around 2 Amps. The reason I state this is, all of the components that I will need to

use to build this system will exceed 1.5 Amps. The voltage of the Pi is 5 volts, which is

a popular output range for many adapters, so ensuring that I reach the 2 Amp target I

have set myself, will mean that I will not run into any difficulties supplying power to the

system.

2.1.5 Usability requirements

Portability requirement

The portability of this system will be provided to the user in the form of an application.

A unit will have to be fitted into their vehicle, therefore this element of the system

cannot be portable, but the application on the other hand will be.

 - 21 -

Extendibility requirement

This system will be developed with extendibility and scalability in mind. There are

many other features that could potentially be added to the project, therefore providing

the capacity to extend and grow is a requirement that I feel is extremely important to

take into consideration. This is a prime example of why I believe using the GrovePi+ in

the project will help, because should I want to attach more sensors further down the

line, I can do so with great ease.

Resource utilization requirement

The utilization of all resources will be key in creating this system. From the user’s

perspective, having the capacity to control the unit from an application, to the sensors

acting accordingly to its environment, all resources will play a critical part in combining

these components into one solid and reliable system.

2.2 Design and Architecture

 - 22 -

2.3 Graphical User Interface (GUI) Layout

The design and UI of the app is something that I gave a great deal of thought and

consideration. I found that after testing many different themes within Android Studio, I

was drawn to a consistent colour scheme of orange and blue. I felt that these colours

complimented each other nicely and therefore, I implemented this into my UI. I also

took inspiration from other apps I had on my phone and after spotting a design that is

present in two frequently used apps of mine, Gmail & Lynda.com, I knew that it was a

design I wanted to implement into my project – the Navigation Drawer.

Gmail: Lynda.com

 - 23 -

VanWatch’s navigation drawer:

I also wanted to add other attractive design elements to the application, for instance

the floating action button (a), spinning progress bar (b), edit text error handlers (c) and

more, which were all achieved.

(a) (b) (c)

 - 24 -

2.4 Implementation

2.4.1 Python Implementation

To begin explaining the implementation of the features of this project, I will first explain

in detail what resources they need and what it consists of. Firstly, I’ll speak about the

Python scripts that were developed to enable the raspberry pi unit with the ability to act

and behave as the intended security system should. Then I will move on and discuss

the Android application that I developed for this project. All code snippets only consist

of the most important elements of each file.

Sensor_scripts.py

I began by implementing the passive infrared (PIR) motion sensor, as if you strip the

whole idea back, it is this functionality that truly drives this project and ultimately the

most crucial part of the system – because it will detect moving objects that emit heat

energy, or in this case people. This PIR sensor was easily connected to the raspberry

pi through the Grovepi+ HAT (Hardware Attached on Top) that sits above the pi.

The above snippet demonstrates how I managed to program the pir sensor to react

when it senses movement in its environment. I initialised two variables called

previousState and motionState to false. This tells python that these variables will be of

Boolean data type and therefore will only ever have a value of either True or False.

Then I set the pin mode of the pir sensor to INPUT. Next, I set the previousState equal

to motionState because as we iterate through a while True (never ending) loop, the

previousState will be updated to the value that was stored in motionState during the

previousState = False

motionState = False

grovepi.pinMode(pir_sensor,"INPUT")

previousState = motionState

motionState = grovepi.digitalRead(pir_sensor)

if motionState != previousState:

 newState = "HIGH" if motionState else "LOW"

 if motionState:

 print ('Motion Detected')

 *** Execute security functions ***

 else:

 *** Motion has stopped – Execute clean-up functions ***

 - 25 -

previous iteration. The motionState variable is set to the value that is observed from

the pir sensor. So, at this stage we have our two variables, previousState which

contains the value of the previous iteration, and motionState which contains the current

value of the sensor. Next, I defined an if else statement which will only be entered

should a condition be met. This condition is if motionState is not equal to

previousState, or in other words, motionState = True and previousState = False. These

values of True and False are represented by the digital signal that is passed back from

the sensor, “HIGH” being a large signal when infrared radiation is found (True), and

“LOW” being a small signal when there is no motion in the sensors path (False). With

this in mind, I created another if else statement. It is also important to bare in mind that

Python will not reach this statement unless it passes through the first if else statement

that determines whether there was movement found or not. This if statement tells

Python what to do when the digital signal is “HIGH” which will be to execute all of the

security functions e.g. start recording the crime. The else statement following this will

be reached when the sensor finds a “LOW” signal, meaning that the infrared heat can

no longer be detected. When this occurs, we want Python to execute all clean-up

functions such as stop recording the crime etc. This snippet contains a powerful yet

efficient way off utilising the passive infrared sensor and as I have previously

mentioned, contains essential functionality in order for this system to work.

The next part of the system will talk about the camera that is connected to the pi with a

flex ribbon cable through the camera port.

The above snippet demonstrates how I managed to use the Pi Camera module to

record videos. First, I initialised the camera by creating a variable that holds an

camera = PiCamera()

def getFileName():

 return datetime.now().strftime("%Y-%m-%d_%H.%M.%S.h264")

if motionState:

filename = getFileName()

camera.start_recording(filename)

print('Starting Recording of '+filename)

else:

 camera.stop_recording()

print('Stopped Recording')

 - 26 -

instance of the PiCamera module. [6] Then if we jump into the if statement that I

discussed previously which tells Python that there has been motion detected, I create

another variable, called filename, that calls the getFilename() method. This method

simply uses the datetime module to create a string of the current time (.now()) in the

format (Year-Month-Day_Hour.Minute.Second) and then finally adds (.h264) at the

end. The pi camera records files in the .h264 format, therefore the .h264 at the end of

the string represents the extension that the file being created will need. I also chose to

format the current time all the way down to the second and name the file after this

timestamp for the simple reason of uniqueness. Next, I called the .start_recording()

method on the camera and passed in the filename so Python knows what to name the

file once it is created. As the name of the method suggests, this started a recording

through the camera. Then when we reach the else statement when there is no longer

any movement detected by the sensor, the stop_recording() method is called which

stops the recording.

The next step was to ensure the user of the system was immediately notified when the

sensors detected movement. This was achieved through the TextLocal API once I

created an account. The send SMS API documentation for the Python language can

be found and was obtained through the following link:

http://api.txtlocal.com/docs/sendsms. [7] There were a few changes I had to make in

order for this to work however. I am running Python 2.7 from my pi and the

documentation was specifically for Python 3.0. As a result, libraries and modules that

are used for sending an SMS were altered between the versions.

import urllib

import urllib2

def sendSMS(apikey, numbers, sender, message):

 data = urllib.urlencode({'apikey': apikey, 'numbers': numbers,

 'message' : message, 'sender': sender})

 data = data.encode('utf-8')

 request = urllib2.Request("http://api.txtlocal.com/send/?")

 f = urllib2.urlopen(request, data)

 fr = f.read()

 return(fr)

if motionState:

number = firebase.get('/number', 'number')

response = sendSMS('o5ZZfZRbO4UwWpJkJZJDw3owPAZmPsKL

jJNCfJHTI', number,'VanWatch', 'EMERGENCY ALERT: Our system has

detected movement in your van!')

print (response)

http://api.txtlocal.com/docs/sendsms

 - 27 -

The above snippet is also inside the if statement when movement is found by the pir

sensor. Both imports are the required libraries that are needed to complete the SMS

action. Now it is stating that before you do anything at all such as start recording, send

an SMS to the owner of the vehicle first. This is the first time we have come across

firebase in these code snippets. The reason I am retrieving a value from firebase is

because it is the cloud platform that stores the users phone numbers. Therefore, I am

getting the users phone number from firebase and passing it and the rest of the

parameters (apikey, sender, message) into the sendSMS() method so it can be sent.

Finally, I am printing the response which will state whether the message was sent

successfully or not. Below is a screenshot taken on my phone after testing this

functionality.

Moving on, I am going to explain the process in which I designed to store all of the

videos that are recorded by the pi in my chosen cloud service, Google’s Firebase as

previously stated. In order to do this, I had to utilise two sections within Firebase, the

Real-time database and Storage.

 - 28 -

The above snippet imports the firebase real-time database and storage python

modules, so we can use them in our script. I then initialised an instance of them both

(firebase & bucket). This functionality if we take a step back and think about what we

want to achieve, needs to be executed when the camera has recorded a video.

Therefore, I put this in the else section that will run when the sensor has received a low

signal after previously receiving a high one. We know that this will then stop the

recording but now we want to push this up to the cloud. I did this by specifying the path

to the file through its filename and transformed it to a Blob object. A blob object is

simply an immutable object of an array of bytes. [8] Next, I called the

.upload_from_filename() method and passed in the file which sends this blob object to

my firebase bucket. Once this has been achieved, I then retrieve the url for this specific

blob object and store it in a variable called url. The final thing to do now is to push this

url, alongside the start and end times of the video that are obtained through datetime

module we have seen before, to a table in the real-time database. This functionality

was developed using the firebase .post() method which take in the parameters of the

table “videos”, followed by the data in JSON format, that it is to store

“{'start':start,'end':end,'URL':url}”. The reason for this data to be sent to the real-time

database will become clearer as we proceed through this implementation chapter of

the document, but ultimately it is done so I can gather and display this data in the

Android application that will be discussed further down the line.

from google.cloud import storage

from firebase.firebase import FirebaseApplication

firebase = FirebaseApplication()

storage_client = storage.Client.from_service_account_json()

bucket = storage_client.get_bucket()

if motionState:

else:

blob = bucket.blob(os.path.basename(filename))

blob.upload_from_filename(filename)

photo_url = bucket.get_blob(filename)

url = photo_url.public_url

post=firebase.post('/videos/',{'start':start,'end':end,'URL':url})

print (post)

 - 29 -

I also thought it would be a good idea to store a backup copy of each recording in a

separate cloud platform altogether. The reason for this is in the highly unlikely event

where data is erased, there will always be a backup to revert back to if needed. The

platform I chose for this is another extremely secure cloud service, Amazon Web

Services.

The snippet above provides the solution I implemented to push each recording up to

Amazon Web Services, the service in particular is an S3 bucket. The library that I used

to make this submission to S3 was boto3. Boto3 contains a number of resources that

are well documented, to make working with Amazon S3 buckets quite seamless. [9]

The final part of the sensor_scripts.py file that is important to detail is the activity log.

This is another table in the firebase real-time database that stores information of

actions that were executed.

from firebase.firebase import FirebaseApplication

firebase = FirebaseApplication()

if motionState:

date = getDate()

log = firebase.post('/activitylog/', {'date':date,

'message':'Motion has been detected in the vehicle!'})

else:

date = getDate()

log = firebase.post('/activitylog/', {'date':date,

'message':'A new recording has been stored in the database'})

import boto3

s3 = boto3.resource('s3',aws_access_key_id=ACCESS_KEY_ID,

aws_secret_access_key=ACCESS_SECRET_KEY)

if motionState:

else:

data = open(filename, 'rb')

key = str('VanWatch_Recordings/'+filename)

s3.Bucket(BUCKET_NAME).put_object(Key=key, Body=data)

print ("Object Uploaded to S3 bucket as a backup")

 - 30 -

The above snippet uses methods we have already seen in this implementation section.

Again, I am using the datetime module to get the date and then posting a message to

the “activitylog” table in the real-time database when these actions occur.

Gps_location.py

This file is the one that utilises the functions made available by the GPS Breakout

module. The gps was connected to the pi through a USB to TTL serial cable which

converts transistor to transistor logic (logic high ‘1’ & logic low ‘0’) communication at a

serial level (one bit at a time) in a way that the receiving device (the pi) can read

through its USB port. [10] The end of the cable that connects to the gps consists of

four wires, red (power), black (ground), white (USB input) and green (USB output). The

wires needed to be attached to their appropriate header pins, which I first had to solder

to the gps module.

The above snippet is a never ending while True loop that executes whenever the file is

run. It simply gets the value of the track row in the coordinates table. Then if the value

is equal to true, it will execute the findCoordinates() method that I will speak about

next. If the value is anything else, then Python will sleep for 10 seconds and then loop

through this process again and again.

while True:

 try:

 track = firebase.get('/coordinates', 'track')

 if track == "true":

 findCoordinates()

 time.sleep(10)

def findCoordinates():

 while True:

 try:

 track = firebase.get('/coordinates', 'track')

 if track == "false":

 break

 if report['class'] == "TPV":

 if hasattr(report, 'lat' and 'lon'):

 latitude = report.lat

 longitude = report.lon

put = firebase.patch('coordinates',

{'latitude':latitude, 'longitude':longitude})

 time.sleep(10)

 - 31 -

As mentioned, the above snippet is of the findCoordinates() method that will be

executed when the track value is equal to “true”. Again, I created another while True

loop that also gets the value of the track row in the coordinates table, the reason for

this is as we iterate through this over and over, the value could change to NOT “true”

e.g “false”, and therefore I have a created an if statement that will handle this event by

breaking out of the loop and returning to the first one that waits until the value is “true”.

The action that is to be taken when it is in fact “true” though, is to receive the gps

report. The initialising and generating of a report was documented at the following link:

https://learn.adafruit.com/adafruit-ultimate-gps-on-the-raspberry-pi?view=all. [11] If the

report we receive is a ‘TPV’ report, Python will then check if the report has ‘lat’ and

‘lon’ attributes. If it does, I created variables latitude and longitude that can store this

data from the report and then finally push this data to firebase. I opted for using the

.patch() for inserting these values because I want the values to be constantly

overwritten instead of storing rows upon rows of coordinates. Then this process will be

repeated again after 10 seconds.

Live_stream.py

This file contains a linux shell command that is to be executed when the script is run.

This file handles the live streaming feature of the system. I discovered that for what I

was aiming to achieve, it was in fact most efficient for me to set up a live stream from

my pi to my Youtube channel. [12] This was made possible by enabling live streams on

my Youtube account and acquiring an RMTP address, which is essentially a specific

media URL. I also noted my secret-key that was assigned to my account, this key

ensures no one else can stream to my channel. Lastly, I installed ‘Libav’ which,

“provides cross-platform tools and libraries to convert, manipulate and stream a wide

range of multimedia formats and protocols”. [13] The most important library from Libav

being avconv. [14]

import os

def stream():

cmd = 'raspivid -o - -t 0 -hf -fps 30 -b 6000000 | avconv -re -ar

44100 -ac 2 -acodec pcm_s16le -f s16le -ac 2 -i /dev/zero -f h264 -

i - -vcodec copy -acodec aac -ab 128k -g 50 -strict experimental -f

flv rtmp://a.rtmp.youtube.com/live2/[secret-key]

 os.system(cmd)

https://learn.adafruit.com/adafruit-ultimate-gps-on-the-raspberry-pi?view=all

 - 32 -

Write.py and Read.py

These two files manage the reading and writing of data from the RFID receiver to the

tag. Before I began, some soldering was required for this component just like the gps

module. This RFID component however, requires 7 pins to be connected to the pi’s

GPIO (General Purpose Input/ Output) pins. These pins are the SDA (Serial data

signal), SCK (Serial clock), MOSI (Master out slave in), MISO (Master in slave out),

GND (Ground), RST (Reset-circuit) and 3.3v (3.3v power). Once the pins were

soldered onto the RFID reader, I connected them to the pins on the pi with female-to-

female jumper wires. Moving on from the hardware, I imported two Python files to help

with the development of the scripts for reading and writing to the tag(s). These files can

be found at the following link: https://github.com/pimylifeup/MFRC522-python [15].

These files were made available from PiMyLifeUp.com. At this stage I was now ready

to begin utilising this RFID component into my project. Taking a quick look at what I

wanted to achieve using RFID is, the user has an RFID tag on their keys, if the reader

picks up a signal, this means that the owner is in close proximity of the vehicle, so I

want the system to be disabled. If no such signal is found, then the system will activate

in the event that a criminal attempts a break-in.

Starting with the write.py file, I specified that the object reader is an instance of

SimpleMFRC522() which offers simpler control over the RFID reader in the snippet

above. Then I tell Python to accept an input from the shell and store that as a variable

called text. Now we are waiting to execute the reader.write(text) line, which cannot

write to a tag unless there is one within range. As soon as the reader picks up a tag, it

writes this text to it. After that, I then retrieve the id and the text that was just set by

calling reader.read(). The values are stored in the id and text variables that I then send

up to the firebase table “tags”.

reader = SimpleMFRC522.SimpleMFRC522()

try:

 text = raw_input('Your Name:')

 print("Now place your tag to write")

 reader.write(text)

 print("Written")

 id, text = reader.read()

 post = firebase.post('/tags/', {'id':id, 'name':text})

 print (post)

https://github.com/pimylifeup/MFRC522-python

 - 33 -

The read.py was slightly tougher because I wanted to check for a tag, which means

using the .read() method and if one is found, do something, if not, do something else.

But the issue being, once the .read() is called, Python will not proceed any further until

a tag is in fact read from. So to overcome this, I discovered a library called signal [16]

and this library contains a class called TimeoutException and a method called .alarm().

So, in my while True loop inside the checkForTag() method, I set an alarm to trigger a

signal after 60 seconds. This signal will then raise a TimeoutException. So, specifying

an except for this Exception allowed me to tell Python what to do when this happens.

My final result calls the read() method and if a tag is found, then I push the state to

Firebase as “off”. If a tag is not found in 60 seconds, the exception will be raised and a

state of “on” is pushed to Firebase followed by a call to execute checkForTag() again

and again.

import signal

signal.signal(signal.SIGALRM, timeout_handler)

def checkForTag():

 while True:

 try:

 signal.alarm(60)

 id, text = reader.read()

 put = firebase.patch('system', {'state':'off'})

 time.sleep(60)

 except TimeoutException:

 put = firebase.patch('system', {'state':'on'})

 checkForTag()

 - 34 -

2.4.2 Android Implementation

This section describes the Android application I created in the Java language for this

project. This was developed in Android Studio, and for visual aid and greater

understanding of the Java code snippets in the following section, I mutated the code

slightly to fit in the boxes and remove the bulky lines that come with Java such as,

.addOnCompleteListeners() etc. In other words, the code snippets are not copied to

this document verbatim from the actual files.

MainActivity.java:

This java class is as the name suggests, the main activity. It implements the navigation

drawer which has a huge effect on how a user navigates through the app. However,

the implementation of this design was not as straight forward as one would hope. The

standard android java class would render in a layout view after calling the

setContentView() method in the onCreate() stage of the android lifecycle. My

navigation drawer would consist of 4 elements, Dashboard, My Profile, Settings and

Logout. In order for the navigation drawer to work, each of these elements classes had

to extend the fragment class in order to inherit from it, and I then created a switch

statement that controlled which fragment was to be passed in when it was clicked. I set

the Dashboard fragment as the default, which means that this is the class that will be

executed when the user logs into the application. Also, the header of the navigation

drawer has a colourful image in the background where the logged in user’s name and

email address values are set to text views after being retrieved from the firebase real-

time database.

LoginActivity.java

I decided right from the off that I wanted to implement authentication in my app, and

the best possible way for me to do so was also using Firebase. This time however,

using the Authentication portion of the cloud service. I was also keen on using this

solution because it provides consistency throughout the project and Firebase is

natively friendly to implement directly from Android Studio.

 - 35 -

First, I declared and initialised the mAuth object which is an instance of the

FirebaseAuth object. Then I have set an onClick method for the login button which will

initiate the userLogin() method. The userLogin method calls the

signInWithEmailAndPassword() method that firebase provides us with. This takes two

parameters, email and password, which are retrieved from the edit text views. If the

user provides the correct credentials, an intent is made to bring the user into

MainActivity of the app. As the LoginActivity is set as the launcher activity, every time

the app icon is pressed on the device, the user will be brought to this class. So, I have

set an if statement in the onStart() activity method which will check if there is currently

a user object in the application – meaning a user has logged in but not logged out. If

that is true, then finish() the LoginActivity and bring the user straight to the

MainActivity. This helps with user satisfaction because it means that they do not have

to log in every time they open the app if they choose to remain logged in.

private FirebaseAuth mAuth;

protected void onCreate(Bundle savedInstanceState) {

 mAuth = FirebaseAuth.getInstance();

}

private void userLogin(){

mAuth.signInWithEmailAndPassword(email,password) {

Intent loginIntent =new Intent(LoginActivity.this, MainActivity.class);

startActivity(loginIntent);

}}

public void onClick(R.id.buttonLogin){

 userLogin();

}

protected void onStart() {

 if(mAuth.getCurrentUser() != null){

 finish();

 startActivity(new Intent(LoginActivity.this, MainActivity.class));

}}

 - 36 -

SignupActivity.java:

The snippet above is how a user can create an account on the app through firebase

authentication. It is very similar to LoginActivity.java however, we are calling the

createUserWithEmailAndPassword() method inside the registerUser() method when

the sign up button is pressed.

Dashboard.java:

This class simply contained four intent actions that start other activities when the

buttons are pressed.

Profile.java:

This class displays the logged in user’s information – their profile picture, name, email

and phone number.

private FirebaseAuth mAuth;

protected void onCreate(Bundle savedInstanceState) {

 mAuth = FirebaseAuth.getInstance();

}

private void registerUser (){

mAuth.createUserWithEmailAndPassword(email,password) {

Intent loginIntent =new Intent(LoginActivity.this, MainActivity.class);

startActivity(loginIntent);

}}

view.findViewById(R.id.liveFootageBtn).setOnClickListener(new

View.OnClickListener() {

 @Override

 public void onClick(View view) {

 Intent footageIntent = new Intent(getContext(), LiveFootage.class);

 startActivity(footageIntent);

 }

});

 - 37 -

In the snippet above, I first initialised my user object as the current user and my

firebase database reference is targeting the table that is associated with that user’s id

that will be used further down in this paragraph. Next, I used Picasso, an image

downloading and caching library for android [17], to slide the image into an image view

in the loadUserInformation() method. I did this by grabbing the URL of the users profile

picture using the user.getPhotoUrl() method and then setting this .toString() to avoid

any unwarranted errors occurring. Next, I loaded the user.getDisplayName() that is

associated with the users profile image, into the a name textview. The next two details

(email and phone number) had to be stored separately as there was no such option to

add them to firebase alongside the profile image and display name. As such, I targeted

a table that is specific to that exact user by stating “databaseReference = database.

getReferenceFromUrl(“URL”)+user.getUid());”. Then I turn the focus to the child of

this table (email) and then later (phone number). However, for now I will speak about

the email row. Firebase offers a nice listener (.addValueEventListener()) which works

well with the onDataChange() method sitting inside the listener. What this does is

monitors the targeted table and if there is a change, it will execute whatever

commands are set. In this case I called the setText() method on the email Textview

object to display the result. Once this value is changed in the database, it will also be

changed in the application in real-time. Finally, I repeated the same process for the

user’s phone number (this is not shown in the snippet above).

user = mAuth.getCurrentUser();

database = FirebaseDatabase.getInstance();

databaseReference = database.getReferenceFromUrl(“URL”)+user.getUid());

private void loadUserInformation() {

Picasso.with(getContext()).load(user.getPhotoUrl().toString()).into(profileIm

ageView);

name.setText(user.getDisplayName());

databaseReference.child("email").addValueEventListener(new

ValueEventListener() {

 @Override

 public void onDataChange(DataSnapshot dataSnapshot) {

 if (dataSnapshot.getValue() != null) {

String mail = dataSnapshot.getValue(String.class);

email.setText(mail);

 }}

}

 - 38 -

EditProfile.java:

This class displays the logged in user’s information – their name, email and phone

number in edit text views and the user’s profile picture. The user can edit their details

and can also select their profile picture image to open their phones gallery. Once they

select another photo, it will be uploaded to firebase and updated as their profile picture.

This class is naturally very similar to Profile.java. I have set that all the values of name,

email and phone number are displayed as text and the user can simply change them

before pressing submit. The submit button works by having an onClickListener() that

runs a saveToFirebase() method when called. saveToFirebase() then amends any

changes in the database. The only part of this class that differ a great deal from the

Profile.java class is that I had to create image view that will update the user’s profile

image.

This was trickier than the other elements in this class to implement because selecting

the image would initiate an intent that then accesses the devices gallery. Once an

image has then been selected by the user, I had to call an onActivityResult() method

that first validates that the user selected an image, second that the image was stored

in a Bitmap variable and displayed back to the user in the image view, and lastly that

this image was then submitted to firebase as that current users profile picture.

In the snippet above, these lines are the most crucial for submitting this image as the

user’s profile picture, but in particular “.setPhotoUri(taskSnapshot.getDownloadUrl())”.

This essentially states that when you are pushing this file up, retrieve the download

URL of this image and then set it as the photoUri associated with this user. This is

important because this is what gives us the ability to call Picasso on the .getPhotoUrl()

– which is essentially the get method on the URL that was set by the .setPhotoUri()

method.

private void uploadImageToFirebaseStorage() {

firebaseProfileRef=FirebaseStorage.getInstance().getReference("ProfilePics/"

+ System.currentTimeMillis() + ".jpg");

firebaseProfileRef.putFile(imageUri)…{

UserProfileChangeRequest profile = new

UserProfileChangeRequest.Builder()

 .setPhotoUri(taskSnapshot.getDownloadUrl())

 .build();

}}

 - 39 -

LiveFootage.java:

As we saw earlier in the Python implementation, I set up a live stream from my pi to

Youtube. Now there is no point in doing this unless I create section in my application

where the user can view this stream, and this class handles just that. This was not a

difficult thing to achieve with a webview in android.

The snippet above demonstrates how I managed to load the live feed url into the

webview. It also contains the onClickListener() that I set in the case of an emergency.

If the user is watching the live stream and notices criminal activity such as a break-in,

they can quickly press the “Contact Emergency Services” button which will invoke and

intent and pass the phone number “999” to the devices dial service where they can call

An Garda Siochana immediately.

protected void onCreate(Bundle savedInstanceState) {

String url = "https://www.youtube.com/live_dashboard";

WebView webview;

webview = findViewById(R.id.webview);

webview.setWebViewClient(new WebViewClient());

webview.loadUrl(url);

webview.setVisibility(View.VISIBLE);

emergencyBtn = findViewById(R.id.emergencyBtn);

emergencyBtn… onClick(View view) {

String phone = "999";

Intent callIntent = new Intent(Intent.ACTION_DIAL,

Uri.fromParts("tel", phone, null));

 startActivity(callIntent);

}});

}

 - 40 -

Location.java:

When this class is created it renders a Google Map object as a fragment into its layout.

The above snippet tells Java what I want it to do when the Google Map has been

successfully passed into the layout. I call my firebase reference to the coordinates

table and set the track value to true. If you remember, this is the row Python is

checking in the gps_location.py file. This will initiate Python to read the gps and submit

the coordinates back to this same table. In the mean-time the android application will

get the values of these latitude and longitude coordinates and add a marker and move

the camera to the position of these coordinates. This is also placed inside an

onDataChange() listener, so every time Python updates the coordinates, the marker

and camera will be readjusted. Finally, I specified in all of the stages of the android

lifecycle what the track value should be, for example in the snippet we can see that I

tell android if the activity is stopped, to set the value to false. This means that Python

will only read the gps and update the latitude and longitude coordinates when the user

is actually inside the Location.java activity.

protected void onCreate(Bundle savedInstanceState) {

database = FirebaseDatabase.getInstance();

 databaseReference = database.getReferenceFromUrl("/coordinates/");

databaseReference.child("track").setValue("true");

 databaseReference.addValueEventListener… onDataChange() {

Double latitude = dataSnapshot.child("latitude").getValue();

 Double longitude = dataSnapshot.child("longitude").getValue();

 LatLng location = new LatLng(latitude, longitude);

mMap.addMarker(position(location));

 mMap.moveCamera(CameraUpdateFactory.newLatLng(location));

}}}

public void onStop(){

 super.onStop();

 databaseReference.child("track").setValue("false");

}

 - 41 -

Recordings.java & ActivityLog.java:

I will speak about these two class in parallel as they are both very similar in nature.

Both of these classes are serving as an interface in the application as a means of

displaying the recordings taken from the pi and the activity log that is generated when

an event is triggered also on the pi. I set a listview as the target object for both of these

classes to display their information. I will speak about the Recordings.java class but at

the same time, everything will I detail will also apply to ActivityLog.java unless I say

otherwise.

At the top of the snippet above, I am initialising my listview and database reference

objects. I also create a new instance of an ArrayList called list, an instance of an

ArrayAdapter called adapter which takes in the textview layout and ArrayList, and an

instance of my model class Recording. My model class Recording consists of three

declared strings, two constructors – one empty and another that initialises the

arguments that are passed into it, in my case (start & end, which are strings

representing the start and end times of a recording), and getters and setters for each

variable. The model is in place to ensure that the data being received from firebase is

parsed into a structure that the application can then use. Next, I created another

onDataChange() method. Inside of this I cleared the list, then I created a for loop that

iterates through the children of the table videos in firebase. Each iteration adds the

values of the start and end strings to the ArrayList and then I set the adapter to the

listView = findViewById(R.id.listview);

recording = new Recording();

database = FirebaseDatabase.getInstance();

databaseReference = database.getReferenceFromUrl("/videos/");

list = new ArrayList<>();

adapter = new ArrayAdapter<String>(this,R.layout.recording,R.id.video, list);

databaseReference… onDataChange(DataSnapshot dataSnapshot) {

 list.clear();

 for(DataSnapshot ds: dataSnapshot.getChildren()){

 recording = ds.getValue(Recording.class);

list.add(recording.getStart().toString()

+recording.getEnd().toString());

 listView…onItemClick(…) {

 Intent i = new Intent(Intent.ACTION_VIEW);

 i.setData(Uri.parse(recording.getURL().toString()));

 startActivity(i);

 }});}

 listView.setAdapter(adapter);

}

 - 42 -

listview, which displays each child of the videos table into listview. Going back to when

I cleared the ArrayList, I did this because every time that the database is changed,

Java will loop through the it and add all of the rows to the list. If this list is not cleared

before that happens, then it will result in these rows just being added to the bottom of

the current list, thus duplicating data again and again. As I mentioned, this is similar to

the ActivityLog.java class, as it also displays a listview in the same manner and also

has its own model MyEventLog.java. However, there is one thing that does set these

classes apart, which is present in the Recordings.java class. During the for loop in the

onDataChange method, I set an .onItemClickListener() which gets the value of the

recording url from firebase that was previously submitted by Python in the

sensor_scripts.py file when the motion sensor triggered and a recording was taken and

pushed to storage. I also wrote an intent within this onItemClickListener which takes

the user to this url that was received, thus downloading the video to the user’s device

for them to view.

An attempt was made to display a list of recordings stored in the Amazon S3 bucket,

with the intention to have a choice and test which platform (Firebase or AWS)

performed better. However, after implementing Firebase first and spending

unnecessary time, I moved on to other features of the app. I have left these attempts in

my project which can be found in the following files:

 AWSManager.java

 DownloadedObject.java

 GenerateKeys.java

 S3ListAdapter

 - 43 -

2.5 Testing

The testing of this project was something that I enjoyed because I got to see the

system in action as a whole. Numerous unit tests were run throughout the whole

development stage of the project but the one part of it that I felt had been tested the

least is the Android application. So, in order to rectify this, I installed the app onto four

different Android phones and tested each of the apps features on all of them. The

phones that I did this on were:

 Samsung Galaxy A5 (2017) – Android 7.0

 Samsung Galaxy S7 – Android 7.0

 HTC One M8 – Android 6.0

These devices are in the same order (from left to right) as specified in the list above

this photo.

 - 44 -

The result of this testing went extremely smooth and every element of the application

passed with flying colours, even on the HTC One M8 device which was running an

Android version below the device I had been unit testing with throughout the whole

development cycle of the app (the Samsung Galaxy A5 2017).

I also decided that testing the system as a whole, fully implemented was something

that would enable me to conclude with a degree of certainty that the project was

developed well and all elements were implemented correctly. I did this by arranging

people to participate in testing the system in an environment I had set up. I re-enacted

a scenario in which would trigger the system to respond. Each participant also had

access to the application and when they were finished, they filled out a survey. The

feedback I received from this was amazing and really worth-while. All of the survey

results will be in the next section of this report “Customer testing”.

 - 45 -

2.6 Customer testing

 - 46 -

 - 47 -

 - 48 -

 - 49 -

 - 50 -

3 Conclusions

3.1 Product comparison table

Whilst eliciting my requirements for this project, I also researched the market that this

system would be entering. Upon this research I found one such company named

Vanlock [18], that specialise in the area of van security. They are based in Dublin, so

they would appear to be my main rival should I roll this system out into production.

With that in mind, I decided that one of the ways I would like to conclude this document

is with a visual comparison of the two products side-by-side.

 - 51 -

3.2 Further development or research

There are so many avenues that can be explored to increase the productivity and

improve and add other features to this system. It is important to create a project that

has the ability to expand, such as this one does.

A great feature I plan to integrate in the future would be a more stable arming and

disarming process for the system. Although the one that I have laid out will suit my

needs right now, I’m sure that going forward, any improvements to the architecture will

always be welcomed. This is why I think having the capability to switch the system on

and off when the vehicle owner locks and unlocks the van, would be something to

consider.

To further valid a break-in and provide the ability for quicker reactions, contact plates

could be installed onto the doors of the van. This would help if the contact plates were

being tampered with if the intruder was attempting to force the doors of the van open,

because we would know they are trying to get in before they manage to do so, which

as I have mentioned means that we can react faster.

Another feature I believe will help the user is offering them the capability to attach

RFID tags to their most precious and expensive tools or appliances. This way should

someone manage to steal these items, they can be tracked and as a result the culprit

can also be caught.

A NoIR camera offers the same functions as the regular Pi camera, with the only

difference being, it does not use infrared filtering. Without this filtering, the camera has

greater vision in the dark, but lesser vision in daylight. So, implementing a Pi NoIR

camera to record a crime at night time, would also improve the system.

Lastly, one possible feature to implement in the future could be to allow the user to

speak into their mobile device and output this audio through some sort of speaker in

the van. This could work well should a thief break-in, because if they hear the vehicle

owner speaking to them through a speaker and threating to call the Gardai

immediately etc., I would imagine that this would scare away most if not all of the

criminals that attempt a break-in on a van with this system installed into it.

 - 52 -

3.3 Final thoughts

Overall, this project was something that I thoroughly enjoyed creating. It was very

satisfying to see the end product after all of the hours that was put into making it what

it is. I’m thrilled to say that I believe the system has achieved more than I had

anticipated at the beginning and I was even hesitant at the beginning with doubt over

my ability to produce a project such as this. The reason being I aimed to challenge

myself and incorporate a multitude of different technologies that were unfamiliar for

me. However, looking back now I completely stand by my choice of direction and my

idea for my final year project. I have designed this whole system in a way that is

certainly flexible and above all scalable. The feedback I have received from those who

were kind enough to participate in my testing stage was fantastic and the support I

have received throughout this project from my supervisor, Dominic Carr and all staff in

the National College of Ireland was tremendous and something I am very thankful for.

 - 53 -

4 References

[1] “Tool theft victims say gangs are ‘ruining’ their livelihoods - ‘These gangsters are
targeting hard-working people,’” Independent.ie. [Online]. Available:
https://www.independent.ie/irish-news/crime/tool-theft-victims-say-gangs-are-
ruining-their-livelihoods-these-gangsters-are-targeting-hardworking-people-
36102213.html. [Accessed: 12-May-2018].

[2] “Raspberry Pi - Teach, Learn, and Make with Raspberry Pi,” Raspberry Pi. [Online].
Available: https://www.raspberrypi.org/. [Accessed: 12-May-2018].

[3] “GrovePi Internet of Things Robot Kit.” [Online]. Available:
https://www.dexterindustries.com/grovepi/. [Accessed: 12-May-2018].

[4] adafruit, “PIR Motion Sensor Tutorial,” Instructables.com. [Online]. Available:
http://www.instructables.com/id/PIR-Motion-Sensor-Tutorial/. [Accessed: 12-May-
2018].

[5] A. Industries, “Adafruit Ultimate GPS Breakout - 66 channel w/10 Hz updates.”
[Online]. Available: https://www.adafruit.com/product/746. [Accessed: 12-May-
2018].

[6] “10. API - picamera.camera Module — Picamera 1.10 documentation.” [Online].
Available: http://picamera.readthedocs.io/en/release-1.10/api_camera.html.
[Accessed: 13-May-2018].

[7] “Sending SMS.” [Online]. Available: http://api.txtlocal.com/docs/sendsms.
[Accessed: 11-May-2018].

[8] “Interface: Blob,” Firebase. [Online]. Available:
https://firebase.google.com/docs/reference/js/firebase.firestore.Blob. [Accessed:
11-May-2018].

[9] “Amazon S3 — Boto 3 Docs 1.7.19 documentation.” [Online]. Available:
https://boto3.readthedocs.io/en/latest/guide/migrations3.html. [Accessed: 13-May-
2018].

[10] A. Industries, “USB to TTL Serial Cable - Debug / Console Cable for Raspberry Pi.”
[Online]. Available: https://www.adafruit.com/product/954. [Accessed: 11-May-
2018].

[11] “Introduction | Adafruit Ultimate GPS on the Raspberry Pi | Adafruit Learning
System.” [Online]. Available: https://learn.adafruit.com/adafruit-ultimate-gps-on-
the-raspberry-pi?view=all. [Accessed: 11-May-2018].

[12] “Live Stream to YouTube With a Raspberry Pi.” [Online]. Available:
https://www.makeuseof.com/tag/live-stream-youtube-raspberry-pi/. [Accessed: 11-
May-2018].

[13] “Libav.” [Online]. Available: https://www.libav.org/. [Accessed: 11-May-2018].
[14] “Libav documentation : avconv.” [Online]. Available: https://libav.org/avconv.html.

[Accessed: 11-May-2018].
[15] Contribute to MFRC522-python development by creating an account on GitHub. Pi

My Life Up, 2018.
[16] “17.4. signal — Set handlers for asynchronous events — Python 2.7.15

documentation.” [Online]. Available: https://docs.python.org/2/library/signal.html.
[Accessed: 13-May-2018].

[17] “Picasso.” [Online]. Available: http://square.github.io/picasso/. [Accessed: 11-May-
2018].

 - 54 -

[18] “Van Locks Dublin | Vanlock Supply and Installation Dublin,” Vanlock. [Online].
Available: http://www.vanlock.ie/. [Accessed: 13-May-2018].

 - 55 -

5 Appendix

5.1 Project Proposal

Objectives

For my final year project, I will create a system that offers a solution around the area of

vehicle theft. But to be more specific, van theft. The word theft can be misunderstood

as it refers to a couple of different instances. The theft of an automobile can mean that

the culprit has stolen the vehicle, or it can also be taken that they have robbed some

things from the vehicle. I want to focus primarily on the latter, the theft of items from

within one’s van. The main objective is to give people in danger of being victims to van

theft, an element of security.

Another objective is also to try and prevent break-in cases. I believe that this is

achievable because if a thief was aware that the van they were targeting was being

monitored, they are far less likely to proceed with the heist. Unfortunately, this will not

stop them from moving onto a van that doesn’t have this equipped, however, should all

vans be fitted with this technology, I believe there would be a decline in the number of

thefts occurring.

This is why I propose that a system such as this, needs to be in place. With the

emergence of the technologies surrounding the “Internet of Things”, and how popular

this field has now become, it is important that we use these technologies to our

advantage. Especially when the solution can help with issues such as the one I have

explained above.

The way I hope to achieve these objectives is to implement a surveillance system that

detects break-ins. A camera will be fitted in the vehicle which will capture footage of

the crime, and a mobile application will manage the system appropriately.

 - 56 -

Motivation

My motivation for this project is simply through personal experience. A member of my

family had fallen victim to this crime not too long ago. The person responsible left us

devastated, by stealing thousands of euro worth of tools and appliances. For this

reason, I feel strongly and am very passionate about preventing this from happening to

others if possible. On that note, as I am specialising in the “Internet of Things” stream

and developing first hand applications with the likes of Raspberry Pi’s, I know that it is

in fact possible to offer this services to those who may in danger. This is why and how I

have found my motivation to pursue this idea for my final year project.

Technical Approach

My approach coming into this project will be to clearly identify goals and targets to hit

in certain timeframes. My project plan will include detail of the major and minor tasks

that must be completed. I will also be sure to continuously test elements of the system,

while working on the documentation of the project as I go along also.

I will continuously research the technologies and other styles that I can approach

aspects of the project with. As I will be developing a surveillance system of vans,

hardware components and accessories will be its focal point. I will use a Raspberry Pi

and a number of different sensors and cameras to monitor the chosen environment. I

must ensure that all of these components are working and capable of consuming the

data that I require. With that in mind, I must also research the different type and

models of vans. Gathering the dimensions, shapes, sizes and layout of completely

different models of vans is very important because it affects the physical architecture in

which these components are to be arranged and fitted. A unit that is universal to the

type of van is what is required with this project.

I am responsible for implementing a system that will provide the best possible user

experience for the end user. I believe that I can achieve this, once I can integrate all of

the elements correctly. The hardware devices, for example, Raspberry Pi and sensors,

must communicate with each other and other platforms. I would be heavily inclined to

integrate the Amazon Web Services (AWS) platform and have the captured data,

stored in a database in the cloud. Raspberry Pi’s have great capacity to communicate

with platforms such as, AWS. Having the environment monitored and transmitting its

data to the cloud isn’t enough though. I will need to develop a platform that the end

user will be able to work with. This will mean some sort of application will have to be

implemented. AWS will be the glue that holds the system together, because it will

exchange data between the unit in the van and the application that the user will be

operating. This application will ideally be mobile and therefore, I will create an Android

app that should be able to control the system appropriately. Lastly, in order for the

 - 57 -

system to be armed and disarmed automatically, I want to use Radio-Frequency

Identification (RFID) tags and receivers, to switch the system on when the tag is out of

range of the receiver and off when it is within range. The tag will be attached to the

owner’s keys, so when they are not near the van, the system will be on red alert for

any suspicious activity, and won’t when they are in close proximity.

Special Resources Required

In order for this project to work, I will need a great amount of hardware components.

These components will all work together in a system that detects possible intruders to

a defined area (the boot of a van) and acts appropriately when such actions are

identified.

I should need the following components:

Raspberry Pi - The Raspberry Pi is a small computer that is around the size of a credit

card and also looks similar to one too. Unlike a normal computer, it does not have

things such as a keyboard etc, but these devices can be plugged into the Raspberry

Pi. They are mainly used for building computer projects because they are small,

cheap, portable and capable of doing almost anything with electronics. Fortunately, the

college has supplied me with this hardware, as I am specialising in the “Internet of

Things” stream.

GrovePi - The GrovePi is a similar device in shape and size to the Raspberry Pi and

they are used together. The GrovePi makes it easy to attach and use sensors and

other devices with the Raspberry Pi. Thankfully, the college has provided me with this

piece of hardware also.

Motion Detector Camera - The motion detector camera will record footage when it

senses movement in range.

Alarm - the alarm is a possible device that I could implement into the unit. It could be

useful for people that do not have an alarm already fitted into their van.

RFID tag/ receiver - I will need Radio-Frequency Identification to initiate the system.

Once the tag comes within range of the receiver, the system will know that the owner

is close, therefore it should not attempt to detect unusual behaviour. On the other

hand, when the tag is outside of the range, the system will be armed.

 - 58 -

Technical Details

Android is one of the two dominant operating systems in the world, the other being

iOS. As a result, Android has great demand in the market for mobile application

development. This is why the application I will create, will be built with Java in the

Android Studio Integrated Development Environment (IDE).

I will be using Python to write the scripts for sensor components attached to the

Raspberry Pi. The principal Python modules I expect to use are ones such as,

datetime, json and GPIO. PiCamera is another module that I suspect will be needed to

interface the Pi with the motion detector camera.

Amazon Web Services offers a managed cloud platform specifically for the Internet of

Things, which is fittingly called “AWS IOT”. By connecting the system to this platform, I

can securely interact, store and exchange data between all of the required nodes in

the system.

GitHub is a cloud based version control service. I will use this throughout the

development of my project, to ensure that none of the code will be lost at any stage.

GitHub will also allow you to recover every version of your code, in the case that you

make a change and then suddenly realise that it was a mistake and has interrupted

other features of your project.

Evaluation

The evaluation and finishing of the project will be a huge task. Integration testing will

be carried out to exercise the established interactions between different components of

the system. This will examine the different parts of the system and how work together.

This will outline any bugs in the software code that will need to be fixed, or show the

need for any error handlers in certain areas etc. The system test will then evaluate the

system as a whole. The main focus and most important result from these tests are

user experience. In order to sign off on the project, I will be sure to experiment the

system with people I know. There are plenty of people that I am in close contact with

that own a van, so this should not be an issue.

This idea is one that I am very proud of, and it will be a great achievement that I will

take with me when I graduate from college. Therefore, I look forward to starting to work

on this project for my final year.

 - 59 -

5.2 Project Plan

 - 60 -

